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Abstract
We introduce a novelty in the method of the deep salient wood image quality assessment (DS-WIQA) for no-reference 
image quality assessment (NR-IQA). We exploit a five-layer deep convolutional neural network (DCNN) for the salient wood 
image map. DS-WIQA also employs the n-convex-concave model. The outcomes obviously prove that our DCNN and DS-
WIQA architectures can deliver a superior achievement on Zenodo and Lignoindo datasets, respectively. We compute a 
salient wood image map of each wood image in small wood image patches. Our exploratory outcomes evince that the 
proposed DCNN and DS-WIQA methods are superior to other the advanced methods on Zenodo and Lignoindo datasets, 
respectively. Our proposed DCNN for NR-IQA also obtains a better result compared with the other NR-IQA methods in the 
five distortion types of JP2K, JPEG, white noise Gaussian, blocking artifact, and the fast fading and also in the undistorted 
wood images. Our DCNN outruns the recent most sophisticated methods in terms of SROCC and LCC evaluation, respec-
tively. DS-WIQA outpaces other the advanced methods by 0.38% and 0.22% greater than our proposed DCNN, and 34.84% 
and 30.15% greater than other methods with respect to SROCC and LCC, respectively. In computational complexity of our 
proposed DCNN and DS-WIQA cut down the shift add operation in exponential, logarithmic, and trigonometric functions. 
DS-WIQA shows up to be more significant than our proposed DCNN and the other DCNN methods.
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1 Introduction

Wood species recognition is still a new discovery in the 
computer vision which has a challenging task for the well-
trained experts to study the characteristic on the wood 
surfaces under the macroscopic and microscopic views. 
The wood image quality intensely depends on the wood 
capturing quality. Many objective image quality assess-
ment (IQA) methods propose to codify image quality. If 
we use a full-reference image quality assessment (FR-IQA), 
the observer can better assess the image by considering 
the distorted and undistorted image. We assess the wood 
image quality from no-reference wood image.

In the study of [1], they observed two types of IQA meth-
ods. They use the distorted image which causes Gaussian 
white noise or Gaussian blur and also human visual system 
(HVS) method. We propose the problem solving of that two 
points by combining deep convolutional neural networks 
(DCNNs) as a sophisticated method with saliency map. The 
IQA methods were mentioned in the distortion type. The 
study of [2] offered a NR-IQA method for JPEG2000 com-
pression by associating a couple Gaussian mixture and 
wavelet coefficient. The most recent study observes the 
more distortion type and also the unknown distortion type.

NR-IQA methods can be restricted into natural scene 
statistics (NSS) and the training-based methods. In NSS, 
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the distorted image can be detected in the undistorted 
image as mentioned in [2–6]. In the training-based 
method, we study the features learned from images where 
the classifier is trained. The training-based method can be 
recognized as the conventional machine learning assess-
ment [7–11]. The conventional CNN method extracts the 
image features in recognition and training-based of the 
IQA. CNN technique concerns in the object classification 
[12], age and gender recognition [13], or fashion recogni-
tion [14]. Many CNN outcomes have been established to 
NR-IQA and accomplished the advanced outcomes [7–9] 
and also in the feature derivation [12, 13, 15, 16].

We propose a deeper CNN, which combines with sali-
ent wood image map, namely, deep salient wood image-
based quality assessment (DS-WIQA). DS-WIQA architec-
ture has five convolutional layers in our proposed DCNN, 
which is deeper than AlexNet which has three convolu-
tional layers [17]. Compared with a closely DCNN, AlexNet 
[17] does not fit the deeper training model. DS-WIQA uses 
the convex and concave n-square methods for the sali-
ent wood image map. The saliency map of CNN-based in 
[1] did not analyze HVS into IQA. While in the works of [7, 
8], all of images can be extracted to many image patches. 
In Fig. 3, HVS codifies the wood images quality. Unfortu-
nately, it is difficult to perceive the difference between 
one and the other wood image patches. It causes a low 
quality assessment to all patches within a wood image. To 
introduce HVS, DS-WIQA combines the proposed DCNN 
which has the convex and concave n-square methods for 
the salient wood image map method. The more closer of 
our studies [9, 18] exploit a gradient map as wood’s image 
patch court. The others, [19, 20] calculates saliency map 
for each image and its saliency patch score of each patch.

