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Abstract
The one-dimensional hyperbolic Pennes bioheat equation under instantaneous moving heat source is solved analytically 
based on the Eigenvalue method. Comparison with results of in vivo experiments performed earlier by other authors 
shows the excellent prediction of the presented closed-form solution. We present three examples for calculating the 
Arrhenius equation to predict the tissue thermal damage analysis with our solution, i.e., characteristics of skin, liver, and 
kidney are modeled by using their thermophysical properties. Furthermore, the effects of moving velocity and perfu-
sion rate on temperature profiles and thermal tissue damage are investigated. Results illustrate that the perfusion rate 
plays the cooling role in the heating source moving path. Also, increasing the moving velocity leads to a decrease in 
absorbed heat and temperature profiles. The closed-form analytical solution could be applied to verify the numerical 
heating model and optimize surgery planning parameters.

Keywords Hyperbolic Pennes bioheat · Non-fourier thermal wave · Moving heat source · Analytical solution · Arrhenius 
equation · Surgery planning

1 Introduction

Increasing attention has arisen recently in the use of mov-
ing heat source, which has found various applications 
related to medical therapies, e.g., laser cutting tools [1], 
bone drilling [2], and neurosurgery bone grinding [3]. 
Since the definition of temperature distribution in biologi-
cal living tissues and obtaining exact solutions are neces-
sary, researchers have suggested several bioheat transfer 
models [4, 5]. One of the most well-known models is the 
Pennes bioheat equation [6]:

where x is the spatial coordinate, t  is the time, �t and Ct 
refer to the tissue density and specific heat; kt∇2T  models 

the thermal diffusion and kt is the thermal conductivity of 
tissue; �b�bCb

(
Tb − T

)
 expresses the heat caused by con-

vection within the heat per unit mass of the tissue. The �b
,�b,Cb and Tb are the density, perfusion rate per unit vol-
ume of tissue, specific heat and the temperature of blood, 
respectively. The Q is the source heating rate per unit vol-
ume of tissue.

The above simple bioheat equation is based on Fourier 
theory, which assumes an infinite heat conduction speed. 
It is applicable for long-time heating processes such as 
radiofrequency [7], microwave [8], hyperthermia cancer 
therapy [9], and cryosurgical ablation [10]. Non-Fourier or 
hyperbolic heat transfer equation (HHTE) assumes a relax-
ation time between heat flux and temperature gradient. 
Thus, a finite speed and wave behavior are considered for 
the heat propagation. Hence, Cattaneo and Vernotte [11, 

(1)�tCt
�T

�t
= kt∇

2T + �b�bCb
(
Tb − T

)
+ Q(x, t)
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12] introduced an improved constitutive heat flux model 
in the following form:

where q is the heat flux vector, and �q is the thermal relaxa-
tion time.

For instantaneous heating of biological tissue which 
short heating times are employed and have long thermal 
relaxation time, a non-Fourier model should be considered 
employing the hyperbolic Pennes bioheat equation [13]:

Various researchers have studied the hyperbolic Pennes 
bioheat conduction of the biological tissues [14, 15]. 
According to the literature, some studies were focused 
on the heat transfer of the biological tissues subjected 
to moving heat sources. Kamis et al. [16] worked on the 
DPL heat equation of skin under the moving heat source. 
Sur et al. [17] investigated the thermal behavior of skin 
subjected to the moving heat source. They modeled the 
moving source with the Dirac function and calculated the 
temperature and thermal damage. Ma et al. [18] solved 
the DPL heat conduction model of living tissue utilizing 
the Green function approach. Kabiri and Talaee [19] inves-
tigated the thermal field and damage of biological tissues 
under the Gaussian laser moving heat source. Also, they 
obtained the exact solution of the parabolic Pennes bio-
heat equation for the kidney, liver, and skin tissues under 
the Dirac moving heat source. They parametrically studied 
the tissue temperature distribution caused by the external 
heat source different moving speeds [20].

This article is explored a purely analytical solution of 
the hyperbolic Pennes bioheat transfer equation (Eq. (3)) 
in one-dimensional slab subjected to the instantaneous 
moving heat source using the Eigenvalue method. The 
solution is applied for skin, liver, and kidney as three exam-
ples for calculating the Arrhenius equation to predict the 
tissue thermal damage analysis. The closed-form solution 
is introduced, and the effects of moving speed and per-
fusion term are studied parametrically. Hence, this article 
answers the following questions:

• How to achieve a closed-form solution without any 
additional numerical procedures such as inverse 
Laplaces against some recent researches?

• What is the difference between parabolic and hyper-
bolic models results in bioheat modeling of the tissues 
under moving heat?

