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Abstract
In this paper, experimental and numerical investigations on cord–elastomer composites are presented. A finite-element model
is introduced, which was developed within the framework of an industrial project. The model is able to simulate an elastomer
matrix with inserted cords as load bearing elements and to predict the strains and stresses in cord and elastomer sections.
The inelastic material behavior of the elastomer matrix and the yarns is described by corresponding material models suitable
for large deformation processes. With the help of a specially developed demonstrator bellows, which is similar to an air
spring, the simulation results are compared with experiments. For this purpose, the digital image correlation method is used
to determine the deformations on the outer surface of the demonstrator bellows and to calculate the strains on and between
the cords. The comparison of the results shows that the employed simulation method is very well suited to predict the strains
in these cord–elastomer composites.

Keywords cord–elastomer composites · Microscopic cord modeling · Elastoplasticity · Abaqus · Digital image correlation

Introduction

Cord-rubber composites nowadays are indispensable inmany
engineering fields and are essential for the efficient develop-
ment of many components, e.g., driving belts, tires, or air
suspension bellows [5]. These components typically consist
of an elastomer, which is reinforced with cords to bear loads.
The mechanical properties of these composites are charac-
terized by a high tensile stiffness and a comparatively low
stiffness against shear and bending. An important compo-
nent of these composites are the cords, which consist of at
least two yarns of the same or different filament materials.
Therefore, the yarn materials determine the field of applica-
tion of the cord–elastomer composites. The combination of
an elastomermatrixwith inserted reinforcingmaterial results
in an extremely complex mechanical behavior. On one hand,
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the inelastic and non-linear behavior of the rubber material
must be taken into account. On the other hand, the directional
dependent and also non-linear and inelastic behavior of the
cords have to be regarded.

The calculation methods for cord–elastomer compos-
ites can be divided into macroscopic and microscopic
approaches. In macroscopic approaches, the structural prop-
erties of the composite are homogenized, because the result-
ing properties of the component are of interest. First, analyt-
ical methods were based on the rule of mixtures, with which
first important results have been achieved [1,11,29,31]. With
the development of the rebar technique, a simple procedure
for separate modeling of the cords and the elastomer was
found. The basic idea of the rebar technique is inspired by
the structure of reinforced concrete. Namely, the concrete
is reinforced by inserting steel bars or grids. Transferred to
FEM, this means that special bar elements are inserted into
elements that should be strengthened. These bar elements
have their own material properties, usually with a higher
compressive and tensile strength than the host element. This
technique quickly became a standard tool of commercial
FEM programs. Therefore, a number of works have been
published about the simulation of entire cord–elastomer
composites with the help of this technique [14,20,26,32].
Macroscopic approaches are typically applied to investigate
the global deformation and load behavior of cord–rubber
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composites. If, however, local quantities, like stresses at
the interfaces between cord and elastomer, should be cal-
culated, then microscopic models have to be used. In this
context, the level of detail, in which the cords are modeled
and the type of material model used, plays a significant role.
If, instead of considering the cords as isotropic bodies, the
structure of multifilament yarns should also be considered,
the modeling effort increases. First approaches for this can
be found in [17,25]. With these approaches, it is possible to
describe the filament trajectories analytically. However, the
cross-sectional shape of the cord can only be varied slightly,
which makes an extension to hybrid cords (i.e., cord consist-
ing of yarns of different materials) and the performance of
parameter studies difficult. Another approach by Donner [4]
describes the geometry of the cord from a combination of
Fourier and Taylor series. Their free coefficients are deter-
mined by the help of a finite-element simulation of the cord
twisting process and allow a more precise description of the
cross-sectional area of the twisted cord. For the validation of
cord–rubber composite simulations, experimental tests are
performed, which include the measurement of global val-
ues like forces, displacements, and rotations of a loading
device or the outer contour of loaded bellows, see, e.g., [14].
However, local analyses of strains can significantly extend
and improve the database for the comparison with numeri-
cal results. Since loaded cord–rubber composite components
can show strong inhomogeneous stress and strain fields due
to the inhomogeneous material distribution and behavior,
a high-performance measuring method for the analyses of
deformations on the specimen surface is required. The opti-
cal non-contact field measuring method 3D digital image
correlation (DIC) is suitable for these local strain analy-
ses. The basics and examples of applications are given in
[30]. For strain evaluation based on measured coordinate or
displacement fields, various methods are known, like, e.g.,
local calculations on the basis of on themeasured coordinates
of adjacent points [10]. Furthermore, a global procedure of
strain calculation based on smoothingDIC displacement data
using the FEM is given in [2,30]. Another way is strain calcu-
lation based on global functions obtained by approximation
using, e.g., polynomials [19,27] or B-splines (approxima-
tion method—see [15], strain calculation on the basis of this
method—see [22–24]).

