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Abstract
Visual simultaneous localization and mapping (SLAM) has attracted high attention over the past few years. In this paper, 
a comprehensive survey of the state-of-the-art feature-based visual SLAM approaches is presented. The reviewed 
approaches are classified based on the visual features observed in the environment. Visual features can be seen at dif-
ferent levels; low-level features like points and edges, middle-level features like planes and blobs, and high-level features 
like semantically labeled objects. One of the most critical research gaps regarding visual SLAM approaches concluded 
from this study is the lack of generality. Some approaches exhibit a very high level of maturity, in terms of accuracy and 
efficiency. Yet, they are tailored to very specific environments, like feature-rich and static environments. When operating 
in different environments, such approaches experience severe degradation in performance. In addition, due to software 
and hardware limitations, guaranteeing a robust visual SLAM approach is extremely challenging. Although semantics 
have been heavily exploited in visual SLAM, understanding of the scene by incorporating relationships between features 
is not yet fully explored. A detailed discussion of such research challenges is provided throughout the paper.
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1  Introduction

Following several decades of exhaustive research and 
intensive investigation, Simultaneous Localization and 
Mapping (SLAM) continues to dominate a magnificent 
share of the research conducted in the robotics commu-
nity. SLAM is the problem of concurrently estimating the 
position of a robotic vehicle navigating in a previously 
unexplored environment while progressively construct-
ing a map of it. The estimation is done based on meas-
urements collected by means of sensors mounted on the 
vehicle including: vision, proximity, light, position, and 
inertial sensors, to name a few. SLAM systems employ 
these measurements in a multitude of various methods 
to localize the robot and map its surroundings. However, 
the building blocks of any SLAM system include a set of 

common components such as: map/trajectory initializa-
tion; data association; and loop closure. Different estima-
tion techniques can then be used to estimate the robot’s 
trajectory and generate a map of the environment.

The implementation details of every SLAM approach 
relies on the employed sensor(s), and hence on the data 
collected from the environment. In this paper, we thor-
oughly review the most recent visual SLAM systems with 
focus on the feature-based approaches, where conven-
tional vision sensors such as monocular, depth, or stereo 
cameras are employed to observe the environment. From 
here on, visual SLAM systems are referred to as monocu-
lar SLAM, RGB-D SLAM, or stereo SLAM if they employ a 
monocular camera, an RGB-D camera, or a stereo camera, 
respectively.
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The non-conventional event-based vision sensor, such 
as the asynchronous time based image sensor (ATIS) [98] 
and the dynamic and active pixel vision sensor (DAVIS) 
[11], can also be used to solve the SLAM problem as pro-
posed in [64, 131, 132]. Its operation principle is biologi-
cally inspired, where instead of capturing frames at a set 
rate, it asynchronously captures events, which are times-
tamped changes in brightness of independent pixels. 
Due to its unique way of acquiring information from the 
environment, a paradigm shift is necessary to construct 
algorithms that accommodate such information. Event-
based SLAM is beyond the scope of this review paper and 
interested readers are referred to the comprehensive sur-
vey in [41].

Some SLAM systems depend solely on visual measure-
ments, while others augment them with different obser-
vations such as range or inertial measurements. Fusion of 
multiple types of observations might escalate the com-
plexity of the algorithm, require more computational 
resources, and increase the cost of the platform. However, 
it makes the system more reliable, robust to outliers, and 
resilient to failures.

To choose the vision sensor suited for the developed 
visual SLAM system, the following should be considered. 
It is not possible to discern the scale of the environment 
based on observations from a single monocular frame. To 
compensate for that, monocular SLAM systems adopt dif-
ferent approaches to deduce the depth such as employing 
a set of one or more other sensors to obtain measurements 
from which the depth can be deduced, hypothesizing the 
depth of the observed features using neural networks for 
example, or by exploiting prior information about the 
environment, like the size of an observed feature. RGB-D 
cameras can provide information about depth from a sin-
gle frame, but they are very sensitive to light, which may 
limit their applications or the environments in which they 
can successfully operate. Stereo cameras overcome the 
limitations of monocular and RGB-D cameras but they are 
more expensive and resource extensive. The choice of the 

vision sensor is also dependent on the robotic platform 
to be used. For instance, ground vehicles do not have any 
constraints with regards to the weight of on-board sen-
sors, which makes all the options open. However, if an 
aerial vehicle is to be used, a monocular camera seems 
to be the most convenient option since it can be seam-
lessly accommodated on-board, due to its lightweight, 
small size, and low power requirements. Nevertheless, the 
employed algorithms must deal with the scale ambiguity 
of the obtained visual observations.

Visual measurements can be handled at different levels 
of detail. Direct SLAM systems, for example: [34, 85, 86], 
process the intensities of all or a subset of pixels in the 
image. Then, based on the brightness consistency con-
straint [139], correspondences are established between 
multiple observations. Feature-based SLAM, on the other 
hand, targets features that exhibit distinctive properties 
and can be repeatedly detected by the employed detec-
tion algorithms. Examples of such systems include [65, 91, 
97]. Features can be classified into different levels; low-
level features such as points, corners, and lines, medium-
level features such as blobs and planes, and high-level fea-
tures such as objects as illustrated in Fig. 1. A visual SLAM 
system might employ a single [23, 45, 88] or a hybrid [10, 
54, 138] of different feature levels.

In our review, we classify the state-of-the-art feature-
based visual SLAM solutions based on the features used to 
perform localization and mapping. Within each category, 
implementation choices of the adopted SLAM pipeline are 
thoroughly discussed and compared. Strengths and weak-
nesses of each category are highlighted and open research 
problems are emphasized at the end.

1.1 � Existing surveys on SLAM

The proposed approaches to SLAM were surveyed by 
several researchers in the field and the open research 
problems to-date were highlighted. In [14], the authors 
argued that SLAM is entering the robust perception era 

Fig. 1   Different visual features extracted from the same visual frame. Left: low-level features (SURF [6]), middle: middle-level features 
(planes), right: high-level features (semantically labeled objects)
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and thoroughly discussed the main characteristics of 
state-of-the-art solutions in terms of several performance 
metrics such as scalability, robustness, and representation. 
In addition, the paper addressed the recent advancements 
at the hardware and algorithmic levels and pointed out 
the research problems that are yet to be solved. A compre-
hensive review of key-frame based approaches to SLAM 
was presented in [139] where the general architecture of 
key-frame based monocular SLAM and the corresponding 
implementation approaches were presented. The survey 
conducted in [109] targeted SLAM approaches that omit 
the assumption that the environment under investiga-
tion is static and addressed the underlying techniques 
adopted to reconstruct a dynamic environment. Along the 
same lines, the survey presented in [96] studied the SLAM 
approaches that can operate in dynamic environments 
and those that employ heterogeneous data that can 
be obtained through a visual sensor, for instance: color, 
depth, and semantic information. Visual SLAM approaches 
that rely on observing primitive features in the scene were 
surveyed in [44] and classified according to the descriptors 
used for such features, emphasizing their strengths and 
weaknesses. An overview of the anatomy of visual odom-
etry and visual SLAM, along with the underlying formula-
tions and implementation choices was provided in [141]. 
Similarly, in [40], the solutions to visual SLAM were ana-
lyzed based on their implementation of the main build-
ing blocks of SLAM, and their failure in dynamic environ-
ments was analyzed. The SLAM approaches reviewed in 
[120] were classified into feature-based approaches, direct 
approaches, and RGB-D based approaches. Comparisons 
between the state-of-the-art solutions back in 2016 were 
conducted, followed by a set of open research problems 
relating to the mentioned categories. Finally, a recent sur-
vey on SLAM, with focus on semantics can be found in 
[115]. In this paper, we contribute a comprehensive survey 
of the most recent state-of-the-art feature-based visual 
SLAM systems and we classify the reviewed approaches 
based on the elements, i.e. features, they extract from vis-
ual frames to localize the robot and reconstruct the envi-
ronment. Such features fall in one of the following catego-
ries: low-level, middle-level, or high-level features. So, the 
reviewed approaches are classified as shown in Fig. 2. Our 
review serves as a thorough reference for researchers inter-
ested in investigating the various implementation options 
and advances in feature-based visual SLAM. Approaches 
that fall into the same feature-level category were further 
grouped based on other goals that they accomplish, like 
real-time performance, handling scene dynamics, and 
resilience to data association failures. The techniques 
that made each of these goals possible were listed and 
analyzed. This will assist the readers to accurately deter-
mine what makes out each of these approaches and what 

implementation methods they need to adopt and/or 
improve to develop a system that can achieve a particular 
set of objectives.