(2)q + �q
�q

�t
= −k∇T

(3)�q
�2T

�t2
+

(
1 + �q

�b�bCb

�tct

)
�T

�t
= �∇2T +

�b�bCb

�tct

(
Tb − T

)
+

1

�tct

(
�q
�Q

�t
+ Q

)

• What is the effect of moving velocity, perfusion rate, 
and thermophysical properties of tissues on tempera-
ture profiles and thermal tissue damage?

The rest of the manuscript is arranged as follows: math-
ematical modeling and analytical procedure are presented 
in Sect. 2. Thermal damage calculations are included in 
Sect. 3. In Sect. 4, comparison and validation are discussed. 
Results and discussion are presented in Sect. 5. Finally, a 
conclusion is illustrated in Sect. 6.

2  Mathematical modeling and analytical 
procedure

The homogenous isotropic finite biological tissue slab 
subjected to a point moving heat source with a constant 
speed was considered for modeling (Fig. 1). The thermal 
parameters of the tissues were assumed to be independ-
ent of the temperature and were given constant values in 
the temperature range of interest.

The moving heat source was assumed a moving point 
with constant velocity [18]:

where Q0 is a constant power and � is the Dirac function. 
The Dirac function could be interpreted as limiting of the 
laser heating Gaussian distribution function when the 
laser focus increases. Furthermore, the intensity distribu-
tion over the point of the heat source was assumed to be 
uniform. The adiabatic conditions were considered for 
both sides of the tissue. The boundary and initial condi-
tions were considered as (Temperature of body is assumed 
37◦C):

For simplicity in the consequent analysis, the following 
dimensionless variables were introduced:

(4)Q(x, t) = Q0�(x − vt)

(5)
�

�x
T (0, t) = 0

(6)
�

�x
T (l, t) = 0

(7)T (x, 0) = 37

(8)
�T

�t
(x, 0) = 0
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Thus, the Eq. (3) can be rewritten in terms of dimension-
less variables:

where �  is the non-dimensional moving heat source 
function:

where �0 is the strength of the heating source term 
( �0 = Q0�q∕

[
�tCt

(
Tm − Tb

)]
).

The boundary conditions of Eq. (5) and (6) in the dimen-
sionless form are:

And the dimensionless initial conditions of Eq. (7) and 
(8) are:

(9)X = wx∕2�

(10)� = t∕2�q

(11)V = v∕w

(12)� =
(
T − Tb

)
∕
(
Tm − Tb

)

(13)� = Q�q∕
[
�tCt

(
Tm − Tb

)]

(14)� = �q�b�bCb∕�tCt

(15)
�2�

��2
+ 2(1 + �)

��

��
=

(
�2�

�X2

)
− 4�� +

(
2
��

��
+ 4�

)

(16)� = �0�(X − V�)

(17)
�

�X
�(0, �) = 0

(18)
�

�X
�(L, �) = 0

All the analytical solutions of the hyperbolic heat con-
duction (Eq.  (15)) with source term are done with the 
Laplace scheme, which most needs the numerical pro-
cedures. However, a close-form solution using the Eigen-
function series do not need any numerical calculation 
[20]. Hence, the below solution series was adopted as the 
solution of Eq. (15) considering boundary conditions (17) 
and (18):

where An(�) is the time-dependent constant which can 
be determined from substitution of the Eq. (21) into the 
Eq. (15):

whereVn(�) is the Fourier expansion coefficient of the 
source term function 

(
2
��

��
+ 4�

)
:

Thus, Vn(�) can be determined considering the Fourier 
expansion:

(19)�(X , 0) = 0

(20)
��

��
(X , 0) = 0

(21)�(X , �) =

∞∑
n=0

An(�) cos
(
n�

L
X
)

(22)

Ä
n(𝜏) + 2(1 + 𝜁 )Ȧn(𝜏) +

((
n𝜋

L

)2

+ 4𝜁

)
A
n(𝜏) = V

n(𝜏)

A
n(0) = 0, Ȧ

n(0) = 0

for n = 0, 1, 2,…

(23)Q(X , �) =

(
2
��

��
+ 4�

)
=

∞∑
n=0

Vn(�) cos
(
n�

L
X
)

Fig. 1  Schematic diagram of 
biological tissue under moving 
heat source
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Also, An(�) can be expressed as:

where �
n
=

√
(1 + � )2 −

((
n�

L

)2

+ 4�

)
 , �

n
=

√((
n�

L

)2

+ 4�

)
− (1 + � )2 , 

and �n = (1 + � )2 −

((
n�

L

)2

+ 4�

)
.

The coefficient of An(�) is obtained from Eq.  (25) 
(Appendix). Hence, the closed-form solution of the prob-
lem is obtained from Eq. (21).

3  Thermal damage calculation

The surgical applications involve protein denaturation, 
coagulation, vaporization, and tissue ablation. Magnitude 
and time duration of heat source affect the tissue damage 
degree. Without including the non-Fourier effect, the cal-
culation of tissue damage might not be creditable. In order 
to evaluate the thermal damage of biological tissues, the 
following well-known Arrhenius equation was used [21]:

where T is the absolute tissue temperature, 
R = 8.314Jmol−1K−1 is the universal gas constant; A0 ( s−1 ) is 
the frequency factor, and Ea (Jmol−1) is the activation energy 
of protein denaturation reaction. To model three different 
tissues, i.e., tissues of skin, liver, and kidney, we used val-
ues for A0 and Ea as presented in experimental studies by 
[22–24], cf. (Table 1). Average of the many reactions tak-
ing place in heated tissue and various situations may be 
occurred for the tissue due to the values of thermal dam-
age (Ω). An increase of Ω over the value of 1 leads to burn 
a higher degree and complete necrosis of the tissue [25].

(24)
V
n(�) =

4

L
�0

L

∫
0

(
2�(X − V�) +

�(�(X − V�))

��

)
cos
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L
X

)
dX

=
4

L
�0

[
2 cos

(
n�V�

L

)
+ V

(
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L
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(
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L

)
+ cos

(
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L

))]
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Table 1  Thermophysical properties of tissues [22–24]

Parameters Kidney Liver Skin

k 
(
Wm−1k

−1
)

0.556 0.520 0.235

ct 
(
Jkg

−1
k
−1
)

3830 3600 3600

�t 
(
m2s−1

)
1060 1060 1190

�t 
(
kgm

−3
)

1.37 × 10−7 1.36 × 10−7 5.48 × 10−8

cb
(
Jkg

−1
k
−1
)

3770 3770 3770

�b 
(
kgm

−3
)

1060 60 1060

�b× 10−3
(
s−1

)
61 15 1.87

�q (s) 10 10 10
�0 1.84 1.96 1.75

A0 
(
s−1

)
3.27 × 1038 7.39 × 1039 3.1 × 1098

Ea 
(
kJmol

−1
)

256 257 627

Fig. 2  Comparison of hyperbolic bioheat model temperature his-
tory with the experimental result
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4  Comparison and validation

Museux et al. [26] studied and measured the thermal effect 
of laser irradiation on pig skin numerically and experi-
mentally. Their in-vivo experimental results were used to 
validate our present mathematical model. Figure 2 shows 
the temperature history profiles of the hyperbolic bioheat 
model and experimental analysis. A strong correlation is 
found between the predicted and measured results. It is 
demonstrated that both of them have the same trends, 
but the predicted temperature is higher than the meas-
ured one due to the natural convection and evaporative 
cooling have not been considered in the present study. 
Also, due to the tissues thermal parameters were assumed 
independent of the temperature, over prediction of the 
temperature is happened in the analytical model result. 
However, this comparison verifies that the hyperbolic bio-
heat model is practicable for estimating biological tissue 
temperature distribution.

5  Results and discussion

It is vital to design and characterization of heating therapy 
procedures. The tissues temperature could be obtained at 
any time and point of these with the presented analytical 
solution. In this study, three different tissues (kidney, liver, 
and skin) with different perfusion rates were considered 
under the concentrated moving heat source. The moving 
path begins from 

(
l

6

)
 to the point of 

(
5l

6

)
 , which is equal 

to non-dimensional length X = 112.5 to X = 562.5. The 
source term was considered to move at � = 0 from starting 
point and reach to the end point at � = 3.33 . The heat 
source was turned off when the end of the path was 

reached, but the temperature profiles for cooling are 
continued.

The temperature history of skin tissue at various points 
under moving source with speed v = 0.01(ms−1) is shown 
in Fig. 3. Since the tissue temperature profiles not raised 
before reaching the moving source, the non-Fourier 
behavior of temperature profiles can be seen in this fig-
ure. It is also seen that each point temperature increases 
fast due to the passage of the moving heat source and 
decreases slowly after turning it off at the end of the path.

Also, skin tissue temperature distribution at various 
times is shown in Fig. 4. The fluctuation of the temperature 
profiles, which is the other property of hyperbolic profiles, 
can be seen in this figure. Progress of heat source is real-
ized with the edge of temperature profiles in the tissue 
layer affected zone. The tissue temperature profile is pro-
portional to the absorbed heat from the moving source in 
its passage, which is a general rule in the hyperbolic tem-
perature profiles. Due to thermal relaxation behavior, the 
non-equilibrium temperature profiles in hyperbolic mod-
els have many dominant features that cannot be described 
with parabolic models in equilibrium state [27]. Therefore, 
the non-Fourier bioheat equation can be better estimate 
temperature distribution in tissues rather than the para-
bolic Fourier bioheat.

