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Abstract
This work is concerned with the numerical investigation of nonlinear mathematical systems that describe repulsive 
chemotaxis phenomena in biology. A space-time conservation element (CE) and solution element (SE) method-based 
splitting procedure is proposed in one space dimension. In chemotaxis, the orientation of the cells changes. They move 
to the location which are chemically more favorable or move away from repellents or toxin. Mathematically, these are 
the systems of nonlinear coupled partial differential equations. The analytical solutions for this set of equations is not 
possible. A traditional less order accurate solution may fail to describe the underlying phenomena. Therefore, the state 
of the art numerical procedures is the need for such systems to get physically reliable solution in acceptable computa-
tional cost. Unlike tradition numerical procedures, the CE/SE-method has distinct attributes like it treats time and space 
in a unified fashion. Both conserved quantities and corresponding derivatives are considered to be unknowns due to 
which inherited numerical diffusion is reduced. Several benchmark numerical test problems are simulated for valida-
tion of the scheme. The numerical solutions of case studies are obtained for one space dimension. Moreover, one more 
central numerical scheme introduced by Nessyahu–Tadmor (NT) is also adapted on staggard grids which is considered 
to be a black box solver for such models for comparison. It was observed that both schemes perform well for the cur-
rent mathematical model. However, the CE/SE scheme is more capable of capturing the peaks produced in the solution 
profile. Further, convergence study is also carried out from both schemes which reveal that the proposed method is fast 
as compared to NT central scheme.
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1  Introduction

As opposed to diffusion (irregular diffusion), chemotaxis is 
one-sided cells movement in area which consist of higher 
beneficial concentration or lower destructive concentra-
tion of chemical substances. In general,it introduce attrac-
tive (positive) chemotaxis and then finally repulsive (nega-
tive) chemotaxis. Few common cases for natural species 
encountering chemotaxis are incorporate sludge shape 
amoebae Dictyostelium discoideum [1, 2], flagellated 
microscopic organisms Escherichia coli [3–5], Myxococ-
cus xanthus [6] and Salmonella Typhimurium [7]. In last 

3 decades, chemotaxis research suggests notably exces-
sive ratio of more than 95% among a few works examining 
taxis.

1.1 � Why logarithmic?

The history of the model might be discussed and par-
ticularly the importance of the function of logarithmic 
sensitivity. Article distributed in 1966 in the field of sci-
ence [8], Adler revealed a critical test result for Escheri-
chia coli. In investigation, Escherichia coli groups seen 
to move at uniform speed when the microbes set in 
one end of a narrow tube contained energy source 
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and oxygen. After four years, in a progression of origi-
nal works [9–11], Keller and Segel built up a successful 
numerical model known as Keller–Segel Chemotaxis 
Model (KSCM). In general form, the Keller–Segel model 
defined as

where the density of cell is u, v is concentration of chemi-
cal, � ≥ 0 and D > 0 denote coefficients of cell and chemi-
cal diffusion, respectively. If 𝜒 > 0 then chemotaxis is 
referred to as attractive (positive) and repulsive (nega-
tive) if 𝜒 < 0 , where ∣ � ∣ estimates the chemical signal 
strength. Here �(v) is known as a function of chemotactic 
potential specifying signal mechanism and function g(u, 
v) describes the decadence and chemical development.

The regular cases of chemotactic capacity func-
tion �(v) associated with �(v) = klogv  , �(v) = kv  , or 
�(v) = kvm(1 + vm) , where m ∈ N and k > 0 . The frame-
work with direct law �(v) = kv  and g(u, v) = u − v  are 
known as the minimum chemotaxis model following 
[12] and [13]. The logarithmic affect ability �(v) = klogv 
adjusted the Weber-Fechner law to depict cell chemotac-
tic reaction and had unmistakable specific applications 
[11, 14]. The consistent conditions of Eqs. (1) and (2) with 
logarithmic sensitivity and g(u, v) = u − v was contem-
plated [15] and presence of global solutions was as of 
late examined in [16]. The receptor sensitivity law has 
been inferred and connected in the various chemotaxis 
models, e.g. see [17, 18] and references therein.