We experimented with a proposed DCNN algorithm on 
Zenodo wood species [21] and Lignoindo [22] datasets. 
Our experiment employs Spearman’s rank order correla-
tion coefficient (SROCC) and the linear correlation coef-
ficient (LCC) scores, respectively. Our outcome shows that 
our salient wood image maps can improve DCNN in NR-
IQA. To validate the work of our DS-WIQA, we also analyze 
a DS-WIQA model on the Zenodo dataset and spread it 
on the Lignoindo dataset for cross-dataset evaluation. Our 
DS-WIQA obtains the advanced outcomes on Zenodo and 
Lignoindo datasets.

2  Related work

The combining NSS-based NR-IQA method explores to 
capture statistical properties of the undistorted wood 
images. To evaluate the NSS performance, most algo-
rithms formulate the distributions or train a model. In 
the study of [6], the NSS is evaluated on a set of wavelet 

coefficients. They identify the distortion image before 
applying a distortion classifier. The other case, method 
in [2] transforms each image using discrete cosine trans-
form (DCT) and the resulting coefficients are used for 
a generalized Gaussian density model. Method in [4] 
extracts features in the shearlet domain by using a NR-
IQA and neural network method. However, the auto-
encoder used in that method is different blue from 
CNN. Many methods in [12–16] achieve state-of-the-art 
results in unsupervised reduction. Recently, method 
in [3] extracts a quality feature from the wavelet trans-
form domain. Unfortunately, this transformation in 
wavelet domain is highly consuming time. Method in 
[5] proposes the NSS-IQA method, which is applied in 
the spatial domain. This latter method shows that sub-
tracted, contrasted, and normalized coefficients can rep-
resent a statistical properties of distortion in the local 
normalization.

CNN-based NR-IQA methods in [7, 8], including our pro-
posed method, are also based on spatial domain, but the 
difference is that our DCNN learn quality features instead 
of the naturalness wood image. The method in [10] pro-
poses a method that is developing a codebook in image 
patches. The training model [10] is similar to CNN-based 
methods that the learned quality feature is not hand-
crafted. The codebook was combined with object detec-
tion in this method [11].

The saliency map is more advisable for the distorted 
and undistorted treatment [23, 24] in NR-IQA methods. 
Regrettably, it has a drawback of feature learning quality 
appraisal by employing sparse coding. To explore the CNN 
performance, method in [7, 8] proposed a CNN architec-
ture by using the median subtracted contrast normalised 
coefficients (MDSCN) [5]. However, the depth of this CNN 
model is limited in the feature extraction and it is not per-
sistent with HVS. The more closer study of our proposed 
method is analyzed in [9, 25], which associates in a couple 
CNNs and salient gradient map algorithm. A two-layer 
CNN architecture is exploited for feature extraction and 
classification. Notably, the Prewitt method probes the 
edges of each image in [9]. However, the weighing on the 
edges can lose the consideration on the important char-
acteristic of image quality, such as a luminance [26, 27].

Two other closer studies [19, 20], they explore the sali-
ent image patches to appraise the image quality. In [19], 
their saliency-based DCNN (SDCNN) method divides an 
image into more image patches for saliency mapping 
which is considered a threshold value to cut out non-
salient image patches in the weighted length of [0,1].The 
image quality is artificially determined by the weighted 
average in salient image patches. Accordingly, this SDCNN 
imprecises to evaluate image quality score. The other pro-
posed deep learning based and saliency map method [20] 
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measure HDR images quality from salient image patches. 
After all, this method needs a lot of training data.

The proposed method considers DCNN in feature 
extraction. Two or more convolutional layers of small fil-
ter size derive more good enough features [15]. Notwith-
standing, our proposed DCNN model contains five con-
volutional layers. To raise the HVS in NR-IQA, we nominate 
salient wood image maps to evaluate the importance 
of each wood image patch. Nonetheless, the Gaussian 
white noise or Gaussian blurs and HVS methods [1] have 
some drawbacks. They will lower contrast and inconsist-
ently level of detail with human visual perception. We are 
inspired by the method of [18] out of the existing salient 
algorithms of IQA performance.

3  Methods

3.1  DCNN architecture

Multilayer perceptron (MLP) in [7] uses the stacking 
multiple convolution and max-pooling layers, and one-
column CNN, which has only the image patch of the dif-
ferent image input, and three-column CNN which has 
the image patches of left- and right-view image and the 
different image input. The study in [7] also constructs the 
CNN-learned features for stereoscopic images in NR-IQA. 
However, it is very difficult to recognize CNN featuring a 
highly HVS quality perception. The study of [28] shows 
fine-tuning which uses pre-trained CNNs of visual recog-
nition tasks and a feature extractor.