The temperature profiles are increased to a constant 
value which is dependent on the model parameters such 
as adiabatic boundary conditions, the tissue cooling per-
fusion rate, and moving source velocity. The presented 
analytical solution that can estimate the effects of these 
parameters is stated in the following.

The effect of heat source velocity on the temperature 
profiles is investigated in Fig. 5. Due to the less time avail-
able to heat the tissue, an increase of the moving velocity 

Fig. 3  The hyperbolic temperature history of skin tissue various 
points under moving heat source, v = 0.01

(
ms−1

)

Fig. 4  The hyperbolic temperature profile of skin tissue at various 
times under moving heat source, v = 0.01

(
ms−1

)
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leads to a decrease of tissue maximum temperature and 
increases linear regression slope (absolute value) in 
the cooling state. Wave propagation is observed in the 

temperature distributions when the moving source veloc-
ity decreased. The thermal wave occurred along with the 
peak temperature profile in Fig. 5.

The blood perfusion rate makes convective heat trans-
fer between the blood and tissue. Hence, blood perfusion 
convective cooling has a vital role in thermal therapy. 
Therefore, blood flow affects the efficiency of thermal 
treatments. The comparison of temperature profiles and 
temperature history of three tissues of skin, liver, and 
kidney is shown in Figs. 6 and 7 to study the effects of 
perfusion rate. The effect of a higher perfusion rate to 
decrease temperature profiles is seen in Fig. 6. The kid-
ney tissue get a lower temperature than the liver and liver 
compared with skin tissue under the same heating condi-
tions due to their higher perfusion rates. Figure 7 com-
pare these three tissues temperature profiles under the 
same moving heat source when they reached to the end 
of the moving path ( � = 3.33 and v = 0.01(ms−1) ). At first, 
temperature increases and then decreases due to cool-
ing by blood perfusion. The higher perfusion rate leads 
to the more fast reduction of the temperature after heat 
source passage and increases the linear regression slope 
(absolute value) in cooling state. The temperature growth 
is dependent on conductivity, diffusivity, and perfusion 
rate. As expected, the maximum temperature is achieved 
in skin tissue because of its lower perfusion rate. The pas-
sage of the instantaneous moving heat source in higher 
perfusion rate tissue (kidney) may produce approximately 
uniform temperature compared with skin or liver tissues. 
Thus, due to the blood perfusion cooling function, the 
production of hot spots in the temperature profiles under 
concentric moving heat source is more expected in lower 
perfusion rate tissues. Also, this figure shows the effect of 
the heating frequency on the temperature-fluctuation in 
the skin tissue.

Fig. 5  The hyperbolic temperature profile of skin tissue due to vari-
ous moving heat source velocity

Fig. 6  Comparison of various tissues hyperbolic temperature his-
tory due to moving heat source at X = 135 and v = 0.01

(
ms−1

)

Fig. 7  Comparison of various tissues temperature profile due to 
moving heat source at � = 3.33 and v = 0.01

(
ms−1

)

Fig. 8  Comparison of various tissues thermal damage history due 
to moving heat source at X = 135 and v = 0.01

(
ms−1

)



Vol.:(0123456789)

SN Applied Sciences (2021) 3:398 | https://doi.org/10.1007/s42452-021-04379-w Research Article

Tissue necrosis and treatment efficiency depend on the 
thermal damage. The tissues thermal damage history is 
shown in Fig. 8. The skin tissue thermal damage is occurred 
highly compared with liver and kidney tissues due to its 
higher temperature and lower perfusion rate. Also, skin 
tissue necrosis occurs faster than the liver, and the liver is 
faster than the kidney.

6  Conclusion

In this paper, a closed-form analytical solution was intro-
duced for the hyperbolic Pennes bioheat transfer of the finite 
medium subjected to the instantaneous moving heat source. 
It was applied to model the characteristics of three tissues of 
skin, liver, and kidney. The effects of perfusion rate and mov-
ing velocity on the temperature profiles were investigated. 
The higher perfusion term leads to lower temperature ampli-
tude and more uniform profiles under the concentric mov-
ing heat source motion. The presented analytical solution has 
been shown better estimation the thermal distribution in liv-
ing tissue than the other thermotherapy models. Finally, this 

study can be used to verify the other heat therapies under 
the moving heat source, and the knowledge acquired for its 
development should be used in future works.
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Appendix

The simplified of An(�) is:
For 𝛾n > 0;

For �n = 0;

For 𝛾n < 0;

(27)
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