In this article, we combined model Eqs. (1) and  (2) 
with logarithmic chemotactic potential function and 
g(u, v) = uv − �v . The subsequent model [19, 21, 22] is 
described as follows

The constant 𝜇 > 0 representing the reduction rate of 
chemicals. At the point when the chemical diffusion is 
ignored (i.e. � = 0 ), Eqs. (3) and (4) were look like to the 
one proposed in [20, 21] for irregular motion of particles 
portraying molecule cooperation with a non-diffusive 
model. In light of unique selection of initial date and by 
the asymptotic investigation, an itemized subjective and 
numerical investigation was given in [20], where explicit 
solutions about aggregation, explode and crumple were 

(1)
�u

�t
=∇ ⋅ (D∇u − �u∇�(u)),

(2)
�v

�t
= ��v + g(u, v).

(3)
�u

�t
= ∇ ⋅ (D∇u − �u∇ ln(v)),

(4)
�v

�t
= ��v + uv − �v.

developed in one space dimension. The worldwide pres-
ence of the solutions examined in [22].

If 𝜒 < 0 , with a Hopf–Cole type transformation

furthermore, scalings 
x
=
√
−��,

q
= �∕

√
−�  and 

t̃ = −𝜒t∕D can be transformed within a system of conser-
vation laws [24–26] as takes after

Where q = u . The existence and nonlinear stability of wave 
solutions of Eqs. (6) and (7) in one-dimensional space R 
were built up in [23–25] first for � = 0 and afterward in 
[26] for 𝜖 > 0 , where the wave quality is permitted to be 
discretionary extensive. At the point when � = 0 , global 
presence of the classical solutions of underlying IBVP Eqs. 
(6) and (7) in one dimension space were set up in [27] and 
the Cauchy problem of Eqs. (6) and (7) was considered 
in [28]. The Cauchy problem of Eqs. (6) and (7) with � = 0 
in multi-dimensional spaces was explored in [29]. As of 
late the substantial time presence of classical solutions of 
underlying IBVP of model Eqs. (6) and (7) with � = 0 in one 
dimensional space with extensive initial data and in multi-
dimensional spaces for small-scale initial data were set up 
[30]. In this paper, our aim is to investigate intial-boundary 
value problem [31]with 𝜖 > 0 , in one dimension, as follows

For the setup of large-time behavior of classical solutions 
for 𝜖 > 0 , in one-dimensional space and the diffusion limits 
of solutions as � → 0 , we build up assessments in [30]. We 
take note of that the diffusion limit of traveling wave solu-
tions was beforehand gotten in [32]. To show our principle 
outcomes, we present a few symbols.

It is, for most of the part, trusted that diffusion has a reg-
ularization effect. So we assume that the results for � = 0 
can be expanded to the case 𝜖 > 0 , but the presence of 
the convection-like term (q2)x creates additional difficulty 
in the asymptotic analysis. In standard, such a form of non-
linearity does not cause any inconvenience for small-scale 
solution results, while the situation is changed for solution 
results with large amplitude. It is clearly that, when � is 
enormous, the nonlinear convection can never again be 
influenced by the linear diffusion, and the resulting time-
dependent energy estimation gives no informative data for 
the solution with long-time behavior. This is the principal 

(5)� =
∇v

v
= ∇ ln(v),

(6)pt − ∇ ⋅ (pq) = �p,

(7)�t − ∇(�q2 + p) = ���.

