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Abstract
In this work, an adaptive dynamic sliding mode control approach is proposed for robotic systems via uncertainty estima-
tors with exponential convergence rate. The uncertainties are estimated using various uncertainty estimators such as 
the Fourier series expansion, Legendre polynomials and adaptive fuzzy systems. Also, for each uncertainty estimator, the 
approximation error is compensated. The adaptation laws are derived using a stability analysis. Moreover, the asymptotic 
convergence of the tracking error and the boundedness of all closed-loop signals are guaranteed. The novelty of this 
paper is proposing a positive exponential function for the convergence rate of the adaptation rules to prevent from initial 
high voltages originated from large initial tracking errors. Another novelty of this paper is presenting a robust control 
term for the truncation error that improves the accuracy of the control system. Analysis of simulations reveals the effec-
tiveness of the proposed method in terms of fast disturbance rejection and negligible tracking error.

Keywords  Robotic systems · Adaptive dynamic sliding mode control · Adaptive fuzzy systems · Fourier series · Legendre 
polynomials

1  Introduction

In the recent years, the interest in robotic systems has 
increased in many application fields [1–4]. Since these 
systems are always affected by the environmental distur-
bances, simple traditional control methods cannot be effi-
cient. Therefore, it is necessary to develop robust controller 
to suppress the effects of them. To overcome nonlineari-
ties and uncertainties, many robust approaches have been 
proposed [5–12].

Sliding Mode Control (SMC) is frequently used for con-
trolling systems with uncertainties because of its robust-
ness. Thus, SMC is one of the best choices for robotic 
systems. The main disadvantage of SMC is the chatter-
ing, which may cause damages to the system [13–16]. In 

order to decrease the chattering, a dynamic sliding mode 
control (DSMC) scheme has been presented in [14–16]. In 
this approach, the chattering can be reduced due to the 
integration method in obtaining the control signal. Mean-
while, Like SMC, the uncertainty bound should be known 
in the design of DSMC. In this study, to solve this problem, 
the uncertainty is estimated using various uncertainty 
estimators such as the Fourier series expansion, Legendre 
polynomials and adaptive fuzzy systems.

Function approximation methods have been explored 
to overcome uncertainties in robust control of nonlinear 
systems [17–24]. In [25], an adaptive dynamic sliding-mode 
control system (ADSMCS) with recurrent radial basis func-
tion network (RRBFN) for indirect field-orientation control 
induction motor (IM) drive which guarantees the robustness 
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in the presence of parameter uncertainties and load distur-
bances has been proposed. The ADSMCS includes a dynamic 
sliding-mode controller (DSMC), an RRBFN uncertainty 
observer and a robust controller. In [26], a robust adaptive 
second-order sliding mode control approach has been 
presented for the tracking control of uncertain linear sys-
tems with matched and unmatched disturbances. Excellent 
mathematical features of fuzzy systems such as universal 
approximation property and linear parameterization make 
them very attractive and efficient. According to the universal 
approximation theorem [27], fuzzy systems can approximate 
many nonlinear functions with arbitrary accuracy. Recently, 
some other uncertainty estimators such as Fourier series and 
Legendre polynomials have been applied to robotic systems 
[1, 28–33]. This paper aims to compare the performances of 
these estimators.

In this paper, an adaptive DSMC is developed for robust 
control of robot manipulators. In order to eliminate the need 
for uncertainty bound, adaptive uncertainty estimators are 
designed to estimate the lumped uncertainty. Moreover, the 
robust control term that compensates the reconstruction 
error is designed so that improves the tracking performance 
considerably. Simulation studies indicate that increasing the 
convergence rate plays an important role in reducing the 
tracking error. In [1, 7, 11, 17, 29, 31, 34], a constant conver-
gence rate is utilized to control robotic systems. However, 
it may result in initial high control effort if there is an initial 
tracking error. In order to have a satisfactory control effort at 
initial times and small steady state tracking error, the conver-
gence rate is increased slowly using a positive exponential 
function.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the dynamic model of the robotic system. 
Function approximation techniques are summarized in 
Sect. 3. In Sect. 4, the proposed control law is designed. Sec-
tion 5 provides the stability analysis. Section 6 illustrates the 
simulation results. Our conclusions are given in Sect. 7.

2 � Modeling

The dynamics of a robotic system driven by DC motors can 
be presented as [35]

The state-space equation of the robotic system can be 
derived by the use of (1)–(3) as

(1)D(q)q̈ + C(q, q̇)q̇ + G(q) = 𝜏l

(2)Jmr
−1q̈ + Bmr

−1q̇ + r𝜏l = KmIa

(3)RIa + Lİa + Kbr
−1q̇ + d = v

where

In which

where the vectors q ∈ Rn , v ∈ Rn , Ia ∈ Rn and d ∈ Rn are the 
joint positions, motor voltages, motor currents and exter-
nal disturbances, respectively. The details are completely 
presented in [29].

Substituting (1) in (2), it follows that

Now, (3) is rewritten as

where 𝜑 = Lİa + d . Substituting (7) into (8) yields

One can easily rewrite (9) as

In which

Equation (10) can be rewritten as

3 � Function approximation techniques

In this section, we explain three well-known techniques 
which can approximate nonlinear functions with arbi-
trary small approximation error, namely, the Fourier series 
expansion, Legendre polynomials and adaptive fuzzy 
systems.

(4)Ẋ = F(X ) + bv − bd

(5)X =

⎡
⎢⎢⎣

q

q̇

Ia

⎤
⎥⎥⎦
, b =

⎡
⎢⎢⎣

0

0

L−1

⎤
⎥⎥⎦
, F(X ) =

⎡
⎢⎢⎣

f1(X )

f2(X )

f3(X )

⎤
⎥⎥⎦

(6)

f1(X ) = X2,

f2(X ) =
(
Jmr

−1 + rD
)−1(

−
(
Bmr

−1 + rC
)
X2 − rG + KmX3

)
,

f3(X ) = −L−1
(
Kbr

−1X2 + RX3
)

(7)Ia = K−1
m

((
Jmr

−1 + rD
)
q̈ +

(
Bmr

−1 + rC
)
q̇ + rG

)

(8)RIa + Kbr
−1q̇ + 𝜑(t) = v

(9)
v = RK−1

m

((
Jmr

−1 + rD
)
q̈ +

(
Bmr

−1 + rC
)
q̇ + rG

)
+ Kbr

−1q̇ + 𝜑

(10)v = D̄q̈ + C̄q̇ + Ḡ + 𝜑

(11)

D̄ = RK−1
m

(
Jmr

−1 + rD
)

C̄ = RK−1
m

(
Bmr

−1 + rC
)
+ Kbr

−1

Ḡ = RK−1
m
rG

(12)
v = q̈ + f

f = D̄q̈ + C̄q̇ + Ḡ + 𝜑 − q̈
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3.1 � The Fourier series expansion

Consider a function g(t) defined on 
[
t1, t2

]
 . According to [1, 

29], g(t) can be expressed as

where wn = 2n�∕T  and T = t2 − t1 . The approximation 
error is

where gm(t) = a0 +
∑m

n=1
an cos

�
wