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Abstract
Optical Flow Estimation is an essential component for many image processing techniques. This field of research in com-
puter vision has seen an amazing development in recent years. In particular, the introduction of Convolutional Neural 
Networks for optical flow estimation has shifted the paradigm of research from the classical traditional approach to 
deep learning side. At present, state of the art techniques for optical flow are based on convolutional neural networks 
and almost all top performing methods incorporate deep learning architectures in their schemes. This paper presents a 
brief analysis of optical flow estimation techniques and highlights most recent developments in this field. A comparison 
of the majority of pertinent traditional and deep learning methodologies has been undertaken resulting the detailed 
establishment of the respective advantages and disadvantages of the traditional and deep learning categories. An insight 
is provided into the significant factors that affect the success or failure of the two classes of optical flow estimation. In 
establishing the foremost existing and inherent challenges with traditional and deep learning schemes, probable solu-
tions have been proposed indeed.
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1 Introduction

A fundamental component in the construction of a 
machine’s vision system is the computation of optical flow 
which is obtained by estimating a dense motion field cor-
responding to the displacement of each pixel in consecu-
tive frames of an image sequence. Its reliable calculation 
comprises one of the main challenges in computer vision. 
Optical flow can be combined with various computer 
vision tasks such as video coding, segmentation, tracking 
[1] and multi view-reconstruction [2]. Some other fields 
where optical flow has played an important role includes 
fluid mechanics [3], solar physics [4], autonomous driv-
ing [5], biomedical images [6], breast tumors [7], bladder 
cancer [8] surveillance and traffic monitoring [9], virtual 
reality [10], face recognition and tracking [11], and action 
recognition videos [12].

Optical flow is the pattern of the apparent motion of 
objects in a visual scene caused by the motion of an object 
or camera or both. When a camera records a scene for a 
given time, the resulting image sequence can be consid-
ered as a function of gray values at image pixel position 
(x, y) and the time t. If the camera or an object moves 
within the scene, this motion results in a time-dependent 
displacement of the gray values in the image sequence. 
The resulting two-dimensional apparent motion field in 
the image domain is the Optical Flow Field. Figure 1 shows 
an image sequence and the corresponding optical flow 
field in color and the arrow visualizations.

At present, optical flow estimation stands at its peak 
with a steady progress. In last 4 decades, a whole class 
of various techniques and novel concepts has evolved in 
this area. Particularly, remarkable development has been 
witnessed in the last decade. On one hand, the advance 
level datasets such as Middlebury [13], MPI-Sintel [14]and 
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KITTI [15, 16] presented substantial novel challenges for 
the optical flow algorithms, on the other hand traditional 
methods such as LDOF [17], DeepFlow [18], EpicFlow [19], 
DiscreteFlow [20], FlowFields [21] and MirrorFlow [22] 
came up with a significant number of novel strategies. 
These innovations solved the correspondence problem 
with outstanding performance. However, the enhanced 
accuracy subsequently increased the evaluation time. 
Consequently, none of the major traditional methods 
runs in real time currently. The high computational cost 
of modern traditional techniques is a major limitation for 
their adoption into other applications. In being realistic, 
there was a requirement of a unique and extraordinarily 
different approach than the contemporary methods to be 
incorporated. Meanwhile, easy access to computationally 
powerful Graphic Processing Units (GPUs) drew research-
ers’ attention to focus on deep learning side. FlowNet [23] 
presented the first ever deep learning scheme based on 
convolutional neural networks. The scheme seems promis-
ing as it runs in real time. However, its efficiency remained 
below the state of art traditional methods. FlowNet2 [24] 
built a stronger structure by stacking together multiple 
FlowNet [23] modules which out-performed many tradi-
tional methods such as DeepFlow [18] and EpicFlow [19] 
on MPI-Sintel benchmark [14]. However, the large model-
design of FlowNet2 requires heavy memory; hence is not 
well-suited for mobile and other embedded devices. Later 
work focused on designing light-weight modules with-
out compromising on accuracy of the output. This was 
achieved through borrowing many popular ideas from 
traditional methods and implanting into deep learning 
schemes, stimulating a great amount of work. SpyNet [25] 
combines coarse-to-fine approach of traditional methods 
and deep learning methods, LiteFlow [26] uses traditional 
brightness inconsistency map to tackle occlusions, PWC-
Net [27] integrates traditional stereo matching, feature 
extraction and cost volume with deep learning, Continual 
Flow [28] combines occlusions and cost volume together 
with optical flow, MFF [29] fuses the warped optical flow 
from previous frame with the current optical flow estimate, 
SelFlow [30] uses flow estimation from non-occluded pix-
els for self-learning, IRR [31] learns to refine its previous 
estimate by iteratively re-using the same network block 

with shared weights. At present, optical flow schemes 
based on deep learning have completely outperformed 
the traditional methods in accuracy and run time. In fact, 
deep learning methods run in real time with much higher 
accuracy. The extraordinary performance of deep learn-
ing methods is due to various ideas and novel concepts 
already adopted by traditional schemes.

A brief analysis of classical and modern techniques is 
presented here. It also provides a comparison of the ben-
efits and limitations of different types, with a discussion 
of major inherent and potential challenges and their pos-
sible solutions. In the paper Sect. 2 describes methodol-
ogy, different approaches and popular techniques for opti-
cal flow estimation. Section 3 gives details on evaluation 
benchmarks, assessment parameters, and commonly used 
datasets in this field. Section 4 is about major challenges 
for optical flow, and also highlights the solutions proposed 
by mainstream methods. Section 5 provides our outlook 
about modern challenges with an end-note for future 
work. Section 6 concludes this paper.

2  Methodology

At present, there are two major approaches for estimating 
optical flow. First is traditional approach that implies hand-
craft feature evaluation schemes into the main framework; 
second, the convolutional neural network approach based 
on deep learning principles.

2.1  Traditional methods

These methods dominated the field of optical flow for 
almost 4 decades. Traditional methods.

can further be divided into the following classes: 
pixel based [20, 21, 32] feature based [17–19] and 
energy based classes [33–35], however, there are 
no explicit limits to separate one class from another. 
Among them, the most successful and widely used tech-
niques are variational methods. These schemes estimate 
optical flow by minimizing an energy functional derived 
on the basis of brightness constancy and smoothness 

Fig. 1  Overlaid frames from MPI-Sintel and the corresponding optical flow field
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assumptions [33]. Variational methods can further be 
divided into global and local categories.

2.1.1  Global techniques

Are based on brightness constancy and smoothness 
assumptions; this approach builds an energy functional 
whose minimizing scheme yields the flow field. In 1981 
Horn and Schunck [33] solved the under determined 
aperture problem by providing additional smoothness 
constraint. Horn and Schunck’s approach was followed 
by many researchers; however, the algorithm faces dif-
ficulties in many practical situations such as varying 
illumination and large displacements.

2.1.2  Local (total least square) techniques

These approaches take the assumption of constant 
essential flow within a small neighborhood “R” consist-
ing of “n x n” pixels. The flow constraint is evaluated at 
all pixels within the neighborhood window and the 
resulting equations are solved using the least square 
method. The objective energy to be minimized is the 
weighted sum of the potentials provided by each pixel 
of R.

2.1.3  Local versus global

The local approaches have many advantages. Firstly, 
the search for the flow vectors gives a good estimate 
without considering the entire image. Secondly, global 
methods produce erroneous results for non-homoge-
neous regions because the flow vectors evaluated by 
the iterative schemes of global methods tend to spread 
out. For instance, two occluding objects passing, both 
having different orthogonal components but similar 
spatial gradients will be merged by a global method at 
the boundary, consequently losing the sharp disconti-
nuity. The vectors produced by a local method will not 
go through this problem.