(8)pt − (pq)x = pxx ,

(9)qt − (�q2 + p)x = �qxx .
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reason that we require � to be small. Inside this system of 
the parameter, by receiving the concept in [30], we can 
set up the uniform-in-time and � that result in the long-
time straight-line behavior of large amplitude solutions. 
Therefore the uniform convergence rate of the solutions 
of Eqs. (8) and (9) towards those of the non-diffusive issues. 
The mathematical framework of repulsive chemotaxis is 
represented as a system of differential equations. These 
differential equations are highly nonlinear mathematical 
models comprised of time-dependent coupled partial dif-
ferential equations (PDEs). Traveling pulses of chemotaxis 
are investigated in [33]. A commonly required property of 
chemotaxis models is that their solutions rapidly grows in 
the vicinity of concentration points. The solutions of these 
models are very complicated as it may blow up in finite 
time or may lead to a very singular and spiky behavior. This 
blow-up is termed as cell concentration phenomena that 
occur in real biological systems. In any case, it is very chal-
lenging for a numerical scheme to capture such solutions. 
Similar models have been investigated numerically in [34, 
35], where high order methods were developed using the 
cartesian coordinate system. Wang [36] also investigated 
mathematics of traveling waves in chemotaxis through 
numerical techniques about the relevant chemotaxis 
model which corresponds to the model (1)–(2) by the 
Cole-Hopf transformation. High performance parabolic 
chemotaxis model in one space dimension examined in 
[37]. In this system unique global smooth solution attains 
convergence when time approaches to infinity. While, it 
has been shown that solutions of chemotaxis model con-
verge towards their boundary data at an exponential rate 
when time becomes infinite [38]. Wang et al [39] study 
the stability of solutions of hyperbolic system in which 
diffusion limit (viscous limit) of solutions like chemical 
diffusion � approaches to zero with convergence advice 
on solutions to the non-diffusible (non-viscous) problem. 
Even for the transformed system (1)–(2), there are many 
interesting qualitative results with numerical simulations 
[40, 41]. However, it was seen that to capture high resolu-
tion of density peaks, very fine mesh has to be taken which 
has a negative impact on the efficiency of the methods. 
Therefore, it is highly desirable to have robust numerical 
methods for the implementation and further mathemati-
cal and biological analysis of these systems. A considerable 
attention is given to this area in the past two decades [42, 
43]. However, there is still a need for the more efficient and 
reliable numerical procedures having an acceptable order 
of accuracy (usually second-order) for such nonlinear mod-
els. Therefore, the main emphasis of this work is to suggest 
a relatively new numerical procedure called space-time 
CE/SE algorithm for these model equations. Further, the 
numerical accuracy of the scheme and computational cost 
is also discussed to favor this numerical method.

The proposed CE/SE scheme is a second-order high 
resolution and have capability for capturing shocks and 
steep changes which was introduced by Chang and his 
team [44]. This scheme is different and relatively new 
numerical procedure as compared to other traditional 
numerical methods, like Discontinuous Finite Element 
(DFE), Finite Volume (FV) and Finite Difference (FD) Meth-
ods. The proposed methods have distinct features such as 
introduction of conservation elements (CE’s) and Solution 
Elements (SE’s), treatment of time and space variables in a 
unified manner, treatment of derivatives of the dependent 
variable as unknown and shock handling technique with-
out the use of Riemann solvers. Moreover, this numerical 
framework has successfully shown its generic feasibility 
and effectiveness with models having complicated solu-
tion structure. These models include the unsteady flows 
[44, 45], radiation hydrodynamics [46], hyperbolic heat 
conduction scenarios [47], vortex dynamics [48], shal-
low flow systems [49], magnetohydrodynamics [50] and 
electrical engineering [51]. The current model equations 
are also solved using high resolution and non-oscillatory 
Nessyahu and Tadmore NT central scheme [52] for the 
comparison and validation of the recommended numeri-
cal scheme. This NT schemes are considered as black-box 
solver for such model equations. These schemes belong to 
the class of predictor-corrector (PC)-type numerical proce-
dure and hence implemented in two different steps. The 
average values of the conserved quantities are predicted 
first using a non-oscillating piecewise linear interpolat-
ing polynomial. Afterward, the average values on stag-
gered grids along with predicted averages are used to 
update the values at the next time level. These schemes 
are second-order accurate by the virtue of MUSCL type 
initial reconstruction process. On one hand, these schemes 
are similar to upwind schemes as they use similar limiters 
to avoid oscillation. On the other hand, they are different 
and simple than upwind schemes as they do not require 
complicated Riemann solvers to be recuperated for the 
solution.

The CE/SE scheme is designed on different and unique 
fundamentals as compared to other traditional methods 
for solving such model equations. Like, upwind finite vol-
ume [53, 54] and Discontinuous Galerkin methods [55]. 
Since solution elements in the proposed numerical frame-
work are staggering both in space and time, therefore, 
evaluation of the fluxes at the interfaces of cell is easier and 
consistent. The essential characteristics of flux evaluations 
include [45]: (a) The calculation of flux requires no inter-
polation or extrapolation since it lies inside the solution 
element. Moreover, this solution element is determined 
by a rule that has no dependence on local numeric profile 
i − e the complexities of upwind techniques are entirely 
bypassed in the current method. (b) as mentioned earlier, 
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flux evaluation is straight forward as it requires integration 
of first-order Taylor expansion only. The much-complicated 
strategies like characteristic speed based strategies are not 
appreciated. For up to second-order accuracy, the CE/SE-
scheme is a better choice as compared to Discontinuous 
Galerkin methods (DGM). However, DGM is suitable for 
high order accuracy requirements. For that, interpolat-
ing polynomials which are similar to WENO limiters are 
required [56, 57].

