Research Article

Superalkali behavior of ammonium (NH_4^+) and hydronium (OH_3^+) cations: a computational analysis

Ambrish Kumar Srivastava¹ · Neeraj Misra² · S. N. Tiwari¹

Received: 20 October 2019 / Accepted: 21 January 2020 / Published online: 31 January 2020 © Springer Nature Switzerland AG 2020

Abstract

Superalkalis are unusual species having ionization energy (IE) lower than that of alkali atom. The examples of typical superalkali cations include FLi_2^+ , OLi_3^+ , NLi_4^+ , etc. Ammonium (NH_4^+) and hydronium (OH_3^+) cations form a variety of inorganic as well as organic compounds. Structurally, NH_4 and OH_3 appear a close analog of NLi_4 and OLi_3 , respectively. However, there is no study on the superalkali nature of OH_3 and NH_4 to the best of our knowledge and belief. This work highlights whether NH_4^+ and OH_3^+ are superalkali cations, like NLi_4^+ and OLi_3^+ for the first time. Our ab initio calculations suggest that NH_4 possesses lower IE than Li atom. However, the IE of OH_3 is found to be comparable to that of Li. Furthermore, NH_4 interacts with a superhalogen forming a supersalt and reduces CO_2 into CO_2^- . These two characteristics of NH_4 resemble to those of NLi_4 . These findings suffice to establish NH_4^+ as a superalkali cation. This may offer further opportunities to play with well-known NH_4^+ on a different ground.

Graphic abstract

Keywords Ammonium \cdot Superalkali \cdot Ammonium supersalt \cdot CO₂-reduction \cdot Theoretical calculations

Ambrish Kumar Srivastava, aks.ddugu@gmail.com; S. N. Tiwari, sntiwari123@rediffmail.com | ¹Department of Physics, D.D.U. Gorakhpur University, Gorakhpur 273009, India. ²Department of Physics, University of Lucknow, Lucknow 226007, India.

1 Introduction

Ammonium ion (NH_4^+) is one of the most popular radicals, which is equally important in both inorganic as well as organic chemistry. It is also an important source of nitrogen for many plant species, particularly those growing on hypoxic soils. NH_4^+ forms a variety of salts, which are soluble in water. In some of these salts, ammonium is the reducing agent. Likewise, hydronium (OH_3^+) is an aqueous cation formed by protonation of water. It is an abundant molecular ion in the interstellar medium [1–3]. OH₃⁺ also forms salts with many strong acids, which are typically known as acid monohydrates. OH₃ and NH₄ appear non-metallic analogues of typical superalkalis OLi₃ and NLi₄ [4]. These superalkalis belong to the general formula XM_{k+1} , where k is valence of electronegative atom X and M is alkali metal atom. The IE of these species has been theoretically analyzed by Gutsev and Boldyrev [4] and found to be lower than those of alkali atoms, hence the name 'superalkalis'. The superalkali nature of FLi₂, OLi₃, etc. was experimentally confirmed by mass spectrometry and photoelectron spectroscopy [5, 6].

Superalkalis form some unusual compounds, known as supersalts with interesting properties [7, 8]. Superalkalis are also employed in the design of superbases [9, 10] and alkalides [11, 12]. It has been reported that the superalkalis are capable in the reduction of CO_2 [13-15] and NO_x [16]. The unusual structures and interesting applications lead to the exploration of a variety of superalkalis [17-23]. Our recent study [24] demonstrated that BH₆⁺ possesses superalkali behaviour such that the its vertical electron affinity is comparable to that of BLi₆⁺ superalkali cation. In the continuation, herein we compare the structure and properties of OH₃ and NH₄ with OLi_3 and NLi_{47} respectively in their neutral as well as cationic forms. We aim to investigate that whether OH_3^+ and NH_4^+ can be regarded as superalkali cations. Nevertheless, this work also attempts to explain metallic properties of ammonium under certain conditions.