2.1.4  Coarse to fine or pyramid schemes

The linearization adopted by differential schemes requires 
small displacements. For large motions this constraint is 
violated and produce errors. The standard practice to deal 
with this issue is to carry out the estimation process in a 
coarse-to-fine framework [34]. A pyramid of coarse-to-fine 
down-sampled versions of the original image is created by 
filtering and re-sampling the images at lower resolution. 
A coarse match is done at the lower level which is used to 
define a small area with the next higher resolution. The 
solution is iteratively refined until reaching the full image 
resolution. Most modern methods choose this strategy for 
large displacements [19, 25, 36]. Though, earlier research-
ers had adopted this technique on empirical grounds, the 
most prominent work was carried out by Thomas Brox [34] 
who provided a theoretical ground to integrate the vari-
ational methods with coarse-to-fine.

2.1.5  Limitations of coarse to fine schemes

The coarse to fine strategies enormously improved the 
performance. However, they do possess intrinsic limita-
tions. For instance, they may lead to a solution trapped 
into local minima. Secondly the objects, whose extents are 
smaller than their respective displacements, may be lost 
at coarser levels due to smoothing process (Fig. 2). A third 
weakness is error-propagation. At coarser levels, differ-
ent motion layers can overlap, and may propagate across 
scales. A prominent alternative to coarse to fine schemes 
is discrete optimization [20] as is adopted by many stereo 
matching methods. However, optical flow requires full 
data cost volume while stereo matching does not require 
the image pyramid scheme because it is 1D problem. The 
optical flow estimation being 2D involves extremely large 
size of the label space, making the estimation process dif-
ficult with discrete optimization.

2.1.6  Feature based methods

Although variational methods are among the most pop-
ular techniques, accuracy of the vectors generated by 
these methods is always uncertain. The only region that 

Fig. 2  Failure of the pyramid schemes for fast motion. The fast moving arm has disappeared in the evaluated flow field in (b)
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can produce dependable flow vectors for a unique cor-
respondence is one consisting of points with enough gra-
dients in two directions. In a plane, uniform and homo-
geneous region the flow vectors are undefined and may 
give erroneous results. These observations stimulated 
researchers to ignore all unreliable regions, keeping only 
trustworthy vectors; giving birth to a new class of optical 
flow methods known as feature based methods [17–19].

2.1.7  Advantages and limitations of feature based 
methods

Feature based methods helped to overcome the major 
problem of large displacements [17]. Feature matching 
is similar to the local parametric approach, although the 
main difference lies in the optimization process. The lin-
earization formulation involves differential optimization 
while feature matching walks around a discrete space of 
correspondence. Feature matching can handle large dis-
placements without adopting pyramid schemes which is 
an added benefit. However, they do have limitations that 
include excessive computational cost on the searching 
process [19, 22, 37], large errors induced by repetitive tex-
tures, and reduced accuracy because of the integer dis-
placements [20] due to possibly sparse set of correspond-
ences. For the estimation of a dense motion field, feature 
matching can be divided into two major groups:

2.1.8  Feature matching for local filtering

A key problem for local filtering is the excessive computa-
tional time in search space. Numerous attempts to over-
come this include: search in trees, multi-scale search and 
integral images. A milestone in this field is the introduc-
tion of Patch Match [38]. Primarily designed for image edit-
ing and later applied to other applications; Patch match 
yielded inspiring results with respect to the accuracy and 
low computation cost.

2.1.9  Feature matching for global framework

When global methods are combined with coarse-to-fine 
schemes, the models face a major problem of losing small 
and fast moving objects due to smoothing process at 
coarser levels (Fig. 2). LDOF [17],  addressed this long exist-
ing problem by adding a new constraint, and showed that 
feature matching can be integrated with global frame-
works to overcome this smoothing out problem. In the 
follow up work many researchers  [18, 21, 39] utilized the 
LDOF approach.

2.2  Deep learning based or CNN methods

Based on machine learning principles, these algorithms 
learn to compute optical flow from a pair of input images. 
In recent years convolutional networks have been used to 
estimate the optical flow with promising results [23–28, 
30]. Convolutional neural nets can go through supervised 
or unsupervised training for per-pixel image classification. 
These tasks are similar to optical flow estimation in the 
sense that they involve per-pixel predictions. However, 
optical flow estimation requires the network to learn fea-
ture representations and match them at different locations 
in two images. In this sense it is different from the previous 
applications of convolutional neural networks.

With respect to functioning, convolutional neural 
nets equipped with multi-layers can extract intangible 
and multi-scale features. The main disadvantage of deep 
learning method is their requirement of large quantity of 
labelled training data. Until now, researchers have been 
relying on a synthetically rendered dataset but these data-
sets do not reflect the genuine photometric properties of 
real video sequences which is a major challenge for deep 
learning methods. Another key disadvantage of deep 
learning methods is their necessity for a large number 
of parameters. On one hand this results in huge memory 
footprint, on the other hand it causes over fitting. The 
over excessive memory, and millions of parameters can 
adversely affect the network’s performance and learning 
of the algorithm.

2.2.1  Supervised and unsupervised learning

Supervised methods comprise a major class of the deep 
learning category that gives better performance in terms 
of accuracy and run time [23–27]. Supervised learning 
for optical flow requires labeling for training algorithms. 
Besides being tedious, a major challenge to this approach 
is the non-availability of real-world datasets annotated 
with ground truth, large enough to train a consistent 
model [24]. Existing datasets [13–15] are too small to sup-
port training. Computer generated synthetic scenes and 
their corresponding ground truth have been used by [23, 
24]. Creating such big-sized diverse imagery is not only 
expensive and laborious, but the algorithms trained on 
synthetic data will not be successful when it comes across 
real world photometric effects such as illumination varia-
tions, image blur and more intricate atmospheric effects. 
The issues with supervised methods led researchers to 
focus on an unsupervised approach [30, 40] where no 
labels or weights are given and a learning algorithm is left 
on at its own to find structure in its input. At the moment 
these methods are not on par with the supervised 
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category, however, the concept is convincing enough and 
has potential for future work.

2.2.2  Supervised learning methods

Two types of networks have been proposed. The first type 
incorporates both feature extraction and matching [23, 
41, 42] in one net. The second type performs only one 
of the two tasks [39, 43]. The most prominent in the first 
category is FlowNet [23]. Based on the U-Net de-noising 
auto encoder, FlowNet is the first end-to-end, fully con-
volutional deep neural network that is trained in a super-
vised way to produce optical flow using a pair of images. 
For the first time it is established that optical flow esti-
mation can be posed as a supervised learning problem. 
Although it is not the state-of-the-art in all aspects, the 
idea of utilizing convolutional net for optical flow was a 
breakthrough. It shifted the paradigm of research in this 
field from traditional to the deep learning approach. The 
traditionally used datasets (Middlebury, KITTI, MPI-Sintel) 
were not large enough for training nets. This limitation led 
the authors to create a synthetic 2D dataset with random 
background. FlowNet achieved competitive accuracy at 
frame rate of 5 to 10 frames per second.

2.2.3  Follow‑up work

Many modifications were proposed to FlowNet to enhance 
efficiency and reduce the model size. This includes a rota-
tionally invariant architectures [44], a 3D convolutional 
network [45] and a light weight convolutional net [26].The 
most pertinent work following FlowNet is a coarse-to-fine 
idea of variational methods by Ranjan and Black known as 
SPyNet [25]. A convolutional network is learned at each 
level of pyramid to compute optical flow. The computed 
flow is used to warp the second image to the first image 
of the next level and so on. SPyNet uses less model param-
eters with higher accuracy than FlowNetC [23] and lower 
than FlowNetS [23].