The rest of this paper is organized as follows. The 
anatomy of a generic SLAM system is presented in Sect. 2 
where the SLAM building blocks are discussed in detail 
along with different implementation options. The review 
and analysis of the feature-based visual SLAM systems 
and their design choices are provided in Sect. 3. In Sect. 4 
we highlight the outcomes of our review and identify the 
open problems that need further investigation.

2 � SLAM building blocks

Before delving into the implementation details of the cur-
rent state-of-the-art solutions, the common components 
of visual SLAM are briefly discussed, including (1) Map/
Trajectory Initialization, (2) Data Association, (3) Loop 
Closure, (4) Relocation, and (5) Estimation Algorithms, as 
shown in Fig. 3. The purpose of each component is first 
provided, followed by the most prevalent implementation 
approaches, when applicable.

2.1 � Map/trajectory initialization

Upon starting a robotic task in a new environment, a map 
of which is not available a priori, it is necessary to estimate 
the 3D structure of the surroundings as well as the posi-
tion of the robot with respect to it. This serves as an initial 
assessment of the map that will be iteratively updated 
based on the sensory measurements collected through-
out the task. This process is only required to bootstrap 
the system at startup. There are several ways in which ini-
tialization can be carried out when different sensors are 
employed. For instance, one depth frame or a stereo pair 
are sufficient to initialize a map, as presented in [97, 118], 
since they provide depth and scale information, which 
monocular frames lack. On the other hand, initialization 
can be done manually when monocular cameras are in 
operation, for example [32], where the system is provided 
with prior information about the observed scene, which 
include the positions and appearance of four features, 
resolving the scale ambiguity problem. Examples of other 
algorithms that are commonly used for map initialization 

Fig. 2   Classification of feature-based visual SLAM approaches
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are iterative closest point (ICP) [8, 20], image alignment 
[80, 112], five-point algorithm [114] together with a 
model fitting algorithm such as random sample consen-
sus (RANSAC) [38] or MLESAC [123], and inverse depth 
parameterization relative to the camera, which is used to 
parameterize observed features [25]. Kinematic models, 
for example [22], and integration of inertial measurements, 
as presented in [29], can be used to initialize the trajectory.

2.2 � Data association

While maneuvering in the environment, the robot may 
sense the same area multiple times. Establishing corre-
spondences between the image frames, collected each 
time the same scene was observed, is of paramount sig-
nificance to estimate the map and the robot’s trajectory, 
and is referred to as data association.

Feature-based approaches target features, which are 
areas in the image that exhibit distinctive properties. Fea-
tures can be of different scales; low-level features such 
as geometric primitives, middle-level features such as 
super-pixels, or high-level features such as semantically 
labeled objects. The most critical characteristic of a fea-
ture is repeatability, which makes the feature detectable 
repeatedly when appearing in multiple frames taken from 
different viewpoints.

To detect features in an image, several detectors were 
proposed in the literature for different feature types. For 
low-level features, such as points, lines, edges, and cor-
ners, Table 1 shows some examples of feature detectors as 
well as descriptors. After detecting a feature, it is extracted 
from the image together with its surrounding pixels, then 
assigned a quantitative measure, referred to as a descrip-
tor, to facilitate matching with other features.

To detect planes in images, model fitting algorithms, 
such as RANSAC, are employed. It is also possible to com-
bine modeling and a convolutional neural network (CNN) 
to identify planes, such as walls, in an image [136]. As for 
high-level features, several techniques were proposed 
for detecting objects and semantically labeling them in 

images including, but not limited to, conditional random 
fields (CRFs) [51], support vector machines (SVMs) [30], and 
deep neural networks (for example: single shot multi-box 
detector [74] and you only look once (YOLO) [104]).

Establishing correspondences between low-level fea-
tures can be done between features in two images (2D-2D 
matching), between a point in the 3D map and its projec-
tion onto the image frame (3D-2D matching), or between 
two 3D points in the reconstructed map (3D-3D matching) 
[140] as depicted in Fig. 4a.

Matching a feature in the current image to a feature in 
another image (2D-2D) is performed by means of a search 
within a window in the second image enclosing the loca-
tion of the feature in the current image. The search is 
reduced to one dimension if the transformation between 
both images is known and hence, epipolar geometry [50] 
can be established. The similarity between the features’ 
descriptors can be measured using different quantities 
depending on their types, such as the sum of squared dis-
tance, L1/L2 Norms, or the hamming distance, to name a 
few. Such measures might hinder the performance of the 
system due to their high computational requirements and 
can be replaced by kd-tree search, similar to [89], or bag of 
binary words approaches such as [42].

3D-2D matching is necessary when the pose of the 
camera needs to be estimated given the 3D structure of 
the environment. 3D points surrounding a hypothesized 
pose are projected onto the current image frame. 2D 

Fig. 3   SLAM Pipeline

Table 1   Feature detectors and descriptors

Feature detectors Feature descriptors

Hessian corner detector [7] BRIEF [16]
Harris detector [49] SURF [6]
Shi–Tomasi corners [111] SIFT [76]
Laplacian of Gaussian detector [72] HoG [31]
MSER [83] ORB [107]
Difference of Gaussian [77] FREAK [1]
FAST/AGAST/OAST [81] BRISK [68]
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projections are then matched to 2D features in the image 
using the previously mentioned techniques.

Upon re-visiting a location, i.e. closing a loop, the cor-
responding 3D landmarks are matched (3D-3D) yielding a 
corrected, drift-free path.

Establishing associations between middle-level fea-
tures, such as planes, is done by comparing plane param-
eters, such as normals (for example: [54]), the overlap, and 
the distance between the plane detected in the current 
frame and those available in the map (such as [138]). If 
the distance is below a particular threshold, correspond-
ences are established. Otherwise, a new plane is added 
to the map.

In order to establish correspondences between seman-
tically labeled landmarks, the predicted label is used to 
associate a detection with a landmark in the map. In case 
multiple instances of the same object category appear in 
the environment, a minimum distance threshold between 
them must be exceeded to consider inserting a new land-
mark into the map [10]. Otherwise, the detection is asso-
ciated with its closest landmark. In a recently proposed 
SLAM solution [95], objects are detected and character-
ized at the category level rather than just the instance 

level. This is based on the fact that all objects in one class 
have common 3D points irrespective of their different 
categories. Other approaches to data association will be 
discussed in more detail in the next section.

2.3 � Loop closure

As the robot progresses through its task, errors from sev-
eral sources accumulate causing the estimation to drift 
off the real trajectory (An example is illustrated in Fig. 4b). 
Such drift may severely affect the reconstruction of the 
environment and hence lead to failure of the ongoing 
robotic task. To correct such drift, several techniques were 
proposed in the literature to detect loop closure, i.e. to 
detect whether or not the currently observed scene was 
assessed by the robot earlier, and hence achieve global 
consistency. Global consistency is the condition where 
the SLAM estimate matches, approximately, the ground 
truth and the reconstructed map conforms to the real 
topological structure of the observed area. However, local 
consistency refers to the case where the observations are 
matched locally but, perhaps, not globally [84].

Loop closures usually involve two main steps: visual 
place recognition and geometric verification. The for-
mer can be done using kd-tree search [75], bag of words 
approaches [63], Bayesian filtering [2], deep learning [43, 
135], and visual feature matching [53, 79], while the latter 
can be achieved through image alignment, and RANSAC 
[38].