The other studies [12, 13, 15, 16] show better perfor-
mance of CNN architecture, which has more layers in 
feature extraction. Our proposed DCNN architecture is 
expanded from our previous study [25] that we explored 
five convolutional layers with an effective transfer learn-
ing which can well investigate wood image classification 
in NR-IQA. We are inspired by the study of [7]. We separate 
each input of wood’s image patches of the size 227x227. 
To reconstruct a DCNN architecture, we inspect the large 
kernels [15] which are represented as our powerful small 
kernels 7x7. Three overlapping of max pooling units (Pool 
1, Pool 2, and Pool 3) are added to the output in first, sec-
ond and fifth convolutional layer, respectively. We also 
propose the local feed method in the data pre-process-
ing by using local response normalization (LRN). LRN1 and 
LRN2 are computed to the outputs in Pool 1 and Pool 2 
units, respectively. We also configure first, second, third, 
and forth convolutional layers with 100 channels for alle-
viation. The fifth convolutional layer is configured with 25 
channels because it is an interface between convolutional 
and fully connected (FC) layers. We connect FC layers to 
the higher number of channels because FC layers do not 

share them with convolutional layers. FC layers would 
result in a large total number of learnable parameters to 
be trained.

SR-CNN [29] applies activation functions of ReLU [30] 
and other derivatives, such as leaky ReLU (LReLU) [31] and 
parametrized ReLU (PReLU) [32]. SR-CNN avoids a vanish-
ing gradient of positive values. However, ELU [33, 34] has 
fixed the learning characteristics among the other activa-
tion functions [30–32]. ELU also has a smaller computa-
tional time and the mean activators close to zero. The acti-
vation functions [30–32] have negative values, and they 
do not ensure a deactivated noise. In this case, we expand 
the � hyperparameter of the ELU activation function in our 
previous study [25] as shown in Eq. 1.

where � is the hyperparameter of the ELU, which controls 
the negative values of satellite image inputs �i . When x is 
leading more than zero, its achievement like Rectified Lin-
ear Units.The opposite, when x is less or equal than zero, 
the function close to a negative constant value for � = 1 
(Fig. 1).

3.2  DS‑WIQA architecture

In DS-WIQA, we nominated the n-convex and n-concave 
salient wood image maps. The salient wood image map 
of a n-square is convex as shown in Fig. 2 (red color). The 
expansion of convexedly rectangular means that all diag-
onals of each vertex are placed in this n-square, except 
the end points. So, from A1 , we make diagonals of A1Aj  ; 
j = 3, 4,… , n − 1 which are all of this n-square except the 
end points. This means that the n-square is a combination 
of triangles △A1,△Ai ,… ,△Ai+1;i = 2, 3,… , n − 1 . Sup-
pose Ai(xi , yi); i = 2, 3,… , n , which has the area of each 
triangle Li is as follows.

So, we calculated the salient wood image map n-convex L 
from Eq. 2 as follows.

Salient wood image map of a n-square is concave as 
shown in Fig. 2 (blue color). We create it in two types, 
namely n-square concave which has a vertex and no-ver-
tex. All the diagonals of each vertex are the diagonals of 
the end points, which are outside of the n-square, except 
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the vertex A1 . Therefore, this n-square can be formed from 
triangles of △A1,△Ai ,… ,△Ai+1;i = 2, 3,… , n − 1 . We 
need to emphasize that A1 on concave n-square can not 
be extracted from any of these n-square points. This is only 
true if A1 is a n-square corner, so all diagonals of A1 is placed 
again inside or on the concave n-square.

It is incorrect if A1 is replaced by A2 , because there is 
the diagonal A2Aj+1 and A2An−1 from A2 of the end points 
which are outside this concave n-square. Likewise, if A1 is 

replaced by A3 . But, there is the diagonal A3Ak of A3 which 
in addition to being at the end points is also outside this 
concave n-square. Replacing A1 with Am ; m = 4, 5,… , n is 
still incorrect, because it can always be shown that there 
is a diagonal of Am which in addition to being at the end 
points is also outside this concave n-square.

Determining a triangle with a vertex of A1 and a vertex 
diagonally from that vertex besides its end points outside 
the concave n-square means false. This happens because 

Fig. 1  Proposed DCNN Architecture [25]

Fig. 2  Proposed DS-WIQA Architecture
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there is a side of the △Am,△Ap,△Ap+1;1 ≤ p ≠ m ≤ n 
which is located outside this concave n-square, so that it 
has an effect:

where L△Am ,△Ap ,△Ap+1
= thep − trianglesquare;1 ≤ p ≠ m

≤ n;andLn = then − square.
If an n-square is concave n-square which has a vertex so 

that all diagonals from this vertex are located in or at this 
n-square, then the area can be determined by Eq. 2, after 
taking A1(x1, y1) as a vertex’s concave.