2 Materials and methodology

All calculations in this work are performed using ω B97xD density functional [25] with correlation consistent augcc-pVTZ basis set in Gaussian 09 program [26]. This functional incorporates dispersion corrected term, which is very appropriate for the system with long-range interactions. For NH₄ and NLi₄ (neutral and cations), additional calculations are performed at MP2/aug-cc-pVTZ and (single-point) CCSD(T)// ω B97xD/aug-cc-pVTZ levels. The geometry optimization is carried out without any symmetry constraints and followed by vibrational frequency calculations. The vertical electron affinity (EA_v) of cations is obtained by the difference of total energies of optimized cations and corresponding neutral at cationic structure whereas adiabatic ionization energy (IE_a) of neutral structures are obtained by the difference of total energies of neutral and cations at their optimized structures. For BF₄ and CO₂ complexes of NLi₄ and NH₄, we have considered only the lowest energy structures. The atomic charges are computed by natural bonding orbital (NBO) based population analysis as implemented in Gaussian 09.

3 Results and discussion

We first discuss the structure of OH_3^+ , NH_4^+ , OLi_3^+ and NLi_4^+ as displayed in Fig. 1. OLi_3^+ is trigonal planar with D_{3h} symmetry, unlike OH_3^+ , which is not planar with C_{3v} symmetry. On the contrary, NH_4^+ and NLi_4^+ structures assume tetrahedral (T_d) point group of symmetry. The structural parameters of OH_3^+ , NH_4^+ , OLi_3^+ and NLi_4^+ along with those of their neutral forms obtained at ω B97xD/ aug-cc-pVTZ and MP2/aug-cc-pVTZ levels are listed in Table 1. One can note that our ωB97xD/aug-cc-pVTZ computed bond-lengths of OH₃⁺ and NH₄⁺ are close to those obtained by high-level ab initio MP2/aug-cc-pVQZ method [27]. Therefore, we have adopted ωB97xD/aug-ccpVTZ level for further calculations. The bond angle is calculated 109.5° in $\text{NH}_4^{\ +}$ and $\text{NLi}_4^{\ +}$ at both ωB97xD and MP2 methods. However, the bond angle of OH_3^+ , smaller than that of OLi_3^+ , is only slightly different at different methods. The bond lengths of OH_3^+ and NH_4^+ are smaller than those of OH₃ and NH₄, respectively. On the contrary, the bond lengths of OLi_3^+ and NLi_4^+ are larger than those of their

Fig. 1 The equilibrium structures of ${\rm OH_3^+},~{\rm OLi_3^+},~{\rm NH_4^+}$ and ${\rm NLi_4^+}.$ The structural parameters are listed in Table 1

SN Applied Sciences A Springer Nature journal

System	Method	Bond length (Å)		Bond angle (°)	EAv or IEa (eV)	
		This work	Previous work		This work	Previous work
OH ₃ ⁺	ωB97xD/aug-cc-pVTZ	0.975	0.977 ^a	112.7	5.17	_
	MP2/aug-cc-pVTZ	0.979		111.5	5.24	
	CCSD(T)//ωB97xD/aug-cc-pVTZ				5.25	
OH ₃	ωB97xD/aug-cc-pVTZ	1.018	1.018 ^a	108.0	5.28	5.27 ^b
	MP2/aug-cc-pVTZ	1.022		106.2	5.34	
	CCSD(T)//ωB97xD/aug-cc-pVTZ				5.38	
OLi ₃ ⁺	ωB97xD/aug-cc-pVTZ	1.690	-	120.0	3.40	_
	MP2/aug-cc-pVTZ	1.716		120.0	3.48	
	CCSD(T)//ωB97xD/aug-cc-pVTZ				3.57	
OLi ₃	ωB97xD/aug-cc-pVTZ	1.678	-	119.9	3.48	-
	MP2/aug-cc-pVTZ	1.702		119.9	3.49	
	CCSD(T)//ωB97xD/aug-cc-pVTZ				3.54	
${\rm NH_4}^+$	ωB97xD/aug-cc-pVTZ	1.021	1.020 ^a	109.5	4.36	-
	MP2/aug-cc-pVTZ	1.022		109.5	4.45	
	CCSD(T)//ωB97xD/aug-cc-pVTZ				4.50	
NH ₄	ωB97xD/aug-cc-pVTZ	1.040	1.037 ^a	109.5	4.38	4.62 ^c
	MP2/aug-cc-pVTZ	1.039		109.5	4.47	
	CCSD(T)//ωB97xD/aug-cc-pVTZ				4.53	
NLi4 ⁺	ωB97xD/aug-cc-pVTZ	1.775	-	109.5	3.36	-
	MP2/aug-cc-pVTZ	1.821		109.5	3.09	
	CCSD(T)//ωB97xD/aug-cc-pVTZ				3.53	
NLi ₄	ωB97xD/aug-cc-pVTZ	1.764	-	109.5	3.37	-
	MP2/aug-cc-pVTZ	1.753		109.5	3.21	
	CCSD(T)//ωB97xD/aug-cc-pVTZ				4.06	