2.4 � Re‑localization

Re-localization is the ability of a SLAM system to recover 
from a fatal localization failure in which the robot is 
assigned an arbitrary location. This failure can result due 
to several reasons, such as abrupt motions, motion blur, 
or absence of features [139]. Moreover, the robotic vehicle 
might be re-positioned through an operation that is out of 
the robot’s control, in which case the robot’s global posi-
tion is to be determined [12]. These cases are referred to 
as the Kidnapped Robot problem [35] and can be resolved 
using several techniques, including but not limited to, 
matching feature descriptors [71], re-observing semanti-
cally labelled objects [48, 106], epipolar geometry [82], or 
bags of binary words approach [91, 105],

2.5 � Estimation algorithms

Estimation algorithms are needed to resolve the SLAM 
constraints, and can be classified into batch and incremen-
tal algorithms. Batch algorithms, such as global bundle 
adjustment (GBA) [125] and full graph SLAM [122], process 
a large set of measurements collected by the robot, over 

Fig. 4   Data association and loop closure examples
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a relatively large period of time, to reconstruct the map of 
the environment as well as the robot’s trajectory. Incre-
mental algorithms, on the other hand, compute estimates 
of the map and trajectory upon arrival of new measure-
ments. Some incremental algorithms, such as [61] operate 
on the entire set of measurements collected throughout 
the robotic task, while others, such as [60] operate on a 
subset of those measurements collected over a small time 
frame, which facilitates operation in an online manner. 
While batch algorithms succeed in achieving global con-
sistency, they are computationally expensive, and hence, 
may impede real-time operation. In addition, due to the 
constrained memory resources, they might not work for 
large-scale environments or for continuously operating 
systems, which emphasizes the significance of incremental 
algorithms that do not suffer from such limitations. Revis-
iting old data association decisions is not possible when 
estimation is done through incremental algorithms that 
do not consider all measurements, which may increase 
the cumulative error compared to other algorithms. In 
what follows, batch algorithms, such as GraphSLAM [122] 
and GBA [125], as well as incremental algorithms, such as 
extended Kalman filter (EKF) [122], incremental smoothing 
and mapping [60, 61], and local bundle adjustment (LBA) 
[87], are briefly presented.

2.5.1 � Extended Kalman filter (EKF) [122]

Given multiple measurements recorded over a period of 
time, possibly from several sensors, an EKF estimates the 
state of the system under observation. The state of a sys-
tem consists of the states of both the environment and 
the robotic vehicle. The former describes the poses of the 
landmarks observed in the environment, while the latter 
describes the vehicle’s kinematics. The estimation process 
involves filtering the noise associated with each measure-
ment to reduce the overall uncertainty of the estimated 
state. Then, EKF estimates the states of the system through 
several iterations of predictions and updates based on 
the measurements collected from the environment, as 
depicted in Fig. 5.

2.5.2 � Factor graph SLAM [122]

As the name of this algorithm suggests, a graph is used 
to reconstruct the map of an environment along with the 
robot’s trajectory in it. Map features and robot poses are 
represented as vertices, and are connected using edges 
that encode two types of nonlinear constraints: motion 
and measurements as shown in Fig. 6a. The summation of 
all the constraints makes SLAM a nonlinear least squares 
problem. To obtain an estimate that is globally consist-
ent, all constraints are first linearized, yielding a sparse 

information matrix and an information vector. Due to the 
sparseness of the matrix and for a more efficient computa-
tion, the matrix is reduced in size using a variable elimina-
tion algorithm. An inference technique is then employed 
to find the assignment of poses to the nodes of the graph 
which minimizes the errors imposed by the constraints.

Fig. 5   The extended Kalman filter algorithm [108]

Fig. 6   Factor and pose graph examples
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Alternatively, successive robot poses in the environ-
ment could be used alone to estimate the location of the 
robot using a Pose Graph [119]. The graph used in this 
problem includes the robot poses as nodes and motion 
constraints as edges between those nodes as depicted in 
Fig. 6b.

Bundle adjustment (BA) [125] is an instance of factor 
graph SLAM and can be defined as a refining process that 
simultaneously optimizes the 3D structure, the camera 
trajectory, and possibly its calibration parameters using 
a sequence of images collected from the environment as 
depicted in Fig. 7. A cost function that assesses the error 
in the system is minimized to yield an improved estima-
tion of the reconstruction. If all measurements since the 
beginning of the robotic task were considered in the esti-
mation, the process is referred to as GBA, and is known 
to be computationally expensive which hinders online 
operation [36].

A more computationally efficient approach that incre-
mentally adjusts the 3D reconstruction and camera trajec-
tory was proposed in [87] and is referred to as Local Bun-
dle Adjustment (LBA). Only a window of n recent frames 
is adjusted upon reception of a new measurement. Using 
LBA makes it possible to execute SLAM in real time.

ParallaxBA is another variation of BA that was presented 
in [145] where features are parameterized using parallax 
angles instead of their Euclidean coordinates or inverse 
depth, ParallaxBA outperformed traditional BA in terms 
of accuracy and convergence.

2.5.3 � Incremental smoothing and mapping

Incremental Smoothing and Mapping is an approach to 
SLAM that gradually computes estimations of the map and 
robot trajectory while measurements are being collected 
from the environment. Several approaches were proposed 
in the literature, the most prevalent of which are iSAM [61] 
and iSAM2 [60]. iSAM performs smoothing using QR fac-
torization of the square root information matrix and iSAM2 

operates on a novel data structure referred to as the Bayes 
tree which is obtained from factor graphs.

3 � Feature‑based visual SLAM—design 
choices

In this section, an overview of the state-of-the-art feature-
based visual SLAM systems is presented. As mentioned 
earlier, features can be of different granularities; low-level 
features, middle-level features, or high-level features. A 
visual SLAM system may be based on the use of either 
one or a hybrid of two or more feature types as will be 
discussed in the following sections. The most alarming 
concern about feature-based approaches is their failure 
in absence of features. Regardless of their high achievable 
performance and accuracy in feature-rich environments, 
if the environment under investigation lacks the features 
that visual SLAM relies on, be it points, planes, or objects, 
localization fails and the estimation of the robot’s sur-
roundings would not reflect the true structure. In what 
follows, visual SLAM systems are classified and discussed 
according to the types of features employed in the system.

3.1 � Low‑level feature‑based approaches

Low-level features are geometric primitives that are 
observable in abundance in textured scenes. The vast 
majority of the existing visual SLAM systems, for instance 
[22, 62, 70, 91, 127] exploit these features, throughout the 
localization and mapping processes, and have achieved a 
very high-level of maturity in terms of accuracy and effi-
ciency. However, if the environment in which the robot 
is operating is texture-less or lacks the features that the 
system can track, such methods fail due to the absence 
of features, hence why the most recent SLAM approaches 
started to consider features at different levels at the same 
time.

3.1.1 � Multiple feature types to aid robustness

Feature-based visual SLAM systems that depend on a sin-
gle type of features are susceptible to failure when such 
features do not exist in the environment under investi-
gation. To circumvent this issue, the work presented in 
[99] proposes using points and lines together to perform 
monocular SLAM in a poorly textured environment. Lines 
are parameterized by their endpoints to facilitate integra-
tion with point-based approaches. In absence of point fea-
tures, this work proposes a novel technique to initialize the 
system using lines only. The same set of landmarks were 
also adopted to perform stereo SLAM in [47]. Stereo vis-
ual odometry is used to track points and lines, and Gauss Fig. 7   Bundle adjustment illustrative example
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Newton optimization is then employed to estimate the 
motion of the camera by minimizing the projection errors 
of the corresponding features. In [59], observations of 
point features are combined with laser scans and used in a 
factor graph to estimate the pose of the robot. A new map 
representation combining both an occupancy grid map 
and point features was proposed. By matching observed 
features to landmarks in the map, loop closure and locali-
zation can be achieved efficiently. Hence, the flexibility 
regarding what type of feature to adopt while estimating 
the robot’s trajectory in the environment greatly benefits 
the robustness of visual SLAM.