In this paper a calculation method is presented, which is
based on the microscopic modeling of the cord–elastomer
composite by Donner [5]. This method is applied on two
demonstrator bellows similar to an air spring with different
cord angles in each case, since the cord angle largely deter-
mines the mechanical properties of the component. On one
hand, this allows the material model and the simulation pro-
cess to be tested for different configurations, and on the other
hand, the results of the simulations are compared with exper-
imentally measured values. Two different material models

are used in the simulation, which are introduced in “Mate-
rial Models”. For the calculation of the elastomer matrix,
theModel of Rubber Phenomenology (MOPRH)material by
Ihlemann [16] is used in a modified version. For the calcu-
lation of the yarns of the cords, a constitutive model is used,
which is based on the additive decomposition of the yarn
deformation rate [8] into the friction between the filaments
of the yarn and the actual elastoplastic filament deforma-
tion. Both material models are implemented in Abaqus by
the help of the user-subroutine UMAT. “Experimental setup
and procedure” then deals with a demonstrator bellows and
an experimental setup to analyze cord–rubber composites.
The obtained database is used for validation of the numerical
results. In this contribution, 3D DIC is used for deforma-
tion analysis. Furthermore, a special strain evaluationmethod
regarding tangential directions on the specimen surface is
used, which is based on B-spline approximation of the 3D
coordinates. Measured global loading test values comple-
ment the validation database. Fundamental descriptions of
the performed experiments with the material presented in
this paper can also be found in [22].

Furthermore, the structure of the simulation model and
the procedure for the simulation is shown in “Simulation
strategy”. Due to the cyclic symmetry of the demonstra-
tor bellows, the simulation model only comprises a small
section and is exactly modeled according to the test speci-
men. An important point is that the geometry of the cords is
determined with a twisting simulation, which is then trans-
ferred to the simulation model of the demonstrator bellows
via subroutines. Finally, in “Comparison of simulation and
experiment”, the comparison of experimental and simulation
results is given. In addition to the course of the compressive
forces of the demonstrator bellows, a special attention is paid
to the comparison of the Hencky strains in the cord and in
the elastomer. This area between cord and elastomer is par-
ticularly important to make statements about the stresses in
the composite component, which are in turn the basis for
drawing conclusions about its durability.

Material models

Notation and basic tensorial quantities

The constitutive models to simulate the mechanical behav-
ior of the elastomer matrix and the multifilament yarns are
formulated in a large strain framework. Thereby, a ten-
sor notation is employed, where the order of a tensor is
denoted by its number of underlines. Based on the defor-
mation gradient F = Fab e a ⊗ e b, with its coefficients
Fab with respect to a Cartesian basis vector system e a =
{ e x , e y, e z}, the local volume ratio J , the left Cauchy–
Green tensor b , and the velocity gradient L are given by:
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J = det[Fab], b = F · FT, L =
.
F · F 1. (1)

Therein,
.

(•) is the Lagrangian (material) time derivative.
Moreover, (•) 1 and (•)T are the inverse and the transpose
of a second-order tensor, respectively. The deformation rate
tensor D and the spin tensor W are defined by:

D = L S = 1

2
( L + LT),

W = L A = 1

2
( L − LT), (2)

where (•)S and (•)A represent the symmetric part and the
antisymmetric part of a second-order tensor, respectively.
The isochoric part of the left Cauchy–Green tensor is defined
via:

b = J−2/3 b . (3)

The Zaremba–Jaumann rate
∗

(•) of this quantity is defined
by (see for example [13]):

∗
b =

.

b − b · WT − W · b . (4)

This can be reformulated by the help of the subsequent steps.
First, the Lagrangian time derivative of Eq. (3) is calculated
by:

.

b = J−2/3
.
F · FT+J−2/3 F ·

.
FT− 2

3
J−5/3

.
J b . (5)

Next, the identities:

.
F · FT =

.
F · F 1 · F · F T = L · b ,

F ·
.
FT = F · FT · (

.
F · F 1)T = b · LT,

(6)

and the time derivative of the volume ratio:

.
J = J I1( D ), (7)

with I1( X ) = trace[Xab] being the first principal invariant
of a second-order tensor, are substituted intoEq. (5), resulting
in:

.

b = L · b + b · LT − 2

3
I 1(D ) b . (8)

Taking into account the relation D = L − W = L T−
W T, the substitution of Eq. (8) into Eq. (4) then yields:

∗
b = D · b + b · D − 2

3
I 1( D ) b . (9)

Finally, the deviatoric part of a second-order tensor

X ′ = X − 1

3
I1( X ) I , (10)

is applied to reformulate Eq. (9), what gives the Zaramba–
Jaumann rate of the isochoric left Cauchy–Green tensor:

∗
b = F

(
b , D ′) = D ′ · b + b · D ′. (11)

The Frobenius norm of a second-order tensor X is
defined by:

|| X || =
√

X ·· XT, (12)

with the double contraction X ·· Y = XabYba . Moreover,
the 4th-order isotropic tensor J S is introduced by:

J S = 1

2
e a ⊗ e b ⊗ (

e a ⊗ e b + e b ⊗ e a
)
. (13)

Its application in a double contraction with a second-order
tensor X yields the symmetric part X S as follows:

J S ·· X = 1

2

(
X + XT

)
= XS . (14)