FlowNet2 [24] is an improved version of FlowNet and 
performs on par with many state of the art, though a lit-
tle slower than the original FlowNet. By stacking multi-
ple networks, adding warping of the second image with 
intermediate optical flow and using sub networks for small 
displacement FlowNet2 decreased the estimation error by 
more than 50%. Despite its better performance FlowNet2.0 
has some limitations. For instance, its model size is much 
larger (requires over 160  M parameters) than original 
FlowNet, its multiple modules require sequential training 
to reduce over-fitting and it takes more computation time 
than FlowNet. All these factors make FlowNet2.0 unsuit-
able for mobile and other embedded devices. Sun et al. 
[41] combined well-established principles of pyramidal 

processing, warping, and cost volume with deep learning 
and proposed PWC-Net. It is 17 times smaller and per-
forms better than FlowNet2.0. PWC-Net is the best balance 
between model size and efficiency.

The above supervised schemes are end-to-end learn-
ing. A pair of images is supplied as input and the network 
computes optical flow by performing both feature extrac-
tion and matching. In some methods CNNs have been 
employed for one of these tasks (not end-to-end learning). 
PatchBatch [39] used a Siamese net to compute descrip-
tors for each pixel of whole image. The descriptors are fed 
to the PatchMatch [38] algorithm producing a sparse flow. 
Finally, the Edge aware optimization of EpicFlow [19] is 
applied to the sparse flow to obtain a dense motion field. 
Deep discrete flow [46] also used Siamese net to learn fea-
tures but optical flow is obtained by discrete optimization.

2.2.4  Unsupervised learning methods

At present, supervised methods are the most success-
ful category of deep learning methods for optical flow 
with respect to accuracy and efficiency. However, these 
schemes suffer heavily and fail if a sufficient amount of 
ground-truth data is not available. Secondly, the network 
trained under one situation may not work well in other 
varying conditions. These restrictions of data-driven 
schemes lead researchers to unsupervised methods. 
These are knowledge-driven methods, able to train neu-
ral nets using unlabeled image pairs to compute optical 
flow. Although, their performance is not on par with that 
of the supervised schemes, the approach looks promis-
ing and is gaining attention with gradual improvement in 
performance. The unsupervised network proposed by [47] 
is based on the classical constraints without regulariza-
tion. Its loss function is differentiable with respect to the 
unknown flow field and allows the back-propagation of 
the error to the previous layers. The loss function proposed 
by [48] learns optical flow in an unsupervised end-to-end 
manner. It combines a data term utilizing brightness con-
stancy with a smoothness term and models the expected 
variation of optical flow. Its overall accuracy remained 
below that of the original FlowNet [23], except for real 
images of KITTI (where 100% ground truth is not availa-
ble). This network [48] was extended by Meister et al. [40] 
by introducing an unsupervised loss based on occlusion-
aware bidirectional optical flow. The model also applies an 
unsupervised loss to FlowNetC [23] to learn bidirectional 
flow. The final output is obtained by iterative refinement 
through multiple networks of FlowNet stacked together. 
The Model proposed by [49] learns optical flow with 
proxy ground truth produced by classical methods in an 
unsupervised manner. The framework suggested by [50] 
defines the loss as the photometric error between warped 
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feature map from input image and the target image. The 
unsupervised neural nets [51] deals with occlusion and 
large displacement. For the first issue they combined the 
occlusion map caused by motion with the loss function. 
For the second problem, the model suggested three addi-
tions: a novel warping strategy for large motion learning, 
supplementary warped inputs during decoder stage, and 
adopting histogram equalization and channel representa-
tion for flow computation.

2.2.5  Advantages and limitations of deep learning 
methods

Deep learning methods rely on quality and quantity of 
the labeled training dataset. This is a major issue for deep 
learning schemes because for real scenes it is extremely 
cumbersome to obtain labeling. The other problem is the 
hazardous overfitting due to millions of parameters con-
tained by neural nets. This issue along with large memory 
trail adversely affects the learning efficiency.

An important aspect is the balance between accuracy 
and size of deep learning architectures. The design of 
network is a basic factor behind its efficiency. FlowNet2 
[24] stacked multiple modules of FlowNet (Fig. 3). This 
improved accuracy but also demanded more than 150 
million parameters. Large networks tend to consume high 
memory due to the extended number of parameters used. 
On practical grounds it is not very functional. SPyNet [25] 
is comparatively low in both ways. PWC-Net [27] exhibited 
the best balance between accuracy and size. Many follow 
up researchers adopted PWC-Net with improved perfor-
mance [29, 31]. Another important aspect that affects 
the performance of deep learning methods is the kind 
of image sequences being used. Traditional and modern 
researchers have used different datasets. Middlebury [13], 
Sintel [14], KITTI [15] and Flying Chairs [23] are the most 
commonly used datasets. Each set has a unique challenge 
for creating the most accurate system. The Middlebury 

dataset has only eight frame pairs with ground truth data. 
The KITTI dataset has around fifty times as many samples 
as that of Middlebury, with ground truth data, but the 
images are not labeled densely. MPI-Sintel datasets pro-
vided over 1,041 training samples with ground truth data. 
However, training deep learning models requires several 
thousands of parameters and a large number of marked 
samples. All major datasets are still relatively small to be 
used in a deep learning environment. Further, the small 
datasets often lead to an increase in the direct training 
difficulty and over-fitting, which results in reduced accu-
racy. Due to the reasons above, the Flying Chairs [23] and 
Freiburg[52] datasets were designed specifically to be 
used in deep learning schemes.

We compare learning based and traditional methods 
by their relative advantages and disadvantages. Firstly, 
deep learning schemes are more efficient in extracting 
images features to be used for optical flow estimation. This 
is because of the multi-layer architectures of these meth-
ods that allows them to extract more abstract, deeper, 
and multiscale features. Secondly, these methods avoid 
the disadvantages of hazardous and complex optimization 
of the traditional schemes. In credit to the introduction 
of stochastic minimization of loss function, deep learn-
ing methods can better model the intricate, non-linear 
transformations of the input images [51]. A very impor-
tant advantage of deep learning schemes is their running 
speed. Generally, these methods run in real time. On the 
other hand, traditional methods with similar accuracy take 
a much longer time (Fig. 4). This makes them impractical 
for mobile and other embedded devices.

Deep learning schemes also have a number of draw-
backs. One of the major aspects affecting their perfor-
mance is the quality and size of the labelled dataset. This 
is because, the parameters of convolutional networks are 
learned from training data. For real image sequences, 
it is very challenging to obtain dense ground truth 
labeling. Researchers relied on synthetically rendered, 

Fig. 3  Multiple modules of Flow Net [23] stacked together in FlowNet2 [24] Architecture
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sequences [23, 52]. Although, the synthetic image 
sequences exhibit motions, they do not replicate the 
intricacy of realistic photometric effects such as the blur 
of different types, noise, brightness variations, atmos-
pheric effects like shadows mist and fog etc. Thus the 
natural gap between the distribution of synthetic data 
and real-world scenes is always present and the algo-
rithms trained on synthetic data encounter difficulties 
when it comes across a more generalized and complex 
real world image sequences.

Since convolutional networks contain millions of 
parameters, this aspect along with the difficulty of obtain-
ing suitable training data, provides yet an added disad-
vantage for deep learning methods: the significant risk 
of overfitting. This demands that deep learning methods 
require a large memory footprint. The dependency on the 
substantial number of parameters, complicates setting 
an appropriate loss function and may result in a compro-
mised efficiency of the learning process.