If the concave n-square does not have a vertex, so all 
diagonals of this vertex lie within or on this n-square, 
then the concave n-square is divided into n − squarem . So, 
m = 1, 2,… , k part, so that every two n-square parts adja-
cent are only allied on one side. For each n − squarem there 
is a vertex. All diagonals of this vertex is located inside or 
at n − squarem . Thus, the width of each concave n-square 
with m = 1, 2,… , k can be determined from Eq. 3. If the 
width of each n − squarem ; m = 1, 2,… , k is Am , then the 
salient wood image map is

The relationship between nm and n; m = 1, 2,… , k of 
n − squareandn − squarem , where every part is

4  Experiments and results

4.1  Datasets

Zenodo dataset [21] trains and tests our DCNN and also 
DS-WIQA methods. Lignoindo dataset [22] is used for DS-
WIQA cross-dataset evaluation. We train a classifier on five 
types of distortion included in Zenodo dataset. They are 
JP2K (JPEG2000), JPEG, white noise Gaussian (WG), block-
ing artifact (BA) and the fast fading (FF). We assess our 
proposed model from a Lignoindo dataset of those distor-
tion types. Zenodo dataset contains 544 distorted wood 
images from five types of distortion. Zenodo also comes 
with 109 reference wood images. We gather the perceptive 
model for this dataset which uses difference mean opin-
ion score (DMOS) in the length of [0, 99] as mentioned in 
[35–38]. The higher DMOS indicates a lower quality.

(4)
n−1
∑

1≤p≠m≤n

L△Am ,△Ap ,△Ap+1
> Ln;

(5)Ln =

k
∑

m=1

Am

(6)
k
∑

m=1

nm = n + 2(k − 1)

In this work, each wood image of the whole Zenodo 
dataset is assigned for training, validation, and test sets in 
the smaller non-overlapping patches. At the same time, 
Lignoindo dataset is desired for cross-dataset validation in 
the length of [0, 1]. We also redound the predicted Zenodo 
dataset into the similar range with Lignoindo dataset by 
exploiting a nonlinear function.

4.2  Evaluation measurement

We consider our prospective DCNN and DS-WIQA meth-
ods as illustrated in Fig. 3 by calculating LCC and SROCC 
appraisals. LCC computes validation and test sets of the 
predictions and ground truth. Considering that, ground 
truth can represent a SROCC value from the same set 
appraisal. In the distorted wood images, all the wood 
images from five types distortion are extracted into 70% , 
15% , and 15% of training, validation, and testing, respec-
tively. The all of corrected wood images on the Zenodo 
dataset are also allotted in the similar protocol code. On 
the validation set, the highest LCC resolves the best result 
of each training iteration, which is repeated until 10 time 
iterations. We employ the five types of distorted wood 
image on the cross-dataset validation in 10 iterations by 
using the Zenodo and Lignoindo datasets.

To generate the training and testing data, we ana-
lyzed that the five types distortion of wood image is 
determined by using a distortion coefficient value 
within 10−7 . Consistently, to get each wood image with 
a distortion coefficient value, we make a set of number 
[−250,−249,−248, ...,−1, 0] correlating to −250x10−7 in 10 
epochs, and so on. The saliency coefficient value will be 
defined during the testing by our DS-WIQA on the whole 
Lignoindo dataset.

4.3  DCNN experiment

In the training set of DCNN, we divide each wood image 
into small sizes of 7x7 wood image patches as the initial 
wood image in the length of [0.01, 0.9], 10 of training 
epochs, and 32 of the mini-batch size. The learning rate 
cuts down 0.1 each five epochs iterations.

The average of LCC and SROCC in every ten iterations 
testing is demonstrated in Table 1. For the distorted wood 
image, our DCNN outperforms the multilayer perceptron 
(MLP) which uses CNN-based [7] on five types distortion. 
We outperform MLP in SROCC by 18.84% JP2K, 21.29% 
JPEG, and 16.62% WG, 48.44% BA, and 26.06% FF. Our DCNN 
is also superior compared with MLP in LCC by 29.93% JP2K, 
32.43% JPEG, and 29.10% WG, 39.66% BA, and 33.69% FF. The 
undistorted wood image is represented as All in Table 1. All 
wood images from Zenodo dataset are used in the training 
regardless of their distortion types, as shown in Table 1. The 
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Fig. 3  The salient wood image map and the distorted wood image estimation
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same measurements are used in the distorted wood image. 
The higher LCC and SROCC are achieved by our proposed 

DCNN. We outperform MLP by 25.44% SROCC and 32.88% 
LCC, respectively.