Material model for elastomermatrix

Themechanical behavior of the elastomermatrix is described
by MORPH model, which is able to simulate the non-linear
and inelastic material behavior of rubber materials at large
strains [3]. In particular, the non-linear stress–strain behav-
ior, the Mullins effect, hysteresis, and permanent set can be
captured by this model. The Kirchhoff stress tensor τ of
the MORPH model is composed out of three contributions
according to Eq. (15). Therein, the first term represents a neo-
Hookean like contribution, τ A is an additional stress defined
by the ordinary differential equation (16), and the last term
is a volumetric contribution according to [12] with the bulk
modulus KM :

τ = 2 α b ′+( τ A)′+ KM

10

(
J 5 − J−5

)
I , (15)

∗
τ A = β ||

∗
b ||

(
τ L − τ A

)
. (16)

The Zaremba–Jaumann rate of the additional stress τ A is
controlled by a limiting stress τ L defined by:

τ L = γ

⎡

⎣exp

⎛

⎝

⎛

⎝p7

∗
b

||
∗
b ||

|| b ′||
bSF

⎞

⎠

⎞

⎠ + p8

∗
b

||
∗
b ||

⎤

⎦

′

, (17)
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Table 1 Material parameters for MORPH

p1 p2 p3 p4
[N mm−2] [N mm−2] [–] [–]

0.115 0.479 0.264 1.896

p5 p6 p7 p8 KM

[N mm−2] [–] [–] [N mm−2] [N mm−2]

0.965 38.26 3.849 0.221 1000

Fig. 1 Stress–strain curve for MORPH

where the factor bSF = max(|| b ′(s)||) is the maximum value

of the Frobenius norm of b ′ in the time span 0 ≤ s ≤ t of
a considered deformation process with current time t . The
factors α, β and γ appearing in Eqs. (15)–(17) are parameter
functions defined by:

α = p1 + p2 f
(
1, (p3 b

S
F )

)
,

β = p4 f
(
1, (p3 b

S
F )

)
,

γ = p5 b
S
F

(
1 − p6 f (p6, b

S
F )

)
. (18)

Therein, the function f (x, y) = (
x2 + y2

)−1/2 is employed.
Moreover, the factors p1− p6 are additional material param-
eters. Thus, altogether, the MORPH model includes nine
material parameters that have to be defined: the bulk modu-
lus KM and the parameters p1 − p8. Further information on
their physical significance can be found in [16,21]. A repre-
sentative stress–strain curve of the MORPH model with the
identified parameters listed in Table 1 is presented in Fig. 1.

Therein, the 1st Piola–Kirchhoff stress tensor
T = F T · τ (more specifically, the stress component

Txx ) is plotted over the stretch λx for the case of a uniax-
ial tension test with multiple loads up to different prescribed
maximum stretch values. Therein, the typical phenomena,

like hysteresis, Mullins effect, and permanent set can be
observed.

Material model for multifilament yarns

The multifilament yarns are simulated by an elastoplastic
model with two different plastic yield mechanisms. The first
plastic yield mechanism results from the elastoplastic mate-
rial behavior of the filaments. The second source of plastic
yielding is due to frictional sliding between different fila-
ments.

The model is formulated in the framework of large strains
using the additive decomposition of the deformation rate ten-
sor (see [7,8]). Thereby, the total deformation rate of the
filaments is denoted by D fil. Its elastic and plastic contribu-
tions are described by D el and D pl, respectively, such that
D fil = D el + D pl. The deformation rate of the second

plastic yield mechanism, i.e., frictional sliding between dif-
ferent filaments, is denoted by D fric. Together with a term
representing the volumetric deformation rate1, the following
decomposition of the total deformation rate applies:

D = (
Del + Dpl

) + Dfric +
.
J

3 J
I. (19)

Stresses may only result from elastic deformations, rep-
resented by the elastic deformation of the filaments D el

and volumetric deformations. To calculate the correspond-
ing stress contributions based on a free energy function, the
corresponding deformations have to be calculated first. If the
deformation gradient is given at any point of time, the volume
ratio J and the total deformation rate D can directly be cal-
culated according to Eq. (2). However, elastic deformations
Del can only be calculated if the plastic contributions Dfric

and Dpl are known. Once they are calculated (see below),
the elastic left Cauchy–Green tensor b el can be calculated
according to Eq. (11) by the ordinary differential equation:

∗
b el = F

(
b el, D ′

el

)
, (20)

with corresponding initial conditions, for example b el(t =
0) = I for an initially undeformed elastic part. Based on
the elastic deformation, a free energy function is introduced
by:

ρ̃ψ = Gel

2 n2
(
I1( b n

el) − 3
) + K

50

(
J 5 + J−5 − 2

)
. (21)

1 The ansatz for the volumetric deformation rate results from the defi-
nition of a pure volumetric deformation with the deformation gradient
F vol = J 1/3 I and the calculation of the corresponding deforma-

tion rate according to Dvol = (
.
Fvol · Fvol)

S .
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Here, Gel is the shear modulus, n is an exponent enabling
a stiffness increase, and K is the bulk modulus. The corre-
sponding Kirchhoff stress tensor results from the evaluation
of the Clausius–Duhem inequality (see for example [13]) as
follows:

τ = Gel

n

(
b n

el

)′ + K

10

(
J 5 − J−5

)
I . (22)