3  Evaluation

Optical flow estimation is an extensive field posing ambig-
uous problems in diverse ways. The major issues making 
optical flow a complicated subject include occlusions, 
large displacements, non-rigid motion, discontinuities, 
mixed pixels, varying illumination, motion and camera 
blur. In the classic period, Barron [53] established optical 
flow benchmarks dealing with simple transformations 
(translation, rotation) and small displacements (Yosemite). 
Modern researchers created more challenging bench-
marks. Below is a discussion of some well-known meas-
ures of performance and several datasets adopted by the 
majority of researchers.

3.1  Measures of performance

An optical flow algorithm finds two dimensional velocity 
vectors describing the motion field. The degree of success 

(a) Percentage of outliers and run time for some traditional methods on KITTI 2015 [16] datasets 

 (b) Percentage of outliers and run time for some  deep learning methods on KITTI 2015 [16] datasets 
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of a method is measured by reporting its errors. There are 
mainly two measures for optical flow algorithms:

End point error (EE) This is the fundamental measure and 
describes the Euclidean distance between.

estimated vectors and the ground truth vectors: 

EE =
|

|

|

(

V − Vg
)

|

|

|

=

√

(

u − ug
)2

+
(

v − vg
)2

V = (u, v) is the estimated vector and  Vg = (ug, vg,) is 
the ground truth vector.

Angular error (AE) Primarily used by Barron [53], this is 
the second most common error measure. Let (u,v, 1) be 
the extended 3D flow vector and (ug, vg, 1)  be the ground 
truth.

AE is the 3D angle: AE = cos−1[(u.ug + v.vg + 1.0)∕
√

(

u2 + v2 + 1.0
)

(u2
g
+ v2

g
+ 1.0)]

Significance AE is appropriate for small displacements 
and is more inclined to under-estimate large motion. EE is 
good for large vectors. Advance level sequences [14–16] 
contain significantly large displacements. This has led 
most of the modern researchers to report EE instead of AE.

3.2  Datasets for optical flow

Datasets play an important role in computer vision. Image 
processing domains such as stereo, face and object rec-
ognition have challenging datasets. Optical flow was one 
of the first to introduce standard datasets for quantitative 
comparisons [53] The improving estimation techniques 
and modern algorithms demanded an advanced level of 
datasets for better comparisons of the latest methods. 
Classic work on optical flow relied on synthetic datasets 
[53] with Yosmite Sequence being the most well-known. 
S. Baker presented Middlebury datasets [13] with dense 
ground truth bringing in new evaluation standards, fol-
lowed by the path-breaking work of KITTI [15, 16], MPI-
Sintel [14] flying chairs [23] and Freiburg [54].

These datasets pose advanced challenges when com-
pared to previously used sequences. The researchers can 
freely use the dataset for training algorithms and upload 
the evaluated flow to compare the efficiency of their 
proposed methods. The online access to these datasets 
and evaluated optical flow is a prominent feature of the 

present-day research in the related field. Figure 5 depicts 
some images from modern datasets used for optical flow 
estimation. Some of their salient features are discussed 
below.

3.2.1  Middlebury

It is a leading benchmark to address advanced level prob-
lems, covering evaluation at a broader spectrum and 
wider range of statistical measures [13]. Comprising sub 
pixel ground truth and ample difficulty, these are realis-
tic synthetic sequences with non-rigid motions, complex 
scenes and higher texture. However, the motions are small 
as compared to more advance datasets [14–16]. In con-
trast to the previously used simple synthetic sequences 
(Yosemite [53]) these datasets are considerably more 
challenging which include additional complex scenes, 
larger ranges, higher realistic texture and independent 
motion. The sequences are divided into training and test-
ing categories. The ground truth is provided only for the 
first one. Although the dataset contains advanced level 
complex motions, most of the motions are small. For train-
ing sets, the percentage of the pixels having motion over 
20 pixels is less than 3%. The Middlebury are the primary 
standard datasets posing advanced level of challenges, 
used by modern algorithms for the estimation of stereo 
disparity and optical flow. Another important aspect of 
these datasets is the use of several new measures to test 
the performance of flow-algorithms. The most important 
of these measures are average angular error (AE) [53] and 
endpoint error (EPE).

3.2.2  KITTI

These datasets were created by Geiger in 2012 [15] con-
tain 194 training and 195 test pairs of images with sparse 
ground truth flow. All images are gray and include com-
plex lighting conditions with large displacements. Later 
in 2015, Menze annotated the dynamic scenes with 3D 
CAD models for all vehicles in motion and obtained an 
extended version, with 200 training and 200 test scenes 
[16]. The KITTI datasets contain stereo videos of road 

Fig. 5  Few frames and the corresponding ground truth from modern datasets
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scenes from a calibrated pair of cameras mounted on a 
car. Ground truth is obtained from real world scenes com-
bining recordings from the camera and a 3D laser scanner. 
Although, the datasets are real, the density of the ground 
truth varies from 75 to 90% and underlies the static parts 
of the scene such as sky or distant objects. For the latest 
version of KITTI-2015, 3D models of cars were fitted to 
the point clouds to obtain a denser labeling which also 
included moving objects. However, the ground truth in 
these areas is still an approximation. Besides adopting sta-
tistical measures described in Sect. 3, KITTI has introduced 
particular metrics for evaluation to be performed under 
special circumstances for both versions.

3.2.3  MPI‑Sintel

Before introduction of KITTI2015, MPI-Sintel [14] were 
the largest datasets for optical flow and disparity estima-
tion. Derived in 2012, from an open source 3D-animated 
film, these datasets are completely synthetic. The original 
movie frames were modified to pose new challenges for 
estimation methods. With a resolution of 1024 × 436, the 
scenes are designed to be strictly realistic with fog and 
added motion blur. These datasets provide a naturalistic 
video sequences containing flow fields, motion bounda-
ries, unmatched regions, and image sequences. The com-
plete data consists of 23 training sequence 1064 frames 
and 12 testing sequences with 564 frames. Ground truth 
is available for the training set only. For the modern algo-
rithms, Sintel datasets play a vital role as they provide 
dense ground truth with adequate occlusion for both 
small and large displacements. The datasets provide three 
versions: albedo, clean and final. Albedo is the simplest set 
and contains no additional effects. The clean version intro-
duces negligible variations to illumination while the final 
version adds more intricate features such as atmospheric 
effects, fog, shadows and blur of different types. Research-
ers commonly use only clean and final versions.

3.2.4  Flying chairs

These images were designed specifically for training 
Convolutional Neural Networks (CNNs) used in deep 
learning methods to evaluate optical flow. Created by 
the application of affine transformations to real images 
and synthetically rendered chairs, the dataset contains 
22,872 image pairs; 22,232 training and 640 test samples 
according to the standard evaluation split. Dosovitskiy 
[23] created these datasets to train his convolutional 

network for optical flow estimation. These datasets are 
large, do not contain any 3D motions, and hence are lim-
ited to single-view optical flow.

3.2.5  Freiburg‑Berkeley

This is the latest and the largest data collection for opti-
cal flow, stereo and scene flow evaluation [52]. Contain-
ing 34,801 stereo training frames and 4248 test frames 
in 960 X 540 resolutions, these datasets are synthetically 
produced by 3D suit blended [54] mainly to be employed 
in deep learning schemes. The first large-scale datasets 
to enable training and evaluation of scene flow meth-
ods consists of three subsets as described below. Table 1 
gives salient features of the famous dataset used by 
modern researchers for optical flow estimation.

4  Developments on major challenges

The majority of optical flow methods are based on 
brightness constancy and smoothness assumptions. 
Unfortunately, both are not perfect photometric expres-
sions in practice for many real scenes in motion. A mov-
ing light source in a rigid scene will produce bright-
ness variations without moving any object. Similarly, 
smoothness constraint may not be very accurate on 
real grounds especially in case of discontinuities where 
objects occlude one another. Hence all algorithms based 
on smoothness constraints face difficulties over regions 
containing fragmented occlusions. The major issues 
causing erroneous outputs for many algorithms include: 
outliers, discontinuities, large displacements, occluded 
edges and insufficient texture.