3.1.2 � Facilitating real‑time performance

The maps generated by low-level features are sparse 
yet require large computational and memory resources. 
This is attributed to the fact that the process of detect-
ing, extracting, and matching features is one of the most 
computationally expensive blocks in the SLAM pipeline.

In order to achieve real-time performance, some sys-
tems [27, 94, 97, 134] heavily exploit parallelism to perform 
tracking and mapping as originally proposed in PTAM [65]. 
Two threads are concurrently run to localize the robot and 
map its surroundings [65, 97]. Unlike tracking, delays are 
tolerable in the mapping thread where most of the heavy 
computations take place. To further reduce computations, 
[94] limited the number of features to be extracted, and 
used a local map through which feature matching is per-
formed. In order to maximize parallelism, a separate thread 
was employed to perform loop closing and a synchroniza-
tion process was proposed where access to map points 
is granted to a thread only if the points are not currently 
being processed by another thread.

In [27], three parallel modules are employed; scene flow 
for feature detection, extraction, and matching, visual 
odometry for camera motion estimation, and global SLAM 
for loop closing and global consistency.

Localization and mapping can also be done in a distrib-
uted manner by multiple robotic vehicles while exploit-
ing parallelism as proposed in [134] where tracking and 
image acquisition, which are lightweight processes, are 
run on-board all MAVs in parallel while mapping is done 
off-board by a powerful computer due to its computa-
tional demands. A recent monocular SLAM system was 
proposed in [102] where EKF and BA were exploited 
together to achieve real-time robust performance. ORB 
features and inertial measurements were used in a visual 
inertial odometry (VIO) framework based on EKF which is 
capable of estimating the camera motion with minimal 
delays. To further assist real-time performance, not all ORB 
features are extracted from visual frames in the VIO frame-
work which operates on all incoming frames. In addition, 

to circumvent the estimation errors resulting from EKF, a 
globally consistent map estimated using BA is frequently 
updated based on selected keyframes and fed to EKF to 
correct any estimation errors. The selected keyframes go 
through another round of feature extraction and match-
ing since the features extracted for VIO are not sufficient 
for building a robust map. Loop closure is run in a par-
allel thread to correct accumulated error by performing 
place recognition and ORB feature matching. Once a loop 
is detected, pose graph optimization as well as GBA are 
carried out. Due to the fusion of visual and inertial meas-
urements, the approach is robust to abrupt motions and 
is capable of resolving scale ambiguity. It also combines 
the advantages of EKF and BA to achieve real-time perfor-
mance and robustness respectively.

Figure  8 summarizes the techniques that can be 
adopted to speed up the localization and mapping pro-
cesses and get the estimation done in real-time.

3.1.3 � Resolving scale ambiguity

When using a monocular camera, a SLAM system needs 
to handle the inherent scale ambiguity challenge which 
results from the difficulty to discern depth from a single 
frame. An EKF based approach was proposed in [127] 
where scale ambiguity and intermittent absence of fea-
tures are compensated for by fusion of monocular vision, 
ultrasonic and atmospheric pressure measurements. 
Fusion of multiple sensors was also seen in [78] where 
vision, inertial, and range measurements were employed 
to achieve the objectives of SLAM. Scale ambiguity in [82] 
is circumvented by two-view initialization. A pair of images 
is selected according to their relative rotation, Euclidean 

Fig. 8   Techniques to facilitate real-time performance



Vol.:(0123456789)

SN Applied Sciences (2020) 2:224 | https://doi.org/10.1007/s42452-020-2001-3	 Review Paper

distance, and the time difference between them. Then, 
epipolar geometry is used to estimate the scale based on 
the matched features between these frames. In another 
monocular SLAM approach [142], the depth of ORB fea-
tures was computed based on their distance to the van-
ishing points identified in the scene. Furthermore, inverse 
depth parameterization was used in [26] to recover the 
scale of the scene.

While not required for RGB-D and stereo SLAM, adopt-
ing a technique to resolve the scale of the map is essential 
for monocular SLAM. Figure 9 illustrates the techniques 
that can be used to resolve scale ambiguity.

3.1.4 � Resilience to feature detection/association failure

Failure to observe or match low-level features in an envi-
ronment is equivalent to operating in texture-less envi-
ronments in which feature-based visual SLAM systems fail. 
In both cases, the system suffers from absence of meas-
urement constraints, causing severe performance degra-
dation. A vision system fails to detect or match features 
between frames in case of abrupt sensor motions or in 
presence of dynamics in the scene.

One of the limitations of the original EKF-SLAM, which is 
described in [122], is its inability to handle abrupt motions. 
To overcome this, the approach proposed in [73] employs 
visual input in both phases of the filter; prediction and 
update. Optical flow and epipolar geometry are used to 
estimate the state transition of the camera. Using images 
in the prediction stage made the system robust against 
abrupt motions and infrequent data acquisition. This has 
also eliminated the need for dynamic models and resulted 
in a faster and more efficient performance. Although this 
EKF variant improves the robustness and efficiency of 
SLAM in particular cases, it still fails if there are no features 
in the scene. Another variation of EKF-SLAM is proposed 
in [100] IMU measurements are used in the prediction 

phase and RGB-D images are used in the update phase. 
To achieve global consistency, pose graph optimization is 
performed. Fusion of IMU measurements made it possible 
for the system to successfully operate in texture-less and 
dynamic environments.

ORB-SLAM2 [91] is a state-of-the-art visual SLAM system 
that performs tracking, mapping, and loop closing based 
solely on ORB features in real time while running on stand-
ard CPUs. Due to its dependence on visual features, ORB-
SLAM2 fails in absence of ORB features in the scene. To this 
end, a tightly-coupled fusion of odometry and ORB-SLAM2 
was proposed in [15] where the motion model is replaced 
by odometry, which supports the estimation when no fea-
tures can be detected in the scene.

Similarly, the approach proposed in [62], exploits 
tightly-coupled fusion of inertial and visual measurements 
to perform visual inertial odometry. Global consistency is 
then achieved by means of loop closure detection and 
global pose graph optimization. Another variation of ORB-
SLAM2 can be found in [121], where ORB features were 
replaced by learnt point features, referred to as GCNv2. It 
was demonstrated that the proposed approach has com-
parable performance to ORB-SLAM2 in most scenarios, but 
performs slightly better in case of fast rotations.

Failure to associate features across subsequent frames 
can also result from dynamics in the scene. The work pro-
posed in [128] demonstrates the ability to successfully 
perform RGB-D SLAM in a dynamic environment while 
observing low level features only. Using the fundamen-
tal matrix, feature points belonging to moving parts of 
the scene are extracted. Then, efficient PnP was used to 
estimate the pose of the camera in the environment. The 
re-projection errors are then further optimized by means 
of BA. The proposed approach was successfully used in 
real experiments but only under the assumptions that 
there is small parallax and more than 24 point matches 
between consecutive frames. Hence, the approach fails 

Fig. 9   Techniques to resolve scale ambiguity
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to work in presence of abrupt motions and in absence 
of low-level features in the environment.

In order to enhance the performance of visual SLAM 
in dynamic environments, the approach proposed in [21] 
employs a sparse motion removal scheme. A Bayesian 
filter is used to compute the similarities and differences 
between consecutive frames to determine the dynamic 
features. After eliminating such features, the scene is fed 
to a classical visual SLAM approach to perform pose esti-
mation. This approach works only in presence of features 
in the scene and fails otherwise.

Another low-level feature based visual SLAM 
approach that is robust to false data association occur-
ring in dynamic scenes is found in [13]. The approach is 
based on a novel filter where poses are encoded as dual 
quaternions. Association of ORB feature observations 
and map landmarks is done through an optical flow-
based approach which makes it robust to dynamics in 
the scene.

In summary, lack of features, abrupt camera motions, 
and dynamics in the observed scene are the main reasons 
behind failure to perform data association. Some tech-
niques that are adopted in the literature to solve these 
issues include employing multiple sensors that observe 
different information in the scene and eliminating obser-
vations that involve dynamics.

The implementation details of the reviewed low-level 
feature-based approaches are provided in Table 2.

3.2 � Middle‑level feature‑based approaches

Middle-level features are planes or blobs that are observed 
in the environment. Using such features as landmarks 
improves the SLAM performance in texture-less environ-
ments where it is challenging to observe low-level fea-
tures; in corridors for example. To observe such features, 
model fitting approaches are employed. Hence, there is a 
trade-off between the estimation accuracy and the time 

Table 2   Implementation choices adopted by low-level feature-based approaches

FG factor graph, PG pose graph, BA bundle adjustment, EKF extended Kalman filter, MAP maximum-a-posteriori, VT vocabulary tree, PF par-
ticle filter, FM feature matching, BBW bags of binary words, GN Gauss Newton, LM Levenberg Marquardt, FF first frame, PM prior map, SI 
stereo initialization, EG epipolar geometry, IDP inverse depth parameterization, Odom Odometry, SBI small blurry image relocation, LSO least 
square optimization, IMI image moment invariants

− indicates that implementation details about the corresponding element/block are not provided

References SLAM component

Initialization Data association Loop closure Estimation Relocation

[78] IMU measurements Sweep matching & approxi-
mate nearest neighbor

LSO Algorithm in [9] –

[127] Range measurements Visual measurement models – EKF –
[22] Kinematic model Geometric matching then ICP – EKF –
[62] – FM BBW FG BBW
[70] SI FM VT RANSAC & non-linear refinement –
[82] SI Optical flow IMI GBA EG & BA
[99] Trifocal tensor eq. Relational graph strategy Essential graph FG and GBA EPnPL
[73] IDP FM – EKF –
[65] SI & RANSAC FM Mapping module GBA –
[27] – VT and EG VT GBA VT
[101] PM Edge alignment using GN – GN Optimization + EKF –
[97] SI FM BA LM algorithm –
[94] SI FM PG Co-visibility graph –
[91] FF 2D-3D points matching BBW FG and GBA BBW
[15] FF 2D-3D points matching BBW FG and GBA Odom
[134] SI + RANSAC FM GBA GBA SBI [66]
[100] FF FM FM FG –
[3] Odom FM BBW FG –
[129] PM Multi-hypotheses via PF – PF –
[126] PM Distance function – EKF –
[128] FF FM FM Effiicnet PnP and BA –
[102] VIO EKF ORB FM PG & GBA EKF & BA –
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needed to compute accurate models from the environ-
ment. Using those features alone is not common since 
fusing them with low- and high-level features results in 
better accuracy as discussed in Sect. 3.4. In [113], a SLAM 
approach based solely on RGB-D data is proposed. A 3D 
map of the environment is constructed using planes rep-
resenting walls and floors while removing all other objects 
from the scene. RANSAC is employed to estimate planar 
surfaces which are then refined by estimating their nor-
mals and extracting the corresponding convex. Then, an 
l
0
 norm minimization algorithm is used to maintain planes 

that are highly likely to represent walls or floors while mini-
mizing the inclusion of smaller ones. Using this approach, 
it was possible to reconstruct a map of the walls and floor 
as illustrated in Fig. 10. However, no other features are pre-
sent in the map which makes it unusable for the majority 
of SLAM application. This motivates the need for consider-
ing high-level features, as presented in the next section.

3.3 � High‑level feature‑based approaches

Perceiving high-level features is paramount when robots 
are expected to perform tasks that require scene under-
standing such as searching for a victim after a catastrophe, 
building meaningful maps, and grasping or operating on 

particular objects in the environment. This is very chal-
lenging to achieve with maps reconstructed using low-
level features since they lack expressive representation 
which makes it harder for humans to understand [39, 46]. 
High-level features add critical information about the 
structure of the scene and convey the semantic meaning 
of every part of the reconstructed map. They are environ-
ment-specific and may vary in size, shape, and dynamic-
ity. In a city-scale application, possible landmarks include 
trees, buildings, streets, or sidewalks. On the other hand, 
furniture, office supplies, and home appliances may serve 
as landmarks for indoor applications. In this section, differ-
ent approaches to data association in high-level feature-
based SLAM approaches will be thoroughly discussed. 
Then, techniques to achieve real-time performance and 
handle dynamics in the scenes will be presented.

3.3.1 � Associating high‑level feature observations 
with landmarks

Although high-level features are detected and semanti-
cally annotated, data association in the event that multiple 
instances of the same object category exist in the environ-
ment poses a fundamental challenge in high-level feature-
based visual SLAM systems [88].

Fig. 10   Illustration of reconstructed map based on planar features
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In [95], objects are detected and characterized at the 
category level rather than just the instance level. This is 
based on the fact that all objects in one class have com-
mon 3D points, irrespective of their different categories. 
Such points, referred to as keypoints, are used to distin-
guish between the different categories of the same class. 
Input monocular frames are passed to an object detector, 
YOLO9000 [103], and 3D keypoints in the resulting bound-
ing boxes are localized by means of another convolutional 
neural network. Shapes and poses are optimized using the 
Ceres solver. Instead of performing object and keypoint 
detection on every frame, objects are tracked in successive 
frames leading to higher efficiency and speed.

Another novel data association approach was pre-
sented in [45] to localize a robot in a prior map. First, a 
query graph is computed for each image where a vertex 
represents an object’s class and centroid, and undirected 
edges between vertices indicate the fulfillment of a prox-
imity requirement. A merged graph for all the images is 
then created by connecting vertices from consecutive 
images using the Euclidean distances between them. 
Vertices that are too close to each other are merged to 
avoid duplicates. The second step is the generation of a 
random walk descriptor for each vertex. That is, an n ×m 
matrix containing the labels of m visited vertices in n ran-
dom walks. Third, the query graph is to be matched to the 
global database graph based on a similarity score. The 
similarity score of two vertices indicates the number of 
identical rows in their descriptors. The highest k matches 
are then used to localize the query graph in the database 
graph.

In [69], semantically labeled objects as well as their 
inter-relationships are employed in the process of estab-
lishing correspondences between input monocular 
frames. An RGB frame is first passed to a Faster R-CNN to 
detect objects. Then, the transformation between con-
secutive images is computed by first generating multi-
ple cuboids that lie along the line, formed by the camera 
center and the center of the bounding box, and project-
ing them onto the detected bounding box. Generation 
of cuboids is done at discrete distances and angles. After 
that, coordinate descent is performed to minimize the 
difference between the corners of the detected bound-
ing box and the projection of each cuboid into the image 
plane. Redundant cuboids are then removed. Each of the 
remaining cuboids is then used as a seed to generate a 
scene, which is a set of cuboids each corresponding to a 
detected bounding box, based on contextual constraints. 
To find correspondences between the generated set of 
scenes, a sampling-based approach is used. Every pair of 
scenes is searched for correspondences based on semantic 
labels. Three correspondences from every pair are picked 
and frames of reference for each scene are constructed. 

The transformation between the scenes is computed 
accordingly and scored based on how well the remaining 
correspondences fit using the computed transformation. 
The sample with the highest rank is then used to estimate 
the transformation between camera poses.

In [24], an object hypothesis is generated if the same 
object segment is observed in multiple frames and is 
represented using 3D feature descriptors which facilitate 
loop closure. Inlier correspondences between the current 
object and the objects in the map are computed, then, 
the object is associated with the hypothesis with which 
it achieved the highest number of correspondences. If 
the number of correspondences falls below a threshold, 
a new object representation is added. Only one or a few 
static instances of an object category are assumed to be 
in the environment. A prior estimation of the robot pose 
based on odometry and ICP is computed using OmniMap-
per [124]. Based on that, the current frame’s segments are 
projected into a common frame of reference with all pre-
viously segmented objects. The centroid of each segment 
is matched to the closest segment centroid in the map. 
To verify the match, the bounding box of the current seg-
ment and that of the segment to which it was matched 
are compared. If there is not enough overlap between the 
bounding boxes, a new object is initialized. The final object 
model is created by aggregating all the corresponding 
segments after transforming them according to the rela-
tive camera poses. Spatial constraints between the object 
model and the robot poses are then added to the SLAM 
system.