Plastic yielding of the filaments is described by a von
Mises yield function Φpl with a yield stress formulated as a
polynomial function with parameters ai :

Φpl = ∣∣∣∣ τ ′∣∣∣∣ −
6∑

i=1

ai
∣∣∣∣hmax

fil

∣∣∣∣i (i = 1, . . . , 6). (23)

Therein, hmax
fil = max(|| h ′

fil(s)||) is the maximum value of
the Frobenius norm of the elastic Eulerian Hencky tensor
h fil in the time span 0 ≤ s ≤ t . The Eulerian Hencky
tensor h ′

fil thereby results from the solution of the ordinary

differential equation
∗
b fil = F ( b f il , D ′

fil) according to
Eq. (11) and subsequent calculation of the tensor function
h ′

f il = ln
((
b fil

))
/2. The definition of plastic yielding is

completed by the flow rule:

D pl = .
χ pl τ ′ (24)

with the plasticmultiplier
.

χ pl and theKarush–Kuhn–Tucker
conditions:

.
χ pl ≥ 0, Φpl ≤ 0,

.
χ pl Φpl = 0. (25)

The secondplastic yieldingmechanism, i.e., frictional sliding
between different filaments, is based on the formulation of
the orientation of filaments. To this end, a unit-length tangent
vector t F representing the current orientation of filaments
is employed to define the structural tensor:

A = t F ⊗ t F . (26)

If a stress τ acts on the filaments, then only a portion
of it contributes to friction-relevant shear stresses that lead
to frictional sliding between filaments. The corresponding
friction-relevant stress tensor τ eff is calculated by:

τ eff = τ ··
(

S
J − A ⊗ A

−1

2
( I − A ) ⊗ ( I − A )

)
. (27)

In particular, frictional sliding should neither be initiated by
normal stresses in filament direction nor under equibiaxial
stress perpendicular to the filament direction. Thus, these two

contributions are filtered out of the total stress tensor τ by
the help of the last two terms in Eq. (27).Moreover, it follows
that the hydrostatic part of the friction-relevant stress tensor
τ eff vanishes (i.e., τ eff ·· I = 0).
Next, a frictional yield condition Φfric is formulated by

the help of the norm of the effective stress || τ eff|| and a term
representing the limit between static friction and frictional
sliding:

Φfric = || τ eff || − √
2

(
τy0 + μ < p⊥ >

)
. (28)

The frictional limit is thereby formulated by a constant min-
imum threshold τy0 and a second contribution that depends
on the equibiaxial pressure p⊥ acting on the filaments and
a corresponding parameter μ that can be interpreted as the
classical Coulomb friction coefficient. The equibiaxial pres-
sure is calculated by:

p⊥ = 1

2
τ ·· (

A − I
)
. (29)

However, only positive values of p⊥ (i.e., equibiaxial com-
pression on the filaments) should have an impact on the limit
between static friction and frictional sliding. In Eq. (28),
this is regarded by the help of the Macauley bracket
< x >= max(0, x). Finally, the effective stress τ eff is
employed to formulate the flow rule for frictional sliding:

D fric = χ̇fric τ eff . (30)

Thereby, the deformation rate tensor D fric changes nei-
ther the filament’s length or their volume nor cross-section.
The corresponding inelastic multiplier χ̇fric appearing in
Eq. (30) has to be determined in such a way that the Karush–
Kuhn–Tucker conditions:

χ̇fric ≥ 0 Φfric ≤ 0 , χ̇fric Φfric = 0 (31)

are satisfied. Altogether, the constitutive model for multi-
filament yarns includes 12 material parameters, which are

Table 2 Material parameters for the multifilament yarn model

Elastoplastic behavior of filaments

Gel, K Shear modulus, bulk modulus

n Exponent within the elasticity relation

a1…a6 Parameters describing the filament’s yield stress

Frictional sliding behavior between filaments

τy0 Minimum threshold stress for frictional sliding

μ Parameter for pressure-dependent frictional sliding
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Fig. 2 Illustration in principle of a demonstrator bellows section

summarized in Table 2. The phenomenological behavior is
exemplified in Fig. 9 in “Material parameters”. It shows the
resulting behavior based on a tensile test on a twisted stan-
dard cord.

Experimental setup and procedure

Specimen and specimen preparation

A special demonstrator bellows (sleeve specimen see also in
[22]) was designed considering the aim to validate numer-
ical results of load sequences. The fundamental design of
the specimen is based on an air spring and consists of an
elastomer matrix (special composition) with two embedded
cord layers, which are arranged in a cross position. Cord
reinforcement of the investigated material presented in this
paper is given by polyamide (PA) with cord angles αC of 10◦
and 35◦. To obtain maximum strain differences on the spec-
imen surface, a configuration without elastomer cover layer
was used. An illustration of a demonstrator bellows section
is given in Fig. 2. The nominal dimensions of the demonstra-
tor are: inner diameter 95 mm, sleeve thickness 1.5 mm, and
length 100 mm.

For high-resolution strain analyses on the specimen sur-
face using DIC, fine speckle patterns (stochastic grey scale
distributions) are required. These patterns are typically gen-
erated by coating. In the present case, the speckles were
produced by white paint. High contrast of the coating to the
given dark surface (elastomer and cord sections) enabled a
speckle production without using a black paint grounding.
An example of a demonstrator bellows with coating is given
in Fig. 3.

Load case, test setup, and procedure

The tests (see also descriptions in [22]) were performed by
means of a servohydraulic test rig, which can be used for
tension, compression, and torsion loading, see Fig. 4. Special
clamping devices enable fixation of the demonstrator bellows

Fig. 3 Example of a demonstrator bellows with speckle pattern

Fig. 4 Experimental setup of the loading tests

at the top and bottom sides. Furthermore, an internal pressure
can be applied to the specimen using the clamping devices.
To analyze different stress states and stress levels, a load
sequence was arranged, which includes the following:

– Adjustment of the initial state with approximately cir-
cular cylindrical surface of the specimen and an initial
length l0 (length between the clamping devices, see Fig.
5, nominal value 75 mm)

– Application of internal pressure (p = 1 bar), which is
kept constant during the test to prevent the bellows from
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Fig. 5 Demonstrator bellows
example; left: undeformed with
definition of l0; right: deformed

bulging inward during compression (a higher pressure
could loosen the specimen from the clamping device)

– Loadingbyaxial compression increments of�s=10 mm
(nominal value) with subsequent torsion by βT = ±1◦ in
every compression step

– Repetition of incremental loading (compression, torsion)
until an axial compression of smax = 50 mm (nominal
value) is reached.

An example of an unloaded and loaded specimen illus-
trates already the large amount of deformation occurring in
the tests, see Fig. 5.

The deformation analyses on the specimen surface were
performed using the 3D DIC system GOM Aramis 4M (4
Megapixel resolution of the two cameras). To this end, image
acquisition was carried out in all load steps. To achieve a
high-resolution analysis of a surface section, a small mea-
suring volume with horizontal and vertical dimensions of
25 mm×18 mm (nominal values) was applied. Additionally,
global test rig values (e.g., axial compression, axial force,
and torsion angle) were measured and synchronized with the
Aramis system via analogue voltage signals. Furthermore,
an out-of-plane tracking of the cameras was performed to
consider the significant displacements of the analyzed sec-
tion in out-of-plane direction and the limited depth of field of
the used small measuring volume. This out-of-plane track-
ing and an adaption of the vertical position of the cameras to
the middle height position were carried out in the respective
loading steps. Since rigid body motions do not influence the
strain calculation, these alignments are admissible for strain
evaluation.

Evaluationmethod

The principle of DIC analyses is based on a matching
algorithm to identify subsets (called facets in Aramis) repre-
senting small surrounding pixel arrays of identification points
in the grey scale images, see [30]. To obtain high spatial res-

olution of the strain analysis, besides the small measuring
volume, a small subset (facet) size of 15 pixels (0.18 mm)
and a particularly small step size (distance of the identifi-
cation points) of 4 pixels (0.05 mm, 21 points from cord to
cord) were used. Based on the DIC algorithm, the 3D coor-
dinates of the specimen surface in the measuring section are
determined as primary results of the DIC analysis.

For the strain determination, a special evaluation method
was developed using MATLAB, which is also described in
[22]. The reasons for this approach are the increased flex-
ibility and more diverse evaluation possibilities. With this
method, various tangential strain measurements (2D) can
be calculated from the 3D coordinates in the reference and
deformed state determined by DIC. Furthermore, for com-
parison purposes, the evaluationmethod can be applied to FE
data, as well. The coordinates measured by DIC are approxi-
mated using B-spline surfaces (for basic principle, see [15]).
Using this procedure, functions for the 3D coordinates are
obtained, which enable strain calculation and smoothing of
noise given by the measurement data. Based on the tangen-
tial directions ũ, ṽ (for the reference state), and u, v (for the
deformed state), the 2D deformation gradient F is calcu-
lated. Its coefficients are denoted by:

[Fab] =
[
Fuu Fuv

Fvu Fvv

]
. (32)

An illustration in principle of the local ũ- and ṽ-directions
on a cylindrical specimen is given in Fig. 6a.

As an appropriate strain measure for large deformations,
the Lagrangian Hencky tensor (true strain tensor, based on
the deformation gradient) is introduced, given by:

H = 1

2
ln

((
FT · F

))
. (33)

Furthermore, the Green–Lagrange strain tensor is calculated
by:

γ = 1

2

(
F T · F − I

)
. (34)
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Fig. 6 Orientation of the local evaluation directions (in the reference
state)—illustration in principle, ũ and ṽ on a cylindrical specimen (a),
ũ, ṽ, ξ̃ , and η̃ on a surface section (b)

For an arbitrarily rotated ξ̃–η̃ coordinate system (this could,
for example, be oriented in the direction of cord reinforce-
ment), the shear angle θξη is defined as follows using the
coefficients of the Green–Lagrange strain tensor:

θξη = arcsin

(
2γξη√

1 + 2γξξ

√
1 + 2γηη

)

. (35)

The orientation of the evaluation directions ξ̃ and η̃ aligned
to the cord angle αC is depicted in principle in Fig. 6b.