Table 1  Different datasets and the available ground truth

Datasets Frame Pairs Frames with 
ground truth

Ground 
truth den-
sity (%)

Middlebury 72 8 100
KITTI-2012 195 194 Approx. 50
KITTI 2015 200 200 75–90
MPI-Sintel 1041 1041 100
Flying Chairs 22,872 22,872 100
Freiburg 34,801 34,801 100
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In this section we take a look at these challenges and 
some proposed formulations as how to overcome these 
issues.

4.1  Outliers

The global methods [33] coupling brightness constancy 
and spatial smoothness in a variational framework are 
appropriate for small motions, but face difficulties for 
extreme values. Outliers impart large errors to estimation. 
Modern methods have used a robust objective function 
in which the forward–backward flow is estimated by a bi-
directional consistency check and interpolation is applied 
into the outliers pixels as post processing [20, 21, 32, 36, 
39, 46].The same approach with a competent interpola-
tion scheme has been applied by EpicFlow [19] produc-
ing convincing outputs. However, basic restrictions at post 
processing are still expected. EpicFlow [19] used state-of-
the art descriptor matching, but possesses a major disad-
vantage of being sparse. Contrarily, the data based tech-
niques like approximate nearest neighbor field (ANNF) 
[55] produces dense field but suffers from outliers because 
they do not incorporate regularization. Among traditional 
methods, the best algorithm to address this issue was pro-
posed by FlowFields [21]. It replaced the sparse descriptor 
matching of EpicFlow with a dense corresponding field 
approach purely based on search strategy without apply-
ing any regularization, smoothing or additional data term.

4.2  Discontinuities

Flow discontinuities can impart extensive errors, particu-
larly for the methods based on nearest neighborhood. 
Since these methods impose spatial or temporal conti-
nuity, these assumptions are generally violated at sur-
face boundaries known as motion discontinuities [55]. 
Classically this issue was addressed by regarding motion 
discontinuities as outliers and discarding them. Spotting 
discontinuous regions accurately, with high precision has 
been the focus of research and several formulations were 
proposed to the basic HS [33] model. Classical research-
ers replaced quadratic regulariser by oriented smooth-
ness constraints to prevent blurring across boundaries 
[53]. Later [56] came up with a heuristic modification to 
this approach by performing less smoothing close to the 
image boundaries and determining the smoothing along 
and across boundaries.

4.3  Large displacements

Large displacement is a fundamental area of concern, 
responsible for the failure of many optical flow algorithms. 
It occurs as a result of motion of an object moving at a 

high speed or due to a low frame-rate. The majority of 
the varitional algorithms fail to tackle with large displace-
ment because the energy function may be trapped into 
an incorrect local minimum. The proposed solution can 
further lead to higher erroneous outcomes due to iteration 
schemes, which is an essential part of such techniques. To 
handle large displacements almost all variational methods 
use coarse-to-fine framework schemes. Among traditional 
methods, the most prominent work in this regard was 
done by T. Brox [34] who integrated the variational meth-
ods with coarse-to-fine scheme and also provided a theo-
retical proof of his warping method. Earlier, the coarse-to-
fine strategies were used on empirical basis. The method is 
robust to noise and demonstrates highly accurate results 
with smaller angular errors. Some methods attempted to 
solve the large displacement problem without coarse to 
fine scheme. F. Steinbrucker [35] suggested a quadratic 
relaxation scheme that does not imply coarse to fine but 
the algorithm is computationally expensive because it is 
based on search for candidate correspondences.

Modern researchers paid special attention to the 
large displacement problem and suggested many novel 
schemes as probable solutions to this major challenge of 
optical flow estimation [17, 19, 20, 36, 55, 57]. The most 
successful solutions are based on feature detection and 
descriptor matching techniques. LDOF [17] was the first 
scheme to use local descriptors for dense optical flow. By 
combining the feature detection and interpolation tech-
niques with optical flow framework LDOF solves the large 
motion problem substantially more adequately than pre-
vious methods. DeepFlow [18] blended matching with 
variational setup building a multi-stage architecture and 
interleaving convolutions with max-pooling similar to con-
volutional neural nets. EpicFlow [19] uses dense match-
ing and a powerful interpolation scheme. NNF [55] used 
approximate neighbor field and segmentations. CPM [36] 
merges nearest neighbor field search with coarse-to-fine. 
S2F-IF [57] combines sparse matching, interpolation and 
regularizer to perform multi scale matching. Flowfields 
[21] proposed a dense corresponding field method which 
outperformed sparse descriptor matching techniques and 
Discrete Flow [20] applies discrete optimization with sub-
pixel refinement.

4.4  Varying illumination

The outdoor machine vision applications, such as traffic 
monitoring [9] and autonomous driving [5] require robust 
solutions capable of handling situations under varying 
light conditions. Optical flow algorithms yield good results 
for Lambertian surfaces at constant illumination and for 
the objects moving under homogeneous brightness con-
ditions. However, many weather-linked factors such as 
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clouds, variable sunshine and fog can affect parts of an 
image in different ways. Numerous approaches have been 
taken into consideration in handling illumination changes. 
Classical local and global methods tackled this issue within 
the regularization framework requiring many parameters 
for illumination components to be determined in advance. 
However, this reduces the applicability of these methods. 
In recent years, the focal point of research was robustness 
against large displacement and occlusions; there is no 
prominent research that specifically focuses on illumina-
tion changes. Literature-wise, the most robust methods for 
illumination changes are Census Transform and the Rank 
transform [58]. These methods collect signatures from the 
intensity values in a neighboring patch of the pixel under 
consideration. However, their key weakness is the reduced 
output accuracy due to partially lost information in obtain-
ing signatures.

4.5  Lack of texture

The regions with insufficient texture are the main contrib-
utors for error estimation in most techniques especially for 
the methods based on key-point detection and matching. 
Almost all major methods using feature matching suffer 
from this common weakness. This issue is well-addressed 
by the methods based on patch-matching, nearest neigh-
bor field and segmentation [21, 36, 55]. These methods, 
instead of collecting information from the texture of a par-
ticular patch, take into account the motion information 
from the neighboring patches, making the method robust 
against texturelessness. The algorithms proposed by [21, 
36]  performed well for large displacement on MPI-Sintel 

[14]. The scheme introduced by [55] outperformed for 
small displacements such as Middlebury [13].

4.6  Occlusions

Occlusions are one of major challenges for modern algo-
rithms that remained unresolved. Occlusions occur when 
multiple objects in a complex scene move with different 
displacements and overlap one another in consecutive 
frames. Violating the data conservation, it leads to errors 
for multi-frame methods because of the partially lost 
information. Different approaches dealing with occlu-
sions include: the bidirectional inconsistency check, 
image warping, data constancy violation and image seg-
mentation. The pixel-wise methods [63] traces the path 
of every pixel in consecutive images. Using edge detec-
tion, matching and warping, [64] introduced an effective 
interpolation scheme. The segmentation-based methods 
[55, 65, 66] take uniform motion among small regions to 
deal with occlusions. Among modern researchers [67] 
proposed a variational model with a self-adaptive weight 
energy function and non-local term. In this sense the 
most powerful schemes are those utilizing occlusions as 
supplementary evidence to compute optical flow such 
as MirrorFlow  [22], ContinualFlow [28], SelFlow [30]. This 
approach is contrary to the classical methods applying 
forward/backward inconsistency check and discarding 
occlusions as outliers. Table 2 depicts the performance 
of some famous methods for clean and final versions of 
MPI-Sintel datasets. The schemes paying special atten-
tion to occlusion handling are at the top on both fronts 
followed by those tackling with large displacement and 
other issues.