Table 1 Calculated structural parameters, adiabatic ionization energy (IE_a) and vertical electron affinity (EA_v) of systems considered using different computational schemes

^aCalculated value at MP2/aug-cc-pVQZ level from Ref. [27]

^bReported value in Ref. [28]

^cExperimental value from Ref. [29]

neutral counterparts. In Fig. 2, we have plotted the highest occupied molecular orbital (HOMO) surfaces of OH_3^+ , OLi_3^+ , NH_4^+ and NLi_4^+ . One can note that the HOMOs of OLi_3^+ and NLi_4^+ are mainly contributed by central O and N atoms, excluding Li atoms. This is in contrast to OH_3^+ and NH_4^+ in which the HOMOs are composed of O, N atoms and significantly contributed by H atoms.

We have calculated adiabatic IE (IE_a) of NH₄ and NLi₄ as well as vertical EA (EA_v) of their cations using single-point energies at CCSD(T) method for ω B97xD/aug-cc-pVTZ optimized structures. Note that our ω B97xD/aug-cc-pVTZ computed IE_a of OH₃ is very close to previous report of Talbi and Saxon [28]. Furthermore, CCSD(T)// ω B97xD/ aug-cc-pVTZ computed IE_a of NH₄ is in good agreement with the experimental IE of NH₄ [29] as compared to those calculated at ω B97xD/aug-cc-pVTZ and MP2/aug-cc-pVTZ levels (see, Table 1). Evidently, the IE_a of OLi₃ and NLi₄ as well as EA_v of OLi₃⁺ and NLi₄⁺, both are lower than the IE of alkali atom, for instance Na with 5.14 eV [30]. On the contrary, IE_a of OH_3 and EA_v of OH_3^+ , both are larger than the IE of Na. More interestingly, the EA_v of NH_4^+ and IE_a of NH_4 , although larger than the corresponding values of NLi_4^+ and NLi_4 , are also smaller than the IE of Na atom. Therefore, NH_4^+ should also be regarded as a superalkali cation. In order to verify whether NH_4^+ is indeed a superalkali cation, we have considered two more characteristics. First, NH_4 should form a supersalt by interaction with superhalogen, like NLi_4 and other superalkalis. Next, NH_4 should be capable to reduce CO_2 into CO_2^- , like NLi_4 and other superalkalis.

It is reported [8] that the superalkalis such as FLi₂, OLi₃, NLi₄ interact with BF₄ superhalogen to form the supersalts. These supersalts are different from traditional salts such as alkali halides due to their preferred dissociation into ionic fragments. First, we study the interaction of NLi₄ superalkali with BF₄ superhalogen, which forms the NLi₄-BF₄ complex as shown in Fig. 3a. The dissociation energies of NLi₄-BF₄ complex against neutral (NLi₄ + BF₄) fragments

Fig. 2 The highest occupied molecular orbital (HOMO) surfaces of OH_3^+ , OLi_3^+ , NH_4^+ and NLi_4^+ with an isovalue of 0.02 a.u.

as well as ionic (NLi₄⁺ + BF₄⁻) fragments are calculated to be 9.21 eV and 5.11 eV, respectively. Clearly, NLi₄-BF₄ complex prefers to dissociate into NLi₄⁺ + BF₄⁻ fragments and therefore, it is a supersalt in which -0.85*e* charge is transferred from NLi₄ to BF₄. Similarly, we have also studied the interaction of NH₄ with BF₄ forming the NH₄-BF₄ complex, also displayed in Fig. 3a. In this complex, a chargetransfer of 0.92*e* takes place from NH₄ to BF₄. The dissociation energy of NH₄-BF₄ against NH₄⁺ + BF₄⁻ fragments (4.94 eV) is smaller than that against NH₄ + BF₄ fragments (8.02 eV). Therefore, like NLi₄, NH₄ also forms a supersalt by interacting with a superhalogen. However, the interaction takes place via three Li-F bonds in NLi₄-BF₄ supersalt but two H-F bonds in NH₄-BF₄ as depicted in Fig. 3.