Simulation strategy

In this section, a strategy for the simulation of loading scenar-
ios on the demonstration bellows is introduced. Thereby, the
FE software Abaqus is used. First of all, the geometry and the
properties of the cords have to be determined. To this, an FE
simulation of the cord twisting process has to be performed
(see “Cord twisting simulation”). Based on the model of the
twisted cord, the material parameters of the multifilament
yarn model introduced in “Material model for multifilament
yarns” are identified. The corresponding identification strat-
egy is presented in “Material parameters”. The model for
the simulation of the demonstration bellows and measures to
stabilize the simulation model numerically are presented in
“Simulation model for the demonstrator bellows”. Finally,
two different load sequences on the demonstration bellows
are compared in “Load sequence”. The final comparison of
simulation results with experimental can be found in “Com-
parison of simulation and experiment”.

Fig. 7 Comparison between a cord-cross-section from an electron
microscope (a) [28] and twisting simulation (b)

Cord twisting simulation

In the here used microscopic method to simulate cord–
elastomer composites, the geometry, the frictional sliding,
and the elastoplasticmaterial behavior of the cords are explic-
itly considered and modeled. To determine the geometry
of the twisted cord, a so-called twisting simulation is per-
formed at first. Starting point of this simulation are two or
more parallel cylindrical yarns, which are modeled as sepa-
rate bodies. These yarns consist of an almost infinite number
of filaments, whose helical structure is determined by a con-
tinuummechanical material byDonner [5]. The filaments are
already twisted with the pre-twist vG. In a second step, the
yarns of the cord are twisted with a cord twist vC under a con-
stant tensile force in the opposite direction of the pre-twist.
Finally, the yarns undergo a thermal shrinkage. This simula-
tion includes all relevant manufacturing steps of the twisting
process. The length of the yarns in the twisting simulation
is reduced to representative size and the necessary loads are
applied to the yarns with non-linear constraints from Jing
[18]. The advantage of using these constraints is that surface
effects of the yarns are avoided, thus reducing themodel size.
Nevertheless, a certain number of elements are still neces-
sary to calculate the contact between the yarns. Additional
andmore complex documentation about the simulation of the
twisting process can be found in [5–7,9]. Figure 7 shows the
comparison between a simulated cord-cross-section, result-
ing from the twisting simulation, and a cut surface view from
an electron microscope image.

After completing the twisting simulation, the geometry
parameters of the cord are transferred to the simulationmodel
of the demonstrator bellows introduced in Sect. “Simulation
model for the demonstrator bellows”. Depending on the posi-
tion of the FEM integration points, the respective material
model, i.e., cord or elastomer, is assigned. Figure 8 shows
the resulting material distribution on a cut view of the cross-
section of the demonstrator bellows model. Therein, the red
and green elements show the distribution of the cord mate-
rial. It can be seen that the material distribution is different
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Fig. 8 Representation of the element-wise material allocation on the
basis of a cross-section of the demonstrator bellows wall

for each cord, as the cords run through the bellows wall in
different orientations. Furthermore, the cross ply of the cords
is clearly visible.

Material parameters

The material model introduced in “Material model for mul-
tifilament yarns” enables the simulation of multifilament
yarns. Thereby, the final properties of the yarns are not only
determined by thematerial behavior of the fibres and the fric-
tional properties between the fibres, but also strongly rely on
the twisting properties. The adaptation of the free parameters
of the material model for multifilament yarns is performed
in several steps. For this study, it was carried out for the case
of a standard cord with two yarns made of polyamide fila-
ments. First of all, the plastic parameters a1...a6 are adjusted
with a simple untwisted cord model on a tensile test. As a
second step, the elastic parameters Gel and n are adjusted on
the same test using a the twisted cord FE model from “Cord
twisting simulation”, while the hardening parameters a1...a6
remain fixed. The bulk modulus K is calculated from the
initial Poisson ratio ν and the shear modulus Gel:

K = 2

3

(1 + ν)

(1 − 2ν)
Gel. (36)

Table 3 Material parameters for the cord

Gel n τ 0Y μ K ν

[N mm−2] [–] [N mm−2] [–] [N mm−2] [–]
864.24 13.5 3.0 0.3 4033.1 0.4

a1 a2 a3

[N mm−2] [N mm−2] [N mm−2]
5 × 103 −79 × 103 744 × 103

a4 a5 a6

[N mm−2] [N mm−2] [N mm−2]

−1413 × 103 −4510 × 103 12 × 106

Fig. 9 Tensile test of the twisted cord resulting from the twisting simu-
lation (tension up to 15% nominal strain, unloading, tension up to 25%
nominal strain

The parameters of the material model for considering the
filament friction τ 0Y and μ are set manually. In Table 3, the
determined parameters are summarized.

The corresponding material behavior is shown in Fig. 9.
Note that the load curve used for this figure does not reflect
the load curve used during the parameter adjustment.

Simulationmodel for the demonstrator bellows

Since the demonstrator bellows has a cyclic symmetry, only
1/296 of the bellows is simulated using cyclic boundary con-
ditions. The width of this section corresponds to the laying
length of the cord, which describes the length of the periodic
helical structure of the cord. According to the demonstrator
bellows presented in “Experimental setup and procedure”,
the resulting FE model consists of 4 layers, as shown in
Fig. 10. As already mentioned, a cover layer is neglected in
comparison to an air spring bellows. This enables the mea-
surement of deformations on the cords and on the elastomer
with the DIC method.