In [88], SLAM and data association are addressed as 
tightly coupled problems and a novel approach is pro-
posed to simultaneously estimate a robot’s position and 
associate its observations with landmarks. A back-end 
approach was used to jointly solve the object detection 
and SLAM problems. After being detected, an object is 
represented by the centroid of its point cloud obtained 
from RGB-D data. Neither data association nor the total 
number of landmarks in the environment are known a 
priori. A probabilistic model based on the Dirichlet Pro-
cess was hence introduced to establish proper data asso-
ciation. Overall, a mixed-integer nonlinear problem is 
set up to estimate the robot poses, landmark locations, 
and data association given the robot’s relative poses and 
observations.

The most common approach to data association in pres-
ence of multiple instances of the same object category is 
the distance threshold as presented in [23]. Each robot in 
the proposed distributed SLAM framework performs SLAM 
through OmniMapper [124] based on visual and odom-
etry measurements. Each input RGB image is passed to 
a YOLO object detector. Detected objects are segmented 
and the PFHRGB features in their point cloud and in the 
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corresponding model are extracted and matched. If at 
least 12 correspondences were detected, generalized iter-
ative closest point (GICP) [110] is performed to compute 
a refined pose of the object. Data association is then per-
formed by searching for instances of the same detected 
object category within a distance threshold. Figure 11 
summarizes the main approaches found in the literature 
to perform data association of high-level features.

3.3.2 � Facilitating real‑time performance

Performing real-time localization and mapping is very criti-
cal for some robotic tasks, especially those performed in 
harsh environment for search and rescue purposes. How-
ever, the processing time for some blocks in the pipeline, 
such as object detection and segmentation, goes beyond 
that. In this section, focus will be devoted to the tech-
niques used to facilitate real-time performance in high-
level feature-based SLAM approaches.

The work proposed in [95] proposes not perform-
ing object detection on all the incoming frames. Rather, 
after detecting an object in a keyframe, it is tracked in 

successive frames, which significantly reduces the time 
needed to process the data.

For the same purpose, the system proposed in [24] pre-
processes the scene by dividing it into planar and non-
planar (object) segments. After removing planar segments, 
object segments are refined and associated to already 
existing landmarks in the map.

Representing objects using quadrics is an alternative 
technique to reduce computations while employing 
semantically labeled landmarks in a visual SLAM system. 
The work proposed in [93] uses an object detector as a 
sensor where the detected bounding boxes are used to 
identify the parameters of the quadric representing the 
corresponding object. A quadric provides information 
about the size of the object, its position, and its orienta-
tion, encoded in ten independent parameters. A geometric 
error formulation was proposed to account for the spatial 
uncertainty of object detections, resulting from occlusions 
for example. Using quadrics instead of detailed object 
models enhances the speed of the system at the expense 
of reconstructing information-rich maps which are use-
ful in a wide range of applications. An illustration of the 

Fig. 11   High-level features data association techniques
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discussed techniques that aid the efficiency of high-level 
feature-based visual SLAM systems is provided in Fig. 12.

3.3.3 � Handling dynamics in the scene

The majority of SLAM systems are developed under the 
unrealistic assumption that the environment is static. Only 
a few systems were proposed in the literature where scene 
dynamics are accounted for. Most of these system detect 
the non-stationary parts of the observed scene, eliminates 
them, then perform SLAM based on the remaining static 
environment. An example of such approach can be found 

in [5] where moving objects were tracked and stationary 
ones were used to generate a static map of the environ-
ment under investigation. Observations were done using 
a laser scanner and data association was carried out using 
a multi-level RANSAC approach.

Differently, the work presented in [137] uses cuboids 
as objects’ representation, where an object SLAM system 
is proposed. The system relies on observations from a 
monocular camera and exploits dynamic objects in the 
scene to improve localization by adding motion model 
constraints to the multi-view BA formulation that is used 
to solve the optimization problem. Objects and fea-
ture points belonging to them are tracked in successive 
frames and motion models are estimated and employed 
to improve the accuracy of trajectory and map estimation.

Exploiting motion models of dynamic objects rather 
that ignoring them imposes additional constraints on 
the systems and hence improves the accuracy of the 
estimation.

A summary of all the reviewed high-level feature-based 
approaches in the previous sections is provided in Table 3.

3.4 � Hybrid feature‑based approaches

In the previous sections, SLAM systems that employ 
features of a single type were discussed and analyzed. 
Features at each level enhance the outcome of SLAM in 

Fig. 12   Techniques to achieve real-time performance by high-level 
feature-based visual SLAM approaches

Table 3   Implementation choices adopted by high-level feature-based SLAM approaches

− indicates that implementation details about the corresponding element/block are not provided

References SLAM component

Initialization Data association Loop closure Estimation

[88] Open loop predictions A probabilistic model based on 
the Dirichlet process

Data association approach Factor graph

[23] – Object class/label within a 
distance threshold

objects detected by multiple 
robots

Factor Graph

[45] Prior Map Matching of Random-Walk 
Descriptors

– Graph-based technique 
then Maximim A 
Posteriori

[5] – Multi-level RANSAC and 
Mahalanobis distance

ML-RANSAC EKF

[69] Relative poses are estimated 
then refined using coordinate 
descent

Contextual Relevance based 
on the face centric geometric 
descriptors

Sampling-based approach to 
search for correspondences

Coordinate descent

[95] – Object class/label and greedy 
object tracker

Hungarian Algorithm (Cost is 
estimated object shape and 
pose)

Factor Graph

[137] Object detections used to 
initialize depth of points

Matching point features belong-
ing to detected objects, 2-D 
KLT sparse optical flow algo-
rithm for tracking dynamic 
points, and visual object track-
ing for dynamic objects

No explicit loop closure module 
used

BA
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a distinct way. For instance, localization methods based 
on observation of low-level features have achieved a high 
level of maturity in terms of accuracy and efficiency. The 
maps they produce, however, are of high sparsity with-
out any semantic indications. Taking advantage of mid-
dle-level features, such as planes, in the scene makes it 
possible to attain higher reconstruction density as well as 
more robustness in texture-less environments. To create 
meaningful maps that humans can easily perceive, recent 
SLAM approaches make effective use of the emerging 
object detection techniques and employ semantically 
labeled observations throughout the localization and 
mapping processes. To make the most out of what can be 
visually observed in a scene and to enhance their overall 
outcome, SLAM systems have lately started to employ fea-
tures at two or more levels as discussed in this section. In 
this section, feature-based visual SLAM approaches that 
adopt features from multiple levels will be reviewed. The 
reviewed systems are classified based on the features used 
to perform SLAM into three categories; low- and middle-
level feature based approaches, low- and high-level fea-
ture based approaches, and low-, middle-, and high-level 
feature-based approaches. Table 4 presents a summary 
of the implementation choices adopted by the reviewed 
approaches.

3.4.1 � Low‑ and middle‑ level feature‑based approaches

The systems presented in [28, 52, 67, 138] employ low and 
middle-level features to achieve the objectives of SLAM.

In some environments, such as corridors, plane SLAM 
becomes unconstrained. Fusing planes and points can 
greatly enhance the robustness of SLAM in such envi-
ronments as proposed in [138] where planes, detected 
in monocular frames using a pop-up 3D model, are used 
to estimate the camera trajectory and the 3D map of the 
environment. Across different frames, planes are associ-
ated based on a weighted sum of three quantities: the 
difference between their normals, the distance between 
them, and the overlap between their projections. For each 
incoming monocular frame, ORB descriptors are computed 
and a bag of words approach is used to detect loops. Upon 
detection of a loop, corresponding plane pairs are deter-
mined and the factor graph is modified accordingly.