The main aim of this article is to extend the CE/SE 
scheme [58] for the nonlinear mathematical models 
introduced for repulsive chemotaxis in one space dimen-
sion. The current numerical procedure has already been 
extended successfully to several other engineering mod-
els whose solutions are complicated as well. The numeri-
cal diffusion is controlled well in these frameworks due 
to its limiter and treatment of derivatives as independ-
ent unknowns. Different benchmark test problems are 
simulated to verify the comprehensive application and 
ability of the current recommended numerical algorithm. 
Moreover, accuracy study is also carried out through both 
schemes (CE/SE scheme and Nesyyahu Tadmore central 
scheme) which reveals that the proposed method is more 
accurate and fast as compared to NT central scheme.

The remaining part of this article is organized as fol-
lows. In Sect. 2 , the formulation of proposed numerical 
schemes in one-dimension is presented. Some numerical 
test problems for different case studies are discussed in 
Sect. 3. Finally, conclusions are drawn in Sect. 4.

2 � Numerical scheme

In this article, we will discuss and reformulate the compact 
form of our given model and will also derive the proposed 
numerical technique.

2.1 � Compact form of model and CE/SE method 
in one space dimension

The compact form of the repulsive chemotaxis model and 
the numerical scheme will be described in the present 
part. Repulsive chemotaxis model Eqs. (6) and (7) can be 
presented in one space dimension as given below.

The vector form of given equation is expressed as:

where, V is the unknown function, F(V) denotes the func-
tion of flux and function of source is represented by S(V).

(10)Vt − F(V )x − E(V )xx = S(V ).

V =

[
p

q

]
, F(V ) =

[
−pq

−(�q2 + p)

]
, S(U) =

[
0

0

]
,

CE/SE [44] suggested numerical scheme applied on model 
equations. The main idea and methodology is totally dif-
ferent with respect to other existing methods like as FVM 
and FEM. The unified treatment of time and space is the 
salient feature of CE/SE method. As studied, in the litera-
ture [44, 59, 60], the different types of fluxes are produced. 
One dimensional CE/SE scheme is illustrated in [44]. The 
Eq. (13) is defined as

Let the two coordinates which represents (E2) space are x 
and t which are denoted as x1 and x2 respectively. Assum-
ing a smooth solution profile, we apply Gauss-divergence 
theorem on Eq. (13). This gives the following integral form

Here V is an arbitrary domain in E2-space with boundary 
S(V). The dS = d�n where d� represents area and n is the 
unit normal outward vector of the surface (element). By 
applying the CE scheme on Eq. (18) shows discontinuities 
but on the other hand when SE scheme applied on Eq. (13) 
it shows different behavior of the curve as compared the 
result of the CE scheme.

The mesh points j and n in two dimensional space is 
represented by the set � . Where n, j = 0, ±0.5, ±1.5 ,.... 
The solution element is linked with each point (j, n) ∈ � , 
where j = n ± 0.5, n ± 1.0, n ± 1.5 , ...,. and represented 
as shaded region in Fig. 1a, which is the line segment 
about the vertical and horizontal axis and their very 
close neighboring region (exact length of neighboring 
region is of no importance).

The values of Vk , Fk and dk are approximated as V∗
k , F∗k 

and d∗
k . Where

(Vk)
n
j
 , (Vkt)

n
j
 and (Vkx)

n
j
 are constant values in SE(j, n). After 

applying chain rule we have

where

(11)(p, q)(x, o) = (p, q)(x), x ∈ [0, 1], .

(12)px(0, t) = px(1, t) = 0, qx(0, t) = qx(1, t) = 0,

(13)
�Vk

�t
+

�Fk(V )

�x
= Sk(V ), k = 1, 2.

(14)∮S(V )

dk . ds = Sk .

(15)V∗
k(t, x;j, n) = (Vk)

n
j
+ (Vkt)

n
j
(t − tn) + (Vkx)

n
j
(x − xj).

(16)(Fkx)
n
j
= (Fk,l)

n
j
(Vkx)

n
j
,

(17)(Fkt)
n
j
= (Fk,l)

n
j
(Vkt)

n
j
,
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In Eqs. (16)–(18), Fk and Fk,l are the splitting values of (Fk,l)
n
j
 , 

respectively. The Ak,l for k, l = 1, 2 is jacobian matrix where 
k, l are column and row indices.