However, the simulation model is not suitable for evaluat-
ing the local stresses in the elastomer and in the cord, because
the selected mesh resolution is too coarse. A suitable method
for evaluating the stresses is the use of RVEs (representative
volume elements). A detailed explanation of how these RVEs
can be used to evaluate stresses in cord–elastomer compos-
ites can be found in [9].

Figure 11 shows the boundary conditions which are used.
Both top and bottom of the bellows are fixed permanently to
the clamp over a defined area of the bellows wall. The upper
clamping is movable in vertical direction and is used to apply
axial compression loading. Like in the experiment, the inner
side of the bellows is additionally loadedwith a constant pres-
sure p during the simulation. The clamping of the bellows at
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Fig. 10 FE model of the demonstrator bellows with the four element
layers with a cord elastomer layer on the outside

Fig. 11 Boundary conditions of the FE model

the top and bottom is additionally supported by contact con-
ditions between the bellows wall and the clamps to consider
the rolling of the bellows over the clamping radius.

Due to the small bending radii of the cords and the con-
tact near the clamping, some numerical problemswere noted.
Therefore, the model had to be modified to stabilize the
numerical behavior of the simulation. Basically, different
mesh resolutions can be used at different regions in the strip
model. As already shown in Fig. 10, the cord–elastomer
layers are meshed with the double mesh resolution, which
improves the accuracy of the evaluation quantities in these
layers. However, the doubling of the mesh fineness is only
applied to the center of the bellows. An optimization of
the mesh has shown that a coarser meshing of the cord–
elastomer layers in the near of the clamping can significantly

Fig. 12 Comparison of the numerical stability

reduce numerical problems, without altering the results of
the simulation too much. This stabilization method signif-
icantly improves the numerical stability, as can be seen in
Fig. 12. A complete convergence of the simulation model
can be achieved for both model variants with different cord
angles (10◦ and 35◦).

Of course, the coarse mesh near the clamps influences the
simulation results. However, the effects are small, so that they
can be neglected. To demonstrate this, the Eulerian Hencky
tensor, based on the left Cauchy–Green tensor b from Eq.
(1), is considered, which is given by:

h = 1

2
ln

((
b

))
, (37)

and the strains in circumferential direction hϕϕ at the surface
in the center of the bellows are compared with and without
stabilization methods (see Fig. 13). The Hencky strains for
the elastomer and the cord are clearly visible in the graph.
Since the cord is many times stiffer than the elastomer, the
logarithmic strains of the cords are much lower than those
of the elastomer. Therefore, maximum values in the diagram
belong to the elastomer. Furthermore, it can be seen that the
Hencky strains for both model variants do not differ signifi-
cantly. This holds regardless of the cord angle, which shows
that the stabilization methods have almost no influence on
the simulation result.

Load sequence

The load sequence used during the simulation differs slightly
from these from the experiment according to “Load case,
test setup, and procedure”. For the simulation, cyclic tor-
sion between the individual loading steps is not considered.
The reasons are, on one hand, that the numerical stability
of the simulation model is increased without considering
the torsion, and on the other hand, that there are no sig-
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Fig. 13 Comparison of the Hencky strains with and without numerical
stabilization

Fig. 14 Comparison of the Hencky strains at maximum compression
with and without torsion

nificant differences for the Hencky strains for cords and
elastomer if the torsion is neglected (see Fig. 14). Beside
this exception, the load sequence is the same. In the first
second of the simulation, the bellows is pressurized with
a linearly increasing internal pressure up to p = 1 bar.
After the end of this process, the bellows is axially com-
pressed in several stages to approximately smax = 50 mm(cf.
“Load case, test setup, and procedure”).

Comparison of simulation and experiment

In this section, the experimental results from “Experimen-
tal setup and procedure” are compared with the simulation
results based on the simulation model described in “Simula-
tion strategy”. For this, the reaction forces at a pilot node and
strains are determined in the circumferential direction in the
center of the bellows on its outer surface. Due to manufactur-
ing deviations, the cords in the real demonstrator (specimen

Fig. 15 Comparison between the surface of the demonstrator bellows
(a) and the evaluation depth in the simulation (b) (red dotted line)

without cover elastomer layer) protrude slightly from the rub-
ber layer in the initial state (see Fig. 15a). This amplifies
the strain differences between cord and elastomer sections,
which were analyzed by DIC. Furthermore, the protrusion
of the cord sections increases during loading of the demon-
strator. In the simulation model, the surface of the bellows
is perfect, and therefore, the cords are only visible with very
few elements on the outer surface. To achieve comparable
results between measurement and simulation, it is necessary
to adjust the evaluation depth in the simulation. For this pur-
pose, the evaluation path is shifted inwards by the thickness
of an element from the surface (see Fig. 15b). Thus, in the
experiment, the strains are determined at the cord surface. In
the simulation, approximately, the same position is used.