Table 2  Performance of 
prominent methods in terms of 
EPE on clean and final versions 
of MPI-Sintel [14] dataset. 
Results on the final version 
are worse than clean because 
final image sequences present 
complex and intricate features 
such as fog, mist, shadows 
and blur of different types. 
Among all major challenges 
faced by modern optical flow 
algorithms, occlusion handling 
is one of the top most 
problems. Methods paying 
special attention to this issue 
have outperformed others on 
both datasets

Traditional methods Clean pass Final pass CNN methods Clean pass Final pass

MR-Flow [37] 2.527 5.376 Continual Flow [28] 3.341 4.528
FlowFields+[21] 3.102 5.707 MFF [29] 3.423 4.566
MirrorFlow [22] 3.316 6.071 SelFlow [30] 3.745 4.262
S2F-IF [57] 3.500 5.417 FlowFieldsCNN [21] 3.778 5.363
DCFlow [46] 3.537 5.119 IRR-PWC [31] 3.844 4.579
RicFlow [59] 3.550 5.620 DeepDiscreteFlow [46] 3.863 5.728
CPM-Flow [36] 3.557 5.960 FlowNet2 [24] 3.959 6.016
DiscreteFlow [7] 3.567 5.960 InterpoNet dm [60] 3.973 5.711
FullFlow [32] 3.601 5.895 PWC-Net [27] 4.386 5.042
FlowFields [21] 3.748 5.810 LiteFlowNet [26] 4.539 5.381
EpicFlow [19] 4.115 6.285 FlowNetC+ft+v [23] 6.081 7.883
PHFlow [61] 4.388 7.423 FlowNetS+ ft+v [23] 6.158 7.218
DeepFlow [18] 5.377 7.212 DDFlow [62] 6.176 7.401
NNF-Local [55] 5.386 7.249 SPynet+ft [13] 6.640 8.360
LDOF [17] 7.563 9.116 UnFlow [40] 9.379 10.219
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5  Discussion

Brief presentations of the development and key points 
of optical flow modeling and computation have been 
discussed. The understanding of issues has significantly 
increased over last 4 decades, and a large variety of esti-
mation models, and optimization schemes have been 
proposed and combined together for the most accurate 
results. However, the selection of the best motion estima-
tor is still highly dependent on several factors. Research 
has given rise to some queries regarding issues related 
to the existing datasets and estimation techniques for a 
generic, robust and real-time motion-estimation algo-
rithm. Hence, we look at these issues with an end note for 
potential future work ensues.

5.1  Choosing an appropriate method

Though each method has its own benefits and limitations, 
the majority of successful traditional methods choose vari-
ational framework and resort to the energy minimization 
scheme. From the Middlebury [68], MPI-Sintel [69] and 
KITTI [70] benchmarks, it is obvious that globally regu-
larized models based on joint estimation, segmentation 
and approximate nearest neighbor field, can produce 
improved results and perform well for datasets contain-
ing small displacements, moderate intensity changes and 
piecewise smooth displacements of large structures. Alter-
natively, for the image sequences offering more challeng-
ing situations [14, 15] these techniques remain competi-
tive. Hence, implore further improvements to overcome 
shortcomings and the foremost problems associated with 
each method especially regarding the computational time.

5.2  Current and potential challenges

Despite great advancements, many methods presented 
herewith produce erroneous results and remain elusive 
in challenging situations such as the large displacements, 
occlusion associated with large motions and motion bound-
aries, texture-less regions and the large intensity changes 
in real environments or due to deformations. The methods 
that specifically handle large displacements, employ fea-
ture matching techniques as a part of their main frame-
work. These methods possess their own intrinsic limitations 
[17–20]. For instance, in most cases the raw patch features 
obtained by various matching techniques face difficulties 
when dealing with large variations in appearances, variable 
radiation, scaling, rotation and repetitive patterns. Despite 
many improvements, the output of these strategies is 
mostly affected by the matching noise, a major problem 

of methods initialized by sparse descriptor matching. It is 
proposed that these methods need to focus on improving 
the interpolation schemes. The traditional coarse-to-fine 
strategy for variational methods for large displacements 
and the attempts to combine the independent results of 
feature matching with large displacements usually fail 
because of the matching errors and noise produced. To 
overcome these limitations, a potential research area can 
be the discrete optimization coupled with computation-
ally powerful evaluation schemes. The methods based 
on data, patch match and nearest neighborhood [21, 55] 
produce dense motion field, however they have the added 
disadvantage of being outliers prone. For future work, the 
methods coupling approximate nearest neighbor field with 
segmentation need further improvement on regularization, 
smoothing and filtering techniques to find inliers and avoid 
extreme values in the data.

5.3  Improving deep learning schemes

The majority of traditional methods outperforming on 
public benchmarks suffer from heavy computational cost 
because of the optimization involved in the sparse to 
dense interpolation. Deep learning methods and the use 
of GPUs have shown substantial improvements to over-
come the run-time problem. Very recently, the methods 
integrating popular strategies from traditional schemes 
with deep learning frameworks have outperformed the 
non-learning category. However, a persistent issue of 
most of the deep learning schemes is the non-adaptabil-
ity without retraining across different datasets of varying 
properties. All supervised deep learning methods require 
extensive data training whether they compute the opti-
cal flow in an end-to-end manner [24] or as deep learning 
for matching cost computation [46]. There is not a single 
approach that is versatile and flexible enough to establish 
well, across different datasets without tuning.

An important aspect in deep learning methods is the 
size of the network and the number of parameters needed 
to learn. Large networks consume significant energy and 
time for learning. Many deep learning methods still have 
room for further reduction in size. Methods using spatio-
temporal filters could possibly achieve this by compress-
ing these filters. This can be accomplished by decreasing 
filter dimensions or by filter separation. With reduced size, 
deep networks can be fitted on mobile devices. Exploring 
more applications and implementation in this field can be 
a potential future area of research.

Further the results of deep learning methods are not 
directly comparable with those utilizing hand-crafted fea-
tures because deep learning methods mostly make use of 
synthetically prepared datasets [24] which are not a true rep-
resentative of real life scenarios. Contrarily, the traditional 
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non-learning methods do not have these limitations. Besides 
improving the network architectures, the upgrading and 
expansion of existing datasets to a point close to the real-
life challenges can be a prospective area of creativity and a 
future investigation for deep learning researchers.

The well-known problems discussed above need more 
future research. It is hoped that with further progress 
these issues will be better targeted, making the optical 
flow methods more useful for registration and correspond-
ence problems.

6  Conclusion

Optical flow makes up an important part for many image 
processing techniques. In presenting its basic principles 
and highlighting the key features of traditional and deep 
learning methods a better understanding is accomplished. 
Two major classes have been compared in terms of their 
benefits and limitations. Also error measures, and advance 
level datasets were discussed with their salient features. 
Moreover, the major current and potential challenges faced 
by modern algorithms have been discussed along with their 
proposed solutions. This comprehensive and crisp investiga-
tion of the contemporary methods of optical flow can be 
helpful for present and future research in computer vision.

Compliance with ethical standards 

Conflict of interest On behalf of all authors, the corresponding au-
thor states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as 
long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creat iveco mmons 
.org/licen ses/by/4.0/.

References

 1. Li W, Cosker D, Brown M (2016) Drift robust non-rigid opti-
cal flow enhancement for long sequences. J Intell Fuzzy Syst 
31(5):2583–2595

 2. C. Godard, P. Hedman, W. Li, and G. J. Brostow, “Multi-view recon-
struction of highly specular surfaces in uncontrolled environ-
ments,” Proc. - 2015 Int. Conf. 3D Vision, 3DV 2015, pp. 19–27, 
2015.