We have already noticed [15] that superalkalis such as FLi₂⁺, OLi₃⁺, NLi₄⁺, are capable to reduce CO₂ into CO_2^- anion. CO_2 is a linear molecule, which is bent by single-electron reduction, i.e., in CO2⁻. We have studied the interaction of NLi₄ with CO₂, which forms an NLi₄-CO₂ complex as displayed in Fig. 3 (b). The binding energy of NLi₄-CO₂ against dissociation to NLi₄+CO₂ and $NLi_4^+ + CO_2^-$ is 1.33 eV and 5.31 eV, respectively. One can note that the structure of CO₂ in NLi₄-CO₂ complex is bent by 132.8° due to charge gained of -0.82e by CO₂. Similarly, the interaction of NH₄ with BF₄ leads to NH₄-CO₂ complex, also displayed in Fig. 3 (b). This complex is also stable with the binding energy of 0.83 eV for $NH_4 + CO_2$ fragments and 5.83 eV for $NH_4^+ + CO_2^-$. The charge contained by CO_2 moiety in the NH₄-CO₂ complex is -0.59e such that the bond angle of CO_2 is reduced to 130.8°. Therefore, like NLi₄, NH₄ can activate the CO₂ molecule. Albeit, the interaction in NLi₄-CO₂ takes place via two Li–O bonds but single H–O bond in NH_4 -CO₂.

4 Conclusions and perspectives

For the first time, we attempted to explore whether NH_4^+ and OH_3^+ behave as superalkali cations. We have employed various methods such as $\omega B97xD$, MP2 and single-point CCSD(T) along with aug-cc-pVTZ basis set. Our findings clearly suggest that the behaviour of NH_4 resembles that of a typical superalkali. Therefore, NH_4^+ might behave as superalkali cation. We strongly believe that NH_4^+ can be

SN Applied Sciences A Springer Nature journal exploited further to design novel compounds with unusual properties, analogous to other superalkali cations. It should also be noticed that the radius of the NH_4^+ ion in a crystal (1.43 Å) is very close to the corresponding radii of potassium (1.33 Å) and rubidium (1.44 Å). Like alkalis and other superalkalis, therefore, this should also possess metallic properties. Our literature survey [31, 32] revealed that the metallic NH_4^+ indeed exists at least at high pressures. Thus, this work may also explain the metallic properties of NH_4^+ .

Acknowledgements This research was supported by University Grants Commission (UGC), New Delhi, India for funding to AKS through Start Up project [Grant No. 30–466/2019(BSR)].

Compliance with ethical standards

Conflict of interest The authors declare no conflict of interest in the publication of this paper.

References

- 1. Hollis JM, Churchwell EB, Herbst E, De Lucia FC (1986) An interstellar line coincident with the P(2, I)transition of hydronium (H_3O^+) . Nature 322:524–526
- Wootten A, Turner BE, Mangum JG, Bogey M, Boulanger F, Combes F, Encrenaz PJ, Gerin M (1991) Detection of interstellar H3O(+)—a confirming line. Astrophys J 380:79–83
- 3. Phillips TG, van Dishoeck EF, Keene JB (1992) Interstellar H_3O^+ and its relation to the O_2 and H_2O abundances. Astrophys J 399:533–550
- Gutsev GL, Boldyrev AI (1982) DVM Xα calculations on the electronic structure of "superalkali" cations. Chem Phys Lett 92:262–266
- Dustebek J, Veličković S, Veljković F, Veljković M (2012) Production of heterogeneous superalkali clusters LinF (n = 2–6) by Knudsen cell Mass Spectrometry. Digest J Nanomater Biostruct 7:1365–1372
- Wang D, Graham JD, Buytendyk AM, Bowen KH (2011) Photoelectron spectroscopy of the molecular anions, Li₃O⁻ and Na₃O⁻. J Chem Phys 135:164308
- 7. Li Y, Wu D, Li ZR (2008) Compounds of superatom clusters: preferred structures and significant nonlinear optical properties of the BLi_{6-X} (X = F, LiF₂, BeF₃, BF₄) motifs. Inorg Chem 47:9773–9778
- Yang H, Li Y, Wu D, Li ZR (2012) Structural properties and nonlinear optical responses of superatom compounds BF4-M (M = Li, FLi₂, OLi₃, NLi₄). Int J Quantum Chem 112:770–778
- 9. Srivastava AK, Misra N (2015) Superalkali-hydroxides as strong bases and superbases. New J Chem 39:6787–6790
- Srivastava AK, Misra N (2016) OLi₃O⁻ anion: designing the strongest base to date using OLi₃ superalkali. Chem Phys Lett 648:152–155
- 11. Chen W, Li ZR, Wu D, Li Y, Sun CC (2005) Inverse sodium hydride: density functional theory study of the large nonlinear optical properties. J Phys Chem A 109:2920–2924