Geometric primitives and planes were employed differ-
ently in [52]. A least-squares optimization using a graph 
formulation, where planar constraints are involved, is used 
to solve the SLAM problem. The detected points are con-
strained to belong to a particular plane, parameterized 
by its normal and depth with respect to the camera, in 
the environment. Angles between planes in the environ-
ment are also considered as constraints. All constraints are 

coupled into a cost function and the resulting non-linear 
least squares problem is solved.

A third variation was proposed in [67] where an RGB-D 
SLAM approach based on planes and points was pro-
posed. Each incoming image is divided into intervals, 
then labeled, based on the planes present in it. The orien-
tation of a frame is estimated based on the orientation of 
the most dominant plane in it while translation between 
frames is computed based on matched SIFT features and 
RANSAC. Global alignment and loop closure are carried out 
based on a fusion of the low- and middle-level features, 
which aids the robustness of the proposed approach.

A recent RGB-D SLAM was proposed in [144] where 
points and planes are exploited to estimate the pose of 
a camera and a map of its surroundings. ORB features are 
extracted from RGB frames and handled by the RGB-D 
version of ORB-SLAM2. On the other hand, depth frames 
are used to extract planes, along with their contour points 
from the scene. Contour points are employed to con-
struct spatial and geometric constraints between planes 
in the reconstructed map. A novel data association tech-
nique for planes was used, where the angle between two 
planes was used to judge whether they are perpendicular 
or parallel, while accounting for measurement noise. Two 
planes are matched if the distance between the observed 
plane’s point and the plane in the map is below a particu-
lar threshold. Imaginary planes that are perpendicular 
to planes appearing in the scene are also exploited and 
treated as the other observed features in the pose esti-
mation process. A factor graph is constructed and solved 
by means of the Levenberg-Marquardt optimizer. The 
proposed plane data association method is more robust 
than approaches considering plane normals and/or plane 
distances because it takes into account the measurement 
noise, which is inevitable.

Super-pixels are middle-level features seen as planar 
regions exhibiting similar intensities in input frames. 
Employing super-pixels comes with the advantage of 
being able to reconstruct poorly-textured scenes. How-
ever, there isn’t a robust descriptor of such features, which 
makes it hard to match them in different images. In [28], a 
feature-based monocular SLAM approach was proposed, 
integrating super-pixels with PTAM, where PTAM key-
frames are divided into super-pixels of irregular sizes. The 
map state, that is to be estimated, consists of the pose 
of all keyframes, the Euclidean coordinates of point fea-
tures, and the parameters of the planar super-pixels. Two 
keyframes, the pose of which is already computed using 
PTAM, are used to initialize a super-pixel. All super-pixels 
in the keyframes are extracted and matched using a Monte 
Carlo approach. BA is used to optimize the camera and 
3D points’ states, which are then used to estimate the 
parameters of the super-pixels. On every new keyframe, all 
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super-pixels are re-projected to search for matches. When 
the re-projection error drops below a threshold, the match 
is added to the optimization problem as a constraint.

Another work that exploits the fusion of point features 
and planar regions, represented as squared fiducial mark-
ers in this case, in an environment can be found in [90]. 
Besides the robustness achieved due to employing point 
features, utilizing fiducial markers in this system comes 
with several advantages such as eliminating scale ambi-
guity, robustness in repetitive environments where distin-
guishing point features can be challenging, and feature 
invariance over time.

3.4.2 � Low‑ and high‑level feature‑based approaches

A multitude of different SLAM approaches were proposed 
based on the use of a combination of low- and high-level 
features in [10, 26, 37, 48, 71, 105, 106, 118, 130]. Such 
approaches demonstrate high-level expressiveness while 
maintaining robustness.

The system proposed in [48] does tracking, object rec-
ognition, and mapping while mainly operating on monoc-
ular RGB frames. Frames exhibiting distinctive geometrical 
and/or semantic information are selected as keyframes. 
A semantically labelled object is added to the map after 
being detected in multiple frames that contain at least 5 
point correspondences, have a minimum parallax angle 
of 3◦ , and must exhibit acceptable geometric condition-
ing. To distinguish between instances of the same object 
model in the scene, the pose of the detected instance in 
the world frame is hypothesized given the map scale, and 
the overlap with previously detected instances is com-
puted. If no overlap is detected, a new object instance is 
added to the map. If the scale of the map is not yet known, 
objects detected sequentially are assumed to belong to 
the same object instance in the map. Correspondences are 
established between measurements and object models 
using a k-d tree search. For more robustness, ORB features 
in input images are computed and 2D-3D correspond-
ences are established.

Instead of employing low-level features independently, 
geometric features can be used to detect objects in the 
scene as proposed in [37] where object detection and 
SLAM were done jointly for 2D and 3D sensors using a 
novel BA formulation, referred to as Semantic BA. Upon 
reception of a new image, features are extracted and 
matched to those in the objects model database. A valida-
tion graph is then created for each set of correspondences 
to an object. The frames in which the features are matched 
along with the model from the database are then trans-
formed into a common pose and the cost of the corre-
sponding semantic feature is the re-projection error of the 
detected features weighted by the confidence of matches. 

In the 3D case, when an object is detected multiple times, 
the cost function of the semantic edge includes the re-
projection of one detected feature into the other. Frames 
in which features were matched to a common point in the 
model are said to have a virtual match represented by an 
edge in the graph. For consistency purposes, geometric 
constraints obtained from SLAM are added to the graph. 
The resulting validation graph is optimized to obtain the 
minimum re-projection error for all constraints.

In some environments, such as educational entities and 
hospitals, each room is assigned a unique identifier which 
can serve as a landmark in a SLAM system as presented 
in [106]. After eliminating the points that corresponds to 
walls, a door-sign detector, based on an SVM classifier, is 
employed. Characters contained in a door sign are recog-
nized using Optical Character Recognition (OCR). Lines 
extracted from laser data along with measurements from 
the door-sign detector are then passed to a mapper to 
map the environment.

Observations of generic objects were used to extend 
RGB-D ORB-SLAM2 in [118]. Objects are detected, seg-
mented, and associated to landmarks in the map by 
means of a k-d tree. The pose of the objects is determined 
using ORB-SLAM. Detected objects are stored with three 
pieces of information: the RGB point cloud of the object, 
their pose from ORB-SLAM, and the accumulated detec-
tion confidence. The class label is determined based on 
the entire history of detection of an object. A sparse map 
of the environment can be built explicitly by projecting 
the point cloud based on the latest trajectory estimate. 
Finally, object points are inserted into the SLAM state vec-
tor as Euclidean coordinates and hence are tracked and 
further refined upon reception of new data in the follow-
ing frames.

EKF-Monocular-SLAM, Structure from Motion (SfM), and 
Visual Recognition were combined in the system proposed 
in [26]. Objects are detected by associating SURF points in 
an images to object models in a database. Such associa-
tions are then geometrically verified using RANSAC. After-
wards, the PnP algorithm or DLT algorithm are employed 
to compute the transformation or Homography matrices 
for non-planar and planar models, respectively, which are 
then used to refine the pose of the object. Matched points 
are fed into the monocular SLAM module which is based 
on EKF-Monocular-SLAM where the state vector to be esti-
mated consists of the camera motion parameters and the 
point features along with the geometry of the detected 
objects.

On a different note, some scenes in the environment 
under observation may exhibit dynamicity which if not 
accounted for, hinders the overall performance of SLAM 
systems. Hence, most SLAM systems assume a scene 
where objects remain static throughout the localization 
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and mapping processes. The SLAM system presented in 
[105] eliminates this assumption by removing dynamic 
objects from the observed scene before operation. More 
specifically, every RGB-D frame is processed to mask out 
regions in which a person was detected using an RGB-D 
based method [58]. The remaining data image a static 
environment which can be processed using a standard 
visual SLAM algorithm. A similar approach can be found 
in [130] where dynamic objects are segmented out of the 
scene by means of a computationally efficient step-wise 
approach to detect the object and extract its contour. The 
static environment is then mapped based on point fea-
tures using a novel look-up table approach that targets 
using a large amount of distinct, evenly-distributed point 
features from the environment, which enhances the accu-
racy of mapping and localization.