 3. M. Khalid, L. Penard, and E. Memin, 2017 Application of optical flow 
for river velocimetry. Int Geosci Remote Sens Symp. pp. 6243–6246

 4. H. Wang, Q. Li, K. Ji, 2015 “The application of optical flow field 
technology in solar images,” 8th International Conference on 
Intelligent Networks and Intelligent Systems no. x, pp. 86–89

 5. Chao H, Gu Y, Napolitano M (2014) A survey of optical flow tech-
niques for robotics navigation applications. J Intell Robot Syst 
Theory Appl 73(1–4):361–372

 6. Hermann S, Werner R (2014) “High accuracy optical flow for 3D 
medical image registration using the census cost function”, Psivt 
2013. LNCS 8333:23–35

 7. Abdel-Nasser M, Moreno A, Rashwan HA, Puig D (2017) Analyz-
ing the evolution of breast tumors through flow fields and strain 
tensors. Pattern Recognit Lett 93:162–171

 8. Weibel T, Daul C, Wolf D, Rösch R, Guillemin F (2012) Graph 
based construction of textured large field of view mosaics for 
bladder cancer diagnosis. Pattern Recognit 45(12):4138–4150

 9. Kastrinaki V, Zervakis M, Kalaitzakis K (2003) A survey of video 
processing techniques for traffic applications. Image Vis Comput 
21(4):359–381

 10. Ren G, Li W, O’Neill E (2016) Towards the design of effective free-
hand gestural interaction for interactive TV. J Intell Fuzzy Syst 
31(5):2659–2674

 11. Ranftl A, Alonso-Fernandez F, Karlsson S, Bigun J (2015) A real-
time adaboost cascade face tracker based on likelihood map 
and optical flow. IEEE Trans Inf Forensics Secur. 6(6):468–477

 12. M. Jain, H. Jegou, and P. Bouthemy, 2013 “Better exploiting 
motion for better action recognition,” Proc IEEE Comput Soc 
Conf Comput Vis Pattern Recognit, 2555–2562.

 13. Baker S, Scharstein D, Lewis JP, Roth S, Black MJ, Szeliski R (2011) 
A database and evaluation methodology for optical flow. Int J 
Comput Vis 92(1):1–31

 14. Butler DJ, Wulff J, Stanley GB, Black MJ (2012) A naturalistic open 
source movie for optical flow evaluation. In: ECCV, Part IV, LNCS 
7577, 2012, pp 611–625

 15. A. Geiger, P. Lenz, and R. Urtasun, 2012 “Are we ready for autono-
mous driving? the KITTI vision benchmark suite,” Proc. IEEE Com-
put. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 3354–3361

 16. M. Menze and A. Geiger, 2015 “Object scene flow for autono-
mous vehicles,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pat-
tern Recognit., vol. 07–12-June, pp. 3061–3070.

 17. Brox T, Malik J (2011) Large displacement optical flow descriptor 
matching in variational motion estimation.pdf. IEEE Trans Pat-
tern Anal Mach Intell. 33(3):500–513

 18. P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, 2013 
“DeepFlow: Large displacement optical flow with deep matching,” 
Proc. IEEE Int. Conf. Comput. Vis., no. Section 2, pp. 1385–1392.

 19. J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid, 2015 
“EpicFlow: Edge-preserving interpolation of correspondences 
for optical flow,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pat-
tern Recognit., vol. 07–12-June, pp. 1164–1172.

 20. M. Menze, C. Heipke, and A. Geiger, 2015 “Discrete Optimization 
for Optical Flow,” 37th Ger. Conf. GCPR 2015, vol. i, pp. 16–28.

 21. C. Bailer, B. Taetz, and D. Stricker, 2015 “Flow fields: Dense corre-
spondence fields for highly accurate large displacement optical 
flow estimation,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2015 Inter, 
pp. 4015–4023.

 22. J. Hur and S. Roth, “MirrorFlow: Exploiting Symmetries in Joint 
Optical Flow and Occlusion Estimation,” Proc. IEEE Int. Conf. 
Comput. Vis., vol. 2017-Octob, pp. 312–321, 2017.

 23. A. Dosovitskiy et al., 2015 “FlowNet: Learning optical flow with 
convolutional networks,” Proc. IEEE Int. Conf. Comput. Vis., vol. 
2015 Inter, pp. 2758–2766.

 24. E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, 
2016 “FlowNet 2.0: evolution of optical flow estimation with 
deep networks,”

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Vol:.(1234567890)

Review Paper SN Applied Sciences (2021) 3:289 | https://doi.org/10.1007/s42452-021-04227-x

 25. Ranjan A, Black MJ (2016) Optical flow estimation using a spatial 
pyramid network. Cvpr 2017:4161–4170

 26. Hui T-W, Tang X, Loy CC (2018) LiteFlowNet: A Lightweight 
Convolutional Neural Network for Optical Flow Estimation. In: 
Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition CVPR, pp 8981–8989

 27. Sun D, Yang X, Liu M-Y, Kautz J (2017) PWC-Net: CNNs for Optical 
Flow Using Pyramid, Warping, and Cost Volume. In: Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR, pp 8934–8943

 28. Neoral M, Šochman J, Matas J (2018) Continual Occlusions and 
Optical Flow Estimation. In book: Computer Vision-ACCV, pp 
159–174. https ://doi.org/10.1007/978-3-030-20870 -7_10

 29. Z. Ren, O. Gallo, D. Sun, M. H. Yang, E. B. Sudderth, and J. Kautz, 
2019 “A fusion approach for multi-frame optical flow estimation,” 
Proc. - 2019 IEEE Winter Conf. Appl. Comput. Vision, WACV 2019, 
pp. 2077–2086.

 30. Liu P, Lyu M, King I, Xu J (2019) SelFlow: Self-Supervised Learning 
of Optical Flow. In: IEEE CVPR, pp 4571–4580

 31. J. Hur and S. Roth, 2019 “Iterative Residual Refinement for Joint 
Optical Flow and Occlusion Estimation,” [cs.CV] 10.

 32. Q. Chen and V. Koltun, 2016 “Full Flow: Optical Flow Estimation 
By Global Optimization over Regular Grids,” Proc. IEEE Conf. 
Comput. Vis. Pattern Recognit.

 33. Horn BKP, Schunck BG (1981) Determining optical flow. Artif 
Intell 17(1–3):185–203

 34. T. Brox, N. Papenberg, and J. Weickert, 2004 “High Accuracy Opti-
cal Flow Estimation Based on a Theory for Warping,” Comput. 
Vis. - ECCV 2004, vol. 4, no. May, pp. 25–36.

 35. F. Steinbrucker, T. Pock, and D. Cremers, 2009 “Large Displace-
ment Optical Flow Computation without Warping,”The  12th 
International Conference on Computer Vision, p.1609–1614.

 36. Y. Hu, R. Song, and Y. Li, 2016 “Efficient coarse-to-fine patch-
match for large displacement optical flow,” Proc. IEEE Conf. 
Comput. Vis. Pattern Recognit., pp. 5704–5712.

 37. J. Wulff, L. Sevilla-Lara, and M. J. Black, 2017 “Optical flow in 
mostly rigid scenes,” Proc.30th IEEE Conf. Comput. Vis. Pattern 
Recognition, CVPR 2017, vol. 2017-Janua, pp. 6911–6920.

 38. C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkelstein, 2010 
“The generalized PatchMatch correspondence algorithm,” Lect. 
Notes Comput. Sci. vol. 6313 LNCS, no. PART 3, pp. 29–43.

 39. D. Gadot and L. Wolf, 2016 “PatchBatch: A Batch Augmented Loss 
for Optical Flow,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pat-
tern Recognit., vol. 2016-Dec. pp. 4236–4245.