- Srivastava AK, Misra N (2017) Competition between alkalide characteristics and nonlinear optical properties in OLi₃-M-Li₃O (M = Li, Na, and K) complexes. Int J Quantum Chem 117:208–212
- 13. Zhao T, Wang Q, Jena P (2017) Rational design of super-alkalis and their role in CO2 activation. Nanoscale 9:4891–4897
- 14. Park H, Meloni G (2017) Reduction of carbon dioxide with a superalkali. Dalton Trans 6:11942–11949
- 15. Srivastava AK (2018) Single- and double-electron reductions of CO2 by using superalkalis: an ab initio study. Int J Quantum Chem 118:e25598
- Srivastava AK (2018) Reduction of nitrogen oxides (NO_x) by superalkalis. Chem Phys Lett 695:205–210
- Rehm E, Boldyrev AI, Schleyer PV (1992) Ab initio study of superalkalis. First ionization potentials and thermodynamic stability. Inorg Chem 31:4834–4842
- Tong J, Li Y, Wu D, Li ZR, Huang XR (2011) Ab initio investigation on a new class of binuclear superalkali cations M₂Li_{2k+1} + (F₂Li₃⁺, O₂Li₅⁺, N₂Li₇⁺, and C₂Li₉⁺). J Phys Chem A 115:2041–2046
- Tong J, Li Y, Wu D, Wu ZJ (2012) Theoretical study on polynuclear superalkali cations with various functional groups as the central core. Inorg Chem 51:6081–6088
- Tong J, Wu Z, Li Y, Wu D (2013) Prediction and characterization of novel polynuclear superalkali cations. Dalton Trans 42:577–584
- 21. Hou N, Li Y, Wu D, Li ZR (2013) Do nonmetallic superalkali cations exist? Chem Phys Lett 575:32–35
- 22. Srivastava AK, Tiwari SN, Misra N (2018) Alkalized borazine: a simple recipe to design closed-shell superalkalis. Int J Quantum Chem 118:e25507
- 23. Srivastava AK (2018) Organic superalkalis with closed-shell structure and aromaticity. Mol Phys 116:1642–1649
- Srivastava AK (2019) BHx+ (x = 1-6) clusters: In the quest for superalkali cation with B-core and H-ligands. Chem Phys 524:118-123
- Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620
- 26. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision C02. Gaussian Inc, Wallingford, CT
- 27. Chen F, Davidson ER (2001) Electronic, structural, and hyperfine interaction investigations on Rydberg molecules: NH_4 , OH_3 , and FH_2 . J Phys Chem A 105:10915–10921
- Talbi D, Saxon RP (1989) Theoretical study of low-lying states of H₃O. J Chem Phys 91:2376–2387
- Fuke K, Takasu R, Misaizu F (1994) Photoionization of hypervalent molecular clusters: electronic structure and stability of NH₄(NH₃)_n. Chem Phys Lett 229:597–603
- 30. Sansonetti JE, Martin WC (2005) Handbook of basic atomic spectroscopic data. J Phys Chem Ref Data 34:1559–2259
- 31. Ramsey WH (1967) On the constitutions of uranus and neptune. Planet Space Sci 15:1609–1623
- 32. Stevenson DJ (1975) Does metallic ammonium exist? Nature 258:222–223

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.