Along the same lines, an online method for extracting 
non-static objects from the observed scene, and hence 
improving the performance of RGB-D SLAM in non-static 
environments was proposed in [116]. The approach con-
sists of three main stages, starting with image differenc-
ing to detect any moving objects in the scene. A particle 
filter is then employed to track motion patches in con-
secutive RGB-D frames, which makes it more general than 
approaches that track particular object models. Finally, 
maximum-a-posteriori is used to identify the scene’s fore-
ground, after segmenting the moving objects by means 
of vector quantization. To operate reliably, the approach 
requires the observed scene to consist mainly of static 
objects and to contain planes.

As the scene to be re-constructed by visual SLAM grows 
larger, matching features to points becomes more chal-
lenging because some places exhibit similar appearances. 
To circumvent this, the work presented in [71] employs a 
coarse place recognition module where frames contain-
ing common points are grouped together under location 
classes using an overlapping view clustering algorithm. 
Matching features is then done based on the Hamming 
distance between BRIEF descriptors of Harris corners.

Data association and SLAM are tightly coupled prob-
lems that were not considered jointly except in a few 
research work where they were solved as two optimization 
sub-problems. Data association for each observation-land-
mark pair is estimated then used to estimate the sensor 
and landmark poses. Using this approach, the accuracy of 
sensor and landmark pose estimation is critically degraded 
by incorrect data association. In addition, measurements 
that are discarded due to their ambiguity cannot be recon-
sidered when more refined measurements of the same 
landmarks are obtained.

These limitations motivated the changes in the SLAM 
algorithm proposed in [10] where data association, 
and estimations of sensor and landmarks poses were 

considered in a single optimization problem. Instead of 
associating each observation to a single landmark, Expec-
tation Maximization was employed to account for the 
entire density of the data association while estimating the 
sensor and landmark poses, which was referred to as soft 
data association. Estimation is based on inertial measure-
ments, ORB features, and semantic information obtained 
from an object detector. The depth of an observed land-
mark is the median of the ORB features detected within the 
bounding box of that landmark. In case multiple instances 
of the same object exist in the environment, Mahalanobi’s 
distance is used to decide data association. An extension 
of this work was presented in [4], where semantic structure 
was inferred differently. Instead of relying on ORB features, 
a stacked hourglass convolutional network was used to 
detect semantic features of the object found within each 
bounding box. Structure constraints are used to relate 
each semantic feature to the corresponding landmark and 
Kabsch Algorithm is then used to estimate the orienta-
tion of the object. A very similar approach can be found 
in [33] with the distinction that it employs non-Gaussian 
sensor models as opposed to majority of the proposed 
approaches, where Gaussian model are always assumed.

The system proposed in [143] combines high-level 
semantically labeled features and low-level CNN features 
to localize a mobile robot by means of a coarse to fine 
approach. Observations are matched to visual frames in 
the map by first comparing the objects appearing in the 
image. A finer search is then carried out based on CNN 
features of the image. The estimated poses of the camera 
as well as the features are finally refined using BA.

3.4.3 � Low‑, middle‑, and high‑level feature‑based 
approaches

In [54] and [137], SLAM systems are developed based on 
features from all three levels; points, planes, and objects.

The system proposed in [54] employs an RGB-D sensor 
to observe features in the environment. Real-time, effi-
cient performance of this system is achievable because 
objects are represented by means of quadrics which do 
not require highly detailed representation. The SLAM 
problem is formulated as a factor graph where various 
types of factors are used, including observations of points, 
objects, and planes as well as point-plane, plane-plane, 
and object-plane relationships. A variation of ORB-SLAM2 
is used to detect points in the environment which are then 
matched among frames in a coarse-to-fine pyramid. Faster 
R-CNN is used to detect objects in incoming frames and 
the corresponding ellipsoids representing the objects are 
then computed. Across frames, semantic labels are used 
to associate observations to objects if a single instance of 
the object appears in the environment. Otherwise, data 
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association is achieved by means of nearest-neighbor 
matching. The point cloud representing the scene is seg-
mented to extract planes using an organized point cloud 
segmentation technique. Planes are associated using 
thresholds on the distance between them and the differ-
ence between their normals. Factors are added between 
planes and points that belong to them, objects and the 
corresponding planes they lie on, and between multi-
ple planes assuming a Manhattan World. A bag of words 
approach is adopted to detect loop closures.

Using points, planes, and objects, observed through a 
monocular camera, the work presented in [137] achieves 
improved localization, especially in absence of loop clo-
sure, compared to state-of-the-art SLAM systems. This 
is attributed to the long-range observability of objects 
and planes which facilitates more associations between 
old and new measurements. Objects are represented as 
cuboids, plane edges are detected then back-projected 
to obtain their parameters, and points are added to fur-
ther constrain the camera poses. BA formulation is used 
with four types of constraints, camera-plane, camera-
object, object-plane, and point-plane. The maps gen-
erated are dense and exhibit a high level of expressive 
representation.

4 � Conclusion

Simultaneous Localization and Mapping is the most pre-
dominant research problem in the robotics community 
where tremendous amounts of effort are put into gen-
erating novel approaches that maximize its robustness 
and reliability. Upon acquisition of the first set of meas-
urements from the environment to be reconstructed, the 
trajectory of the robot and the map are initialized. Subse-
quent measurements go through a pipeline of different 
processes that are implemented differently in each SLAM 
system but do achieve the same purpose. Such processes 
include data association, loop closure, re-localization, and 
trajectory and map estimation.

In this paper, we surveyed most of the state-of-the-art 
visual SLAM solutions that employ features to localize the 
robot and map its surroundings. We classified feature-
based visual SLAM approaches into categories based on 
the types of features they rely on; low-level, middle-level, 
high-level, or hybrid features. The strengths and weak-
nesses of each category were thoroughly investigated 
and the challenges that each solution overcomes were 
highlighted, when applicable. Comparisons between 
approaches in the same category were provided in tables, 
comparing the methods that were adopted to implement 
each component of the SLAM pipeline.

Based on our intensive review, we believe that the fol-
lowing challenges remain unsolved. 

1.	 Generality Current SLAM solutions lack the ability to 
adapt to the environment in which the robot is operat-
ing. Because they depend on a certain type of features. 
Failure to detect such features in the environment 
leads to catastrophic degradation in the accuracy of 
the SLAM outcome. This could be due to the intermit-
tent presence of features in the environment or the 
inability of the employed vision system to detect them. 
The former happens if the SLAM system depends on 
a very limited set of features, for instance the set of 
objects that a neural network can detect, while not uti-
lizing other elements in the image like planes, geomet-
ric primitives, or new objects that the network was not 
trained to detect. The latter might occur in challenging 
environments or due to abrupt motions. To cope with 
such challenges, the vision system employed by SLAM 
should be flexible to accommodate various types of 
features based on the environment in which the robot 
is operating, for example during a transition between 
indoor and outdoor environments.

2.	 Robustness In presence of noise from several sources 
in the SLAM pipeline, it is sometimes hard for the esti-
mation algorithm to generate optimum estimates of 
the map and trajectory. Very limited research work has 
been done to guarantee the optimality of a SLAM esti-
mate or at least verify whether or not the estimate is 
optimal [17–19, 55–57]. To that end, post-processing 
SLAM estimates by means of a neural network, for 
example, might result in significant improvements to 
the estimated trajectory and reconstructed map, and 
hence a more robust SLAM system.

3.	 Scene Understanding and Expressive Representation Ever 
since the deep learning breakthrough in 2012, object 
detectors have been heavily exploited in SLAM. How-
ever, the current object detectors do not exploit any 
temporal or spatial relationships between the detec-
tions [117]. If such constraints are accounted for, an 
increase in the efficiency and reliability of the detec-
tions is expected.

The advances in software and hardware technology that 
we currently witness should be directed towards devel-
oping an environment-aware, error-free, general visual 
SLAM algorithm that is capable of circumventing all of 
these challenges.
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