Table 1  Proposed DCNN 
performance: SROCC and LCC 
appraisals performance on 
Zenodo dataset

Bold indicates the highest value

JP2K JPEG WG BA FF ALL

SROCC on Zenodo
MLP [7] 0.7862 0.7941 0.8430 0.6713 0.7754 0.7740
Proposed DCNN 0.9343 0.9632 0.9831 0.9965 0.9775 0.9709
LCC on Zenodo
MLP [7] 0.7291 0.7460 0.7640 0.7072 0.7414 0.7375
Proposed DCNN 0.9473 0.9879 0.9863 0.9877 0.9912 0.9801

Table 2  DS-WIQA validation: 
SROCC and LCC on Zenodo 
validation set with the best 
performance coefficient �∗

Bold indicates the highest value

Distortion JP2K JPEG WG BA FF ALL

� 0 0 0.1 0.7 0.1 0.1
SROCC 0.9592 0.9524 0.9672 0.9775 0.9637 0.9456
LCC 0.9245 0.9254 0.9302 0.9754 0.9521 0.9619

Table 3  DS-WIQA testing: 
SROCC and LCC appraisals on 
the Zenodo test set

Bold indicates the highest value

JP2K JPEG WG BA FF ALL

SROCC on Zenodo dataset
GGSM [3] 0.8443 0.8578 0.8763 0.8664 0.8032 0.8496
SESANIA [4] 0.8132 0.8645 0.8755 0.8535 0.7776 0.8369
RSN [5] 0.8733 0.8825 0.8664 0.8732 0.8485 0.8688
BJLQ-BIQA [6] 0.7804 0.7815 0.7821 0.6621 0.7724 0.7557
Opinion Aware [2] 0.8420 0.8411 0.8632 0.8060 0.8414 0.8387
MLP [7] 0.8430 0.8750 0.8850 0.8960 0.8780 0.8754
SCI [9] 0.7465 0.7532 0.7765 0.7676 0.7031 0.7494
SA-IQA [10] 0.8127 0.8121 0.8863 0.8241 0.8642 0.8399
NN-LSTM [11] 0.8211 0.8432 0.8653 0.8243 0.7851 0.8278
JSR [24] 0.7442 0.7587 0.7723 0.7664 0.7076 0.7498
Proposed DCNN 0.9621 0.9775 0.9734 0.9801 0.9886 0.9763
Proposed DS-WIQA 0.9765 0.9753 0.9798 0.9811 0.9874 0.9800
LCC on Zenodo dataset
GGSM [3] 0.8387 0.8411 0.8628 0.8512 0.7934 0.8374
SESANIA [4] 0.8032 0.8587 0.8622 0.8486 0.7642 0.8274
RSN [5] 0.8522 0.8709 0.8564 0.8623 0.8387 0.8561
BJLQ-BIQA [6] 0.7632 0.7745 0.7773 0.6575 0.7653 0.7476
Opinion Aware [2] 0.8108 0.8364 0.8742 0.7943 0.8374 0.8306
MLP [7] 0.8364 0.8664 0.8742 0.8854 0.8678 0.8660
SCI [9] 0.7335 0.7464 0.7697 0.7523 0.6953 0.7394
SA-IQA [10] 0.8012 0.8042 0.8787 0.8175 0.8523 0.8308
NN-LSTM [11] 0.8153 0.8364 0.8586 0.8165 0.7790 0.8212
JSR [24] 0.7367 0.7489 0.7625 0.7587 0.6943 0.7402
Proposed DCNN 0.9653 0.9632 0.9656 0.9755 0.9732 0.9686
Proposed DS-WIQA 0.9688 0.9608 0.9675 0.9778 0.9777 0.9705
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4.4  DS‑WIQA experiment

In the later study, we incorporate the proposed DCNN with 
the salient wood image map of [21]. When DS-WIQA con-
cludes the wood image quality appraisal, the insignificant 
wood image patches can ignored by using a coefficient 

� ∈ {0, 0.01, 0.1, 0.7} . If � = 0 , DS-WIQA is similar with 
DCNN and otherwise, ( � ≥ 0.7 ), DS-WIQA reads on a subset, 
as exposed in Fig. 4.

Table 2 presents SROCC’s and LCC’s learning of the ten 
iterations on Zenodo dataset validation where the distinct 
� values apply to the whole distinct of distorted wood 
images. The saliency map raises achievement on the five 
types distortion of JP2K, JPEG, WG, BA, and FF in SROCC and 
LCC, respectively. Unfortunately, the salient map in SROCC 
is admirable perfomance than LCC. Our proposed DS-WIQA 
also achieves improvement of 7.85% for the fine wood image 
of the Zenodo dataset on SROCC compared with LCC.