 40. S. Meister, J. Hur, and S. Roth, 2017 “UnFlow: Unsupervised Learn-
ing of Optical Flow with a Bidirectional Census Loss,” [cs.CV] 21.

 41. D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, 2018 “PWC-Net: CNNs for Opti-
cal Flow Using Pyramid, Warping, and Cost Volume,” [cs.CV] 25 Jun

 42. A. Ranjan and M. J. Black, 2017 “Optical Flow Estimation using a 
Spatial Pyramid Network,”CVPR 2017, pp. 4161–4170

 43. T. Schuster, L. Wolf, and D. Gadot, 2017 “Optical flow requires 
multiple strategies (but only one network),” Proc. - 30th IEEE 
Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-
Janua, pp. 6921–6930.

 44. D. Teney and M. Hebert, 2017 “Learning to extract motion from 
videos in convolutional neural networks,” Lect. Notes Comput. 
Sci. vol. 10115 LNCS, pp. 412–428.

 45. D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, 2016 
“Deep End2End Voxel2Voxel Prediction,” IEEE Comput. Soc. Conf. 
Comput. Vis. Pattern Recognit. Work., pp. 402–409.

 46. F. Güney and A. Geiger, 2017 “Deep discrete flow,” Lect. Notes 
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. 
Notes Bioinformatics), vol. 10114 LNCS, pp. 207–224.

 47. A. Ahmadi and I. Patras, 2016 “Unsupervised convolutional neu-
ral networks for motion estimation,” IEEE International Confer-
ence on Image Processing (ICIP)

 48. J. J. Yu, A. W. Harley, and K. G. Derpanis, 2016 “Back to basics: 
Unsupervised learning of optical flow via brightness constancy 
and motion smoothness,” Lect. Notes Comput. Sci. vol. 9915 
LNCS, pp. 3–10.

 49. Y. Zhu, Z. Lan, S. Newsam, and A. G. Hauptmann, 2017 “Guided 
Optical Flow Learning,” CVPRW, February.

 50. Z. Ren, J. Yan, B. Ni, B. Liu, X. Yang, and H. Zha, 2017 “Unsupervised 
Deep Learning for Optical Flow Estimation,” Proc. 31th Conf. Artif. 
Intell. (AAAI 2017), no. Hollingworth 2004, pp. 1495–1501.

 51. Y. Wang, Y. Yang, Z. Yang, L. Zhao, P. Wang, and W. Xu, 2018“Occlu-
sion Aware Unsupervised Learning of Optical Flow,” Proc IEEE 
Comput Soc Conf Comput Vis Pattern Recognit, pp. 4884–4893.

 52. N. Mayer et al., 2016 “A Large Dataset to Train Convolutional Net-
works for Disparity, Optical Flow, and Scene Flow Estimation,” 
IEEE Conference on Computer Vision and Pattern Recognition 
pp. 4040–4048.

 53. Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of opti-
cal flow techniques. Int J Comput Vis 12(1):43–77

 54. Blender. https ://www.blend er.org
 55. Z. Chen, H. Jin, Z. Lin, S. Cohen, Y. Wu, 2013 “Large displacement 

optical flow from nearest neighbor fields,” Proc IEEE Comput Soc 
Conf Comput Vis Pattern Recognit, pp. 2443–2450.

 56. Alvarez L, Deriche R, Papadopoulo T, Sánchez J (2007) Symmetri-
cal dense optical flow estimation with occlusions detection. Int 
J Comput Vis 75(3):371–385

 57. Y. Yang, S. Soatto, 2017 “S2F: Slow-to-fast interpolator flow,” Proc. 
- 30th IEEE Conf Comput Vis Pattern Recognition, CVPR 2017, pp. 
3767–3776.

 58. D. Hafner, O. Demetz, J. Weickert, 2013 “Why is the census trans-
form good for robust optic flow computation?,” Lect Notes Com-
put Sci, vol. 7893 LNCS, pp. 210–221.

 59. Y. Hu, Y. Li, R. Song, 2017 “Robust interpolation of correspond-
ences for large displacement optical flow,” Proc. - 30th IEEE Conf 
Comput Vis Pattern Recognition, CVPR 2017, vol. 2017-Janua, 
pp. 4791–4799.

 60. S. Zweig and L. Wolf, “InterpoNet, a brain inspired neural net-
work for optical flow dense interpolation,” Proc—30th IEEE Conf 
Comput Vis Pattern Recognition, CVPR 2017, pp. 6363–6372.

 61. J. Yang and H. Li, 2015 “Dense, accurate optical flow estimation 
with piecewise parametric model,” Proc IEEE Comput Soc Conf 
Comput Vis Pattern Recognit, vol. 07–12-June, pp. 1019–1027.

 62. P. Liu, I. King, M. R. Lyu, and J. Xu, “DDFlow: learning optical flow 
with unlabeled data distillation,” The Thirty-Third AAAI Confer-
ence on Artificial Intelligence (AAAI-19) pp: 8770–8777.

 63. Mahajan D, Huang F-C, Matusik W, Ramamoorthi R, Belhumeur 
P (2009) Moving gradients. ACM Trans Graph 28(3):1

 64. Stich T, Linz C, Wallraven C, Cunningham D, Magnor M (2011) 
Perception-motivated interpolation of image sequences. ACM 
Trans Appl Percept 8(2):1–25

 65. Unger M, Bischof H (2012) Joint motion estimation and seg-
mentation of complex scenes with label costs and occlusion 
modeling. IEEE CVPR 2:1878–1885

 66. Chen K, Lorenz DA (2012) Image sequence interpolation based 
on optical flow, segmentation, and optimal control. IEEE Trans 
Image Process 21(3):1020–1030

 67. Zhang C, Chen Z, Wang M, Li M, Jiang S (2017) Robust non-local 
TV-L1 optical flow estimation with occlusion detection. IEEE 
Trans Image Process 26(8):4055–4067

 68. http://visio n.middl ebury .edu/flow/eval/
 69. http://sinte l.is.tue.mpg.de/resul ts
 70. http://www.cvlib s.net/datas ets/kitti 

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-030-20870-7_10
https://www.blender.org
http://vision.middlebury.edu/flow/eval/
http://sintel.is.tue.mpg.de/results
http://www.cvlibs.net/datasets/kitti

	Traditional and modern strategies for optical flow: an investigation
	Abstract
	1 Introduction
	2 Methodology
	2.1 Traditional methods
	2.1.1 Global techniques
	2.1.2 Local (total least square) techniques
	2.1.3 Local versus global
	2.1.4 Coarse to fine or pyramid schemes
	2.1.5 Limitations of coarse to fine schemes
	2.1.6 Feature based methods
	2.1.7 Advantages and limitations of feature based methods
	2.1.8 Feature matching for local filtering
	2.1.9 Feature matching for global framework

	2.2 Deep learning based or CNN methods
	2.2.1 Supervised and unsupervised learning
	2.2.2 Supervised learning methods
	2.2.3 Follow-up work
	2.2.4 Unsupervised learning methods
	2.2.5 Advantages and limitations of deep learning methods


	3 Evaluation
	3.1 Measures of performance
	3.2 Datasets for optical flow
	3.2.1 Middlebury
	3.2.2 KITTI
	3.2.3 MPI-Sintel
	3.2.4 Flying chairs
	3.2.5 Freiburg-Berkeley


	4 Developments on major challenges
	4.1 Outliers
	4.2 Discontinuities
	4.3 Large displacements
	4.4 Varying illumination
	4.5 Lack of texture
	4.6 Occlusions

	5 Discussion
	5.1 Choosing an appropriate method
	5.2 Current and potential challenges
	5.3 Improving deep learning schemes

	6 Conclusion
	References