From Eqs. (16) and (17), the terms�Fk
�x

 and �Fk
�t

 are the par-
tial derivatives with respect to position and time respec-
tively. The numerical values of �Fk

�x
 and �Fk

�t
 are defined as, 

(Fkx)
n
j
 and (Fkt)

n
j
 respectively.

As density is defined as, dk = (Fk , Vk)
T,then

Furthermore, F∗
k
 and V∗

k
 satisfy the above Eq. (10), i.e.,

From Eqs. (15) and (20), Eq. (22) takes the following form

(18)Fk,l =
�Fk

�Vl
, k, l = 1, 2.

(19)F∗k(t, x;n, j) = (Fk)
n
j
+ (Fkt)

n
j
(t − tn) + (Fkx)

n
j
(x − xj).

(20)S∗k(t, x;n, j) = (Sk)
n
j
+ (Skt)

n
j
(t − tn) + (Skx)

n
j
(x − xj).

(21)d∗
k
(t, x;n, j) = (F∗

k
(t, x;j, n), V∗

k
(t, x;j, n))T .

(22)
�V∗

k
(t, x;j, n)

�t
+

�F∗
k
(t, x;j, n)

�x
= S∗

k
(t, x;j, n).

(23)(Vkt)
j
n
= (Fkx)

n
j
+ (Sk)

n
j
.

As (Vk)
n
j
 and (Vkt)

n
j
 are functional values of (Vkx)

n
j
 . In in simi-

lar way in Eq. (23 (Vk)
n
j
 and (Vkx)

n
j
 are the functional values 

of (Vkt)
n
j
 . Then applying the same procedure on ( (Vk)

n
j
 and 

(Vkt)
n
j
 are also the functional values of (Vkt)

n
j
 , (Fk)

n
j
 , ( (Fkx)

n
j
 

and (Fkt)
n
j
 respectively. Let E − 2 space contains non over-

lap regions (see Fig.  1a)refereed to be conservation 
elements(CEs). Similarly, as presented in Fig. 1b conserva-
tion elements CE−(j, n) and CE+(j, n) are linked with inte-
rior mesh points. These CE’S are referred as basic conserva-
tion elements (BCE’s). On the other hand, Fig. 1c represents 
the union of these BCE’s CE+(j, n) and CE−(j, n) , which is 
called compounded conservation element (CCE).

As observed line segment CE+(j, n) , formed a boundary 
along SE(j, n) , which is denoted by AB and AD. whereas 
line segments CB and CD belongs to SE(j − 1∕2, n − 1∕2) . 
In the same fashion boundary of CE+(j, n) is contained in 
SE(j, n) or SE(j + 1∕2, n − 1∕2) . Then, by enforcing the two 
conservation condition at every interior mesh point, we 
get

From the above equation, it is revealed that if the bound-
ary does not intersect by applying basic conservation ele-
ment then total flux must be zero. The total flux vanishes 

(24)∮S(CE±(j,n))

d∗
k
⋅ ds = Sk , k = 1, 2.

Fig. 1   a Space-time staggered 
grid near SE(j, n). b CE−(j, n) and 
CE+(j, n) , respectively. c CE(j, n)
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at any space-time region. Thus at this stage a union of both 
positive and negative conservation elements considered 
and is represented through CE(j, n)

From Eqs. (24),(15),(19) and (20), one can easily get the fol-
lowing time marching numerical algorithm ,

where

For conservative flow variables slopes, the numerical oscil-
lations can be reduced through limiting formulations near 
a discontinuity.

Tractable constant � ⩾ 0 mostly have value � = 1 or � = 2 
and

Moreover,

and

2.2 � Central scheme in one dimensional space

The high-resolution central scheme [46] is discussed 
briefly. This scheme has two parts, One is the Predictor 
and the second part is Corrector. This is known as a Pre-
dictor-Corrector method. The first part of the Predictor 
relates the prediction of the midpoint values of the cell. 
The second corrector part relates to the average values 
of the cell. By mathematically, the Predictor formula for 
central scheme is

(25)∮S(CE±(j,n))

d∗
k
. ds = Sk , (j, n) ∈ �.