Also, the best coefficient �∗ of each distortion type is 
proved by exploring SROCC and LCC of the ten iterations of 
the Zenodo dataset in Table 2. For JP2K and JPEG, the high-
est SROCC and LCC, respectively, is achieved when � = 0 on 
Zenodo validation set. Table 3 reveals that the similar DS-
WIQA’s to DCNN’s performance on the test set occurs in the 
two distortion types of no-salient map.

Table 3 describes the DS-WIQA’s performance on the 
Zenodo dataset of the other methods by using �∗ . Our DS-
WIQA exceeds other methods of image quality appraisal 

Fig. 4  Evaluation of the trained model

Table 4  DS-WIQA evaluation: 
SROCC and LCC appraisals on 
the Lignoindo dataset and 
trained on the Zenodo dataset

Bold indicates the highest value

JP2K JPEG WG BA FF ALL

SROCC on Lignoindo dataset
GGSM [3] 0.6777 0.6788 0.6794 0.5594 0.6697 0.6530
SESANIA [4] 0.7393 0.7384 0.7605 0.7033 0.7387 0.7360
RSN [5] 0.7706 0.7798 0.7637 0.7705 0.7458 0.7661
BJLQ-BIQA [6] 0.7100 0.7094 0.7836 0.7214 0.7615 0.7372
Opinion Aware [2] 0.7184 0.7405 0.7626 0.7216 0.6824 0.7251
MLP [7] 0.7105 0.7618 0.7728 0.7508 0.6749 0.7342
SCI [9] 0.7416 0.7551 0.7736 0.7637 0.7005 0.7469
SA-IQA [10] 0.6438 0.6505 0.6738 0.6649 0.6004 0.6467
NN-LSTM [11] 0.6415 0.6560 0.6696 0.6637 0.6049 0.6471
JSR [24] 0.7403 0.7723 0.7823 0.7933 0.7753 0.7727
Proposed DCNN  0.9482 0.9636 0.9595 0.9662 0.9747 0.9624
Proposed DS-WIQA  0.9626 0.9614 0.9659 0.9672 0.9735 0.9661
LCC on Lignoindo dataset
GGSM [3] 0.6256 0.6369 0.6397 0.5199 0.6277 0.6100
SESANIA [4] 0.6732 0.6988 0.7366 0.6567 0.6998 0.6930
RSN [5] 0.7146 0.7333 0.7188 0.7247 0.7011 0.7185
BJLQ-BIQA [6] 0.6636 0.6666 0.7411 0.6799 0.7147 0.6932
Opinion Aware [2] 0.6777 0.6988 0.7210 0.6789 0.6414 0.6836
MLP [7] 0.6656 0.7211 0.7246 0.7110 0.6266 0.6898
SCI [9] 0.7011 0.7035 0.7252 0.7136 0.6558 0.6998
SA-IQA [10] 0.5959 0.6088 0.6321 0.6147 0.5577 0.6018
NN-LSTM [11] 0.5991 0.6113 0.6249 0.6211 0.5567 0.6026
JSR [24] 0.6988 0.7288 0.7366 0.7478 0.7302 0.7284
Proposed DCNN 0.8695 0.8674 0.8698 0.8797 0.8774 0.8728
Proposed DS-WIQA 0.8730 0.8650 0.8717 0.8820 0.8819 0.8747
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Table 5  DS-WIQA: pooling

Bold indicates the highest value

Pooling Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

SROCC
Overlapping max pooling 0.7560 0.8770 0.8960 0.8590 0.8750
Overlapping average pooling 0.6980 0.8300 0.8380 0.8020 0.8410
Non-overlapping Max pooling 0.6580 0.8410 0.7930 0.8580 0.8440
No-pooling 0.6530 0.8010 0.8000 0.7800 0.7960
Pooling scheme of SIQA-DCNN 0.7100 0.7840 0.8090 0.8060 0.8320
LCC
Overlapping max pooling 0.8030 0.8930 0.9110 0.8790 0.8880
Overlapping average pooling 0.7530 0.8480 0.8660 0.8270 0.8570
Non-overlapping Max pooling 0.7060 0.8530 0.8370 0.8770 0.8590
No-pooling 0.7120 0.8290 0.8030 0.8310 0.8240
Pooling scheme of SIQA-DCNN 0.7460 0.8050 0.8220 0.8400 0.8460