Force

First of all, force–displacement curves are evaluated. To
record the force applied on the demonstrator bellows dur-
ing the compression process, a pilot node is defined. Since
only 1/296 of the bellows circumference is simulated, the
force applied on the pilot node is integrated over the entire
circumference. In Fig.16, the compressive force for both cord
angles can be seen.

Due to the internal pressure, tensile forces act on the
clamping at the beginning (i.e., s = 0 mm, see Fig. 16).
The reason for this is that the clamping is locked, but the
bellows wall bulges due to the internal pressure, which leads
to initial tensile forces. With the beginning of the axial com-
pression, these tensile forces decrease until a reversal point
is reached. From then on, only compressive forces appear.
The comparisonbetween simulation and experimental results
demonstrates that the force curve of the experiment can be
reproduced very accurately.

Strains

The strains were determined using the method described in
“Evaluation method”. For adequate comparison, the strains
based on simulation data (3D coordinates in undeformed and
deformed state) were evaluated using this method, as well.

123



222 S. Weiser et al.

(a) (b)

Fig. 16 Compressive force vs. compression for cord angle 10◦ (a) and
35◦ (b)

Due to the cyclic symmetry, the evaluation was reduced to a
bellows section of 2 mm×15 mm (nominal values, including
a 2x1/296 section of the bellows circumference in the FE
model for comparisonpurposes) in the center (regarding axial
direction) of the specimen. Strain evaluations presented in
this paper are carried out for the maximum compression step
(smax = 50 mm, see “Load case, test setup, and procedure”).
Experimental strain field results can also be found in [22].

When comparing experimental and numerical results, the
material with cord angle 10◦ shows qualitatively similar dis-
tributions of the Hencky strain Huu with higher maximum
strain values in the simulation, see Fig. 17a. Due to the
stiffness differences between the cord and elastomer, large
strain differences occur. The deformation is concentrated in
the elastomer sections, while the cord sections are almost
undeformed. An evaluation along paths in ũ- (path 1) and
ṽ-direction (path 2) enables the comparison of the deforma-
tion analysis in more detail. The ũ-path is defined slightly
differing from the middle position of the height, consider-
ing an insufficient speckle quality in the middle position.
Following path 1, the strain levels of experiment and simu-
lation are nearly the same, see Fig. 17b. Larger maximum
FE values occur near the beginning and the end of path
2, see Fig. 17c. Additionally, the cord and elastomer dis-
tances in ṽ-direction show differences between experiment
and simulation. An explanation of these deviation can be
found in a larger cord angle of 12.5◦ (in contrast to the nomi-
nal value of 10◦) used for evaluation, which was determined
experimentally.

Fig. 17 Comparison of strains between experiment and simulation for
cord angle 10◦ under maximum compression
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Fig. 18 Comparison of strains between experiment and simulation for
cord angle 35◦ under maximum compression

Thematerial with cord angle 35◦ shows qualitative similar
experimental and numerical Huu-distributions, see Fig. 18a.

Fig. 19 Distribution of shear angle θξη under maximum compression
and cord angle 35◦—comparison of experiment and simulation

The characteristic of large strain differences between cord
and elastomer sections, as it already could be observed in
the variant with cord angle 10◦ (see, Fig. 17), also occur in
the demonstrator bellows with 35◦ cord angle. Higher strain
peaks are observed in the experiment, which is confirmed by
the path evaluations of Huu along ũ- and ṽ-directions, see
Fig. 18b and Fig. 18c, respectively.

For the analysis of shear deformation, the shear angle
θξη according to Eq. (35) is determined considering eval-
uation directions aligned to the cord angle αC = 35◦ cf.
Fig. 6b. In Fig. 19, qualitatively similar distributions with
higher magnitudes of the experimental absolute shear angle
values compared to simulation are confirmed according to
the Hencky strain evaluations.

Generally, for both cord angles, it can be concluded that
the experimental and simulation results are in a good agree-
ment.

Conclusion

In this paper, a calculation method is presented, which is
based on themicroscopicmodeling of a cord–elastomer com-
posite. For this purpose, a material model is used for the
cords, which takes into account the elastoplastic behavior of
the filaments and the frictional sliding between different fil-
aments. The geometry of the twisted cord is described by a
combination of Taylor and Fourier series according to [4].
To determine the geometry of the twisted cord, a twisting
simulation was carried out. The obtained geometry informa-
tion was transferred to a demonstrator bellows model, which
is similar to an air spring. In contrast to real air springs, the
demonstrator bellows is characterized by a simpler geom-
etry and the cover layer was omitted. Loading tests with
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demonstrator specimens were carried out for validation of
the numerical simulations. Thereby, the special demonstrator
geometry enabledoptical accessibility of a surfacewithmate-
rial inhomogeneities. The deformations on the demonstrator
surface could be analyzed by means of DIC. Based on the
DIC data, strains were analyzed by a special evaluation pro-
cedure using Matlab. The occurring large strain differences
between cord and elastomer sections on the surface could
successfully be determined and provided a suitable database
for validation of the simulation results. The comparison of
experimental and simulation results shows good agreement,
which demonstrates the suitability of the employed simu-
lation strategy, including corresponding material models as
well as simulation methods and models.
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