(26)
(Vk)

j
n
=

1

2

(
(Vk)

j−
1

2

n−
1

2

+ (Vk)
j−

1

2

k+
1

2

+ (Sk)
j−

1

2

n−
1

2

− (Sk)
j−

1

2

n+
1

2

)
,

(27)(Sk)
j
n
=

�x

2
(Vkx)

j
n
+

�t

�x
(Fk)

j
n
+

(�t)2

4�x
(Fkt)

j
n
.

(28)(V
�

k
)
j

n±
1

2

= (Vk)
j−

1

2

n±
1

2

+
�t

2
(Vkt)

j−
1

2

n±
1

2

, k = 1, 2.

(29)V (x−, x+;�) =
|x+|�x− + |x�

−
|x+

|x�+| + |x�
−
|

.

(30)

(Vkx+)
j
n
=

(V
�

k
)
j

n+
1

2

− (Vk)
j
n

�x∕2
, (Vkx−)

j
n
=

(Vk)
j
n − (V

�

k
)
j

n−
1

2

�x∕2
, .

(31)(V
�

k
)
j

n±
1

2

= (Vk)
j−

1

2

n±
1

2

+
�t

2
(Vkt)

j−
1

2

n±
1

2

, k = 1, 2.

Moreover, updated values at the next time step is obtained 
through corrector step, as defined below

here �=�t

�x
 . Moreover, 1

�x
Fx(Vi) is approximated derivative 

of F(V(t, x))

The fluxes Fx(Vi) calculated through similar process as 
described for vx in Eq. (35)

here � is the parameter � ∈ [1, 2] and the central differenc-
ing is denoted by � , which is defined as

where MM = The min-mod nonlinear limiter.

3 � Numerical simulation

In this section, we will discuss the different numerical test 
problems for one-dimensional repulsive chemotaxis mod-
els, with the help of our proposed numerical scheme i-e 
CE/SE method, and thereafter, results are also compared 
with NT central scheme.

3.1 � Test problems for parabolic model in one space 
dimension

Problem  1  Let us consider one-dimensional repulsive 
chemotaxis model system with periodic initial conditions 
are defined as.

whereas, the concentration q(x) is

The comparison of numerical results of density and con-
centration on 200-grids for different values of time and 
epsilon are shown in Figs. 2 and 3. It is observed that 

(32)(V )
m+

1

2

i
= (V )m

i
+

�

2
(F)x(V )m,

(33)

(
V
)m+

1

2

i+
1

2

=
1

2

((
V
)m
i
+
(
V
)m
i+1

))
+

1

8

((
V
)x
i
−
(
V
)x
i+1

))

− �

((
F
)m+

1

2

i+1
−
(
F
)m+

1

2

i

))
− �

((
S
)m+

1

2

i+1
−
(
S
)m+

1

2

i

)
,

(34)
1

�x
Fx(Vi) =

�

�x
F(V (t, x)) + O(�x),
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(38)q(x) = x(1 − x), x ∈ [0, 1].
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solution profiles for CE/SE scheme converges to 0.25 and 
0 rapidly for different values of epsilon as compared to the 
NT-central scheme. Similar analysis and results were also 
reported in [61]. So the CE/SE scheme shows good results 
as compared to NT-central scheme (Figs. 4, 5).

Problem 2  Consider smooth initial data for one-dimen-
sional chemotaxis system.

(39)p(0, x) = 1 + 0.2 cos(�x), x ∈ [−1, 1],

here, chemo-attractant c(x) is defined as

Here ’*’ is the usual multiplication. This smooth initial data 
of the test problem was also considered and analyzed in 
[43]. The numerical errors L∞ and L1 along-with conver-
gence rate for L1 error are enlisted in Table 1. From Table 1 
the presented numerical scheme is almost second-order 
accurate on 200-grids and 400-grids. Whereas, for 800-
grids the jumps and peaks reduced the order of accuracy. 

(40)q(x) = exp(−16x ∗ x), x ∈ [−1, 1].
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Fig. 2   Numerical results of CE/SE and NT central schemes for different values of time on 200 grid points of test problem 1
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Errors are computed with the help of reference solution 
and computed solution profile of both schemes (CE/SE and 
Nessyahu Tadmor central) are displayed in the Table 2 with 
different (100, 200, 400, 800) grids points. Furthermore, 
Table 2 displayed CPU time in seconds. We obtained the 
reference solution at 1600-grid points. The second-order 
solution, efficiency, and robustness of the proposed 
scheme is validated through the results of computation 
time and error analysis. Certainly, identical behavior was 
also perceived in [43] with other numerical methods. It 
can be seen that with the increase in the number of grid 