Table 6  Computational 
complexity in functions times 
( � second) for shift∼add 
operation of [2–7, 9, 10]

Method Function JP2K JPEG WG BA FF

GGSM [3] exp on [0;1.5] 33 32 34 36 37
ln on [1;2] 31 33 32 33 37
(

sin

cos t

)

 on t = [0;
�

4
]

35 33 31 32 35

arctan on [0;1] 36 34 33 34 31
(

sinh t

cosh t

)

 on t = [0;1]

31 34 34 32 35

arg tanh on t = [0;0.7] 32 30 34 33 32
SESANIA [4] exp on [0;1.5] 33 28 31 31 33

ln on [1;2] 30 28 31 34 35
(

sin

cos t

)

 on t = [0;
�

4
]

32 34 30 28 31

arctan on [0;1] 31 34 29 32 29
(

sinh t

cosh t

)

 on t = [0;1]

29 27 32 30 33

arg tanh on t = [0;0.7] 31 31 34 32 29
RSN [5] exp on [0;1.5] 32 33 29 30 32

ln on [1;2] 29 28 30 32 32
(

sin

cos t

)

 on t = [0;
�

4
]

30 32 31 30 28

arctan on [0;1] 32 30 29 29 32
(

sinh t

cosh t

)

 on t = [0;1]

30 29 32 34 31

arg tanh on t = [0;0.7] 30 30 32 31 29
BJLQ-BIQA [6] exp on [0;1.5] 32 29 29 31 30

ln on [1;2] 29 30 32 29 31
(

sin

cos t

)

 on t = [0;
�

4
]

29 29 28 31 28

arctan on [0;1] 29 31 30 32 28
(

sinh t

cosh t

)

 on t = [0;1]

29 30 31 31 33

arg tanh on t = [0;0.7] 32 32 29 29 28
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on the five types distortion. On the all distortion types, our 
DCNN and DS-WIQA achieve 0.9763 and 0.9800, respectively, 
on SROCC and 0.9686 and 0.9705, respectively, at LCC, which 
outrun the other advanced no-referrence image quality 
appraisal methods [2–7, 9–11]. Our DS-WIQA also achieved 
the highest result at all.

In the DS-WIQA cross-dataset test, we train on the 
Zenodo dataset and test on the Lignoindo dataset for the 
five types distortion in our cross-dataset experiment. The 
output of our DS-WIQA is the length of [0, 99] in the DMOS. 
We follow the settings in [8], the Lignoindo dataset is 
extracted to two subsets. They are 90% of the data training 
and 10% of data testing. We rerun these data training and 
testing about 10 times to get a cross-dataset performance 

on the Lignoindo dataset. The best performance of DS-
WIQA coefficient is � = 0.1 as used on the fine wood image 
of blocking artifact in Table 2. Our DS-WIQA has a better 
state-of-the-art compared the other methods [2–7, 9–11, 
24] as we can see in the Table 4.

Our study proves that the overlapping max pooling 
units achieve the best among other types of pooling units 
for SROCC and LCC appraisals, respectively. The overlap-
ping max pooling outrun 5.6% and 4.2% outrun than non-
overlapping max pooling on SROCC and LCC appraisals, 
respectively. From this case, we stop the overlapping max 
pooling units until 3rd and 4th Layers. We analyze that the 
overlapping max pooling tends to outrun in 5th layer, as 
demonstrated in Table 5.

Table 6  (continued) Method Function JP2K JPEG WG BA FF

Opinion Aware [2] exp on [0;1.5] 29 28 32 30 28
ln on [1;2] 32 31 30 29 30
(

sin

cos t

)

 on t = [0;
�

4
]

31 32 29 30 29

arctan on [0;1] 31 31 29 29 30
(

sinh t

cosh t

)

 on t = [0;1]

30 29 32 29 28

arg tanh on t = [0;0.7] 30 32 32 29 30
MLP [7] exp on [0;1.5] 29 30 32 32 30

ln on [1;2] 30 29 29 30 31
(

sin

cos t

)

 on t = [0;
�

4
]

33 29 30 32 29

arctan on [0;1] 32 32 30 29 31
(

sinh t

cosh t

)

 on t = [0;1]

32 29 31 28 30

arg tanh on t = [0;0.7] 32 30 29 31 30

SCI [9] exp on [0;1.5] 35 35 34 36 38

ln on [1;2] 32 31 34 30 35
(

sin

cos t

)

 on t = [0;
�

4
]

37 34 32 31 33

arctan on [0;1] 34 32 30 35 32
(

sinh t

cosh t

)

 on t = [0;1]

32 32 35 31 34

arg tanh on t = [0;0.7] 32 34 31 35 31
SA-IQA [10] exp on [0;1.5] 31 29 30 32 34

ln on [1;2] 29 28 32 35 36
(

sin

cos t

)

 on t = [0;
�

4
]

33 32 29 28 30

arctan on [0;1] 30 32 28 27 34
(

sinh t

cosh t

)

 on t = [0;1]

28 29 31 29 32

arg tanh on t = [0;0.7] 29 29 30 31 28
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Overall, DS-WIQA surpasses the other advanced meth-
ods [2–7, 9–11, 24]. DS-WIQA surpasses 0.38% our DCNN 
and 34.84% other methods [2–7, 9–11, 24], respectively, 
on SROCC. Our DCNN also outruns 34.33% other methods 
[2–7, 9–11, 24] on SROCC. DS-WIQA also exceeds 0.22% our 
DCNN and 30.15% other methods [2–7, 9–11, 24], respec-
tively, on LCC. At the same time, our proposed DCNN 
exceeds 29.86% other methods [2–7, 9–11, 24] on LCC.

In computational complexity, our proposed methods 
have better performance in operational function times 
for shift  add operation compared to other methods 
[2–7, 9–11, 24] as described in Tables 6 and  7. We have 
an amount of time ( � second), which is performed in the 
number of elementary operations. Our DCNN and DS-
WIQA reduced the terms of shift add operation. DS-WIQA 

emerged to be first-rate to our DCNN and the other 
advanced methods [2–7, 9–11, 24].

5  Conclusion

We propose a new DCNN of NR-IQA which has a better 
result compared with the other NR-IQA methods [2–7, 
9–11, 24]. In the distorted wood image, our DCNN out-
performs the recent sophisticated MLP [7] in five types dis-
tortion which has 18.84% JP2K, 21.29% JPEG, and 16.62% 
WG, 48.44% BA, and 26.06% FF in SROCC and 29.93% JP2K, 
32.43% JPEG, and 29.10% WG, 39.66% BA, and 33.69% FF in 
LCC. In the undistorted wood image, our poposed DCNN 

Table 7  Computational 
complexity in functions 
times ( � second) for shift∼
add operation of [11, 24] and 
proposed methods

Method Function JP2K JPEG WG BA FF

NN-LSTM [11] exp on [0;1.5] 27 27 26 29 28
ln on [1;2] 27 26 25 28 30
(

sin

cos t

)

 on t = [0;
�

4
]

29 30 31 28 31

arctan on [0;1] 30 29 28 25 26
(

sinh t

cosh t

)

 on t = [0;1]

24 25 28 23 29

arg tanh on t = [0;0.7] 25 26 29 25 27
JSR [24] exp on [0;1.5] 26 23 24 25 27

ln on [1;2] 25 27 22 26 23
(

sin

cos t

)

 on t = [0;
�

4
]

26 21 24 25 23

arctan on [0;1] 23 22 25 27 25
(

sinh t

cosh t

)

 on t = [0;1]

25 23 26 24 29

arg tanh on t = [0;0.7] 22 24 21 24 25
Proposed DCNN  exp on [0;1.5] 20 19 18 20 22

ln on [1;2] 21 21 21 19 23
(

sin

cos t

)

 on t = [0;
�

4
]

24 23 19 25 23

arctan on [0;1] 20 20 18 19 17
(

sinh t

cosh t

)

 on t = [0;1]

16 18 17 20 19

arg tanh on t = [0;0.7] 20 19 17 18 19
Proposed DS-WIQA  exp on [0;1.5] 17 16 14 12 15

ln on [1;2] 15 13 10 17 16
(

sin

cos t

)

 on t = [0;
�

4
]

14 12 15 16 14

arctan on [0;1] 13 15 12 16 14
(

sinh t

cosh t

)

 on t = [0;1]

15 14 12 15 14

arg tanh on t = [0;0.7] 16 13 12 14 15
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is superior to MLP [7] by 25.44% SROCC and 32.88% LCC, 
respectively.

Our DS-WIQA exceeds other state-of-the-art methods 
[2–7, 9–11, 24]. DS-WIQA obtains 0.38% and 0.22% higher 
than our DCNN, and 34.84% and 30.15% higher than other 
methods [2–7, 9–11, 24] on SROCC and LCC, respectively. 
Experimental results show that the computational com-
plexity of our DCNN and DS-WIQA reduce shift add opera-
tion in exponential, logarithmic, and trigonometric func-
tions. DS-WIQA raises to be more noteworthy than our 
DCNN and the other methods [2–7, 9–11, 24].
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