points, errors decrease rapidly in CE/SE scheme. Error plots 
are given in Figs. 6 and 7. The numerical results of den-
sity and concentration on 200-grids are shown in Fig. 4. 
Since the initial density and concentration depend on 
continuous functions, so from Fig. 4 smooth transitions 
are examined in all quantities. The CE/SE scheme shows 
good computational outcome when correlated to the 
NT-central algorithm. As well, our suggested numerical 
scheme captured and resolved all peaks more accurately 
and efficiently. Similar analysis and results were also given 
in [43] and reference therein.
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Fig. 3   Numerical results of CE/SE and NT central schemes for different values of epsilon on 200 grid points of test problem 1
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Table 1   Numerical errors for 
different number of grid points

Grid numbers Density (p) Concentration (q)

L
∞

L
1 Rate L

∞
L
1 Rate

100 0.0239 0.0304 – 0.0400 0.1828 –
200 0.0120 0.0071 2.10 0.0200 0.0347 2.39
400 0.0060 0.0019 1.90 0.0100 0.0061 2.51
800 0.0030 0.00051 1.86 0.0050 0.0015 1.95
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Fig. 4   Comparison of numerical results of CE/SE and NT central schemes on 200 grid points of test problem 2
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Fig. 5   Comparison of numerical results of CE/SE and NT central schemes on 200 grid points of test problem 3
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Problem  3  To examine the steady-state conservation, 
time-independent solution is considered as

This smooth initial data of the test problem was also 
considered and analyzed in [43]. The numerical results 
of density and concentration on 200-grids are shown 
in Fig. 5. The density is considered small in the regions 
x ∈ [−1.0, −0.5] and x ∈ [0.5, 1.0] . It can be noticed 
from the Fig. 5, that around x = −0.5 the density rapidly 

(41)p(0, x) =
1 + c(x)

10
,

(42)q(x) =

{
1, if ∣ x ∣≤ 1

2
,

0.125, elsewhere.
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Fig. 6   L1-error plots of CE/SE and NT central schemes on different grid points
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Fig. 7   Numerical errors in the results of CE/SE scheme

Table 2   Comparison of numerical errors at different grid points

Method 100-Grid-points

Density (p) Concentration (q) CPU-time (sec)
CESE 0.0304 0.1828 10.76
NT central 0.2317 0.3643 29.47

200-Grid-points
CESE 0.0071 0.0347 19.52
NT central 0.0582 0.2613 40.59

400-Grid-points
CESE 0.0019 0.0061 33.8
NT central 0.0136 0.0762 84

800-Grid-points
CESE 0.00051 0.0015 61.11
NT central 0.0018 0.0135 136.7
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increases and continued till x = 0.5 . The same behavior 
can also be observed in the concentration profile. The CE/
SE scheme shows good results as compared to NT-central 
scheme. Moreover, our suggested numerical scheme cap-
tured and resolved all discontinuities more accurately and 
efficiently. Similar analysis and results were also described 
in [43] and references therein.

4 � Conclusions

A more capable and accurate numerical procedure is 
proposed for a highly nonlinear time-dependent sys-
tem of partial differential equations for repulsive chem-
otaxis which is based on splitting scheme strategy. This 
scheme was introduced by Chang [59] and his team. The 
method is extended for the solution in one space dimen-
sion. This scheme is based on combined treatment of 
both space and time. Moreover, it uses the derivatives of 
conserved variables to reduce numerical diffusion. Fur-
thermore, the central scheme introduced by Nessyahu 
and Tadmor was also implemented for validation and 
comparison. Several benchmark test problems are simu-
lated in one-dimensional space. It was evident that the 
computational outcome of both, the proposed method 
and Nessyahu and Tadmore (NT) central scheme were 
agreeing well with the results presented in already pub-
lished literature. Moreover, both schemes can capture 
the steep and sharp changes in the solution profile 
more accurately and efficiently. However, the proposed 
method has performed splendidly well for such solu-
tions (sharp and steep discontinuities, narrow peaks). It 
is also observed that solution profiles p and q converge 
to 0.25 and 0 faster through CE/SE as analyzed with cen-
tral schemes by Nessyahu and Tadmor. The presented 
method CE/SE produced less numerical errors in results 
and more efficient in contrast with NT central scheme 
on staggered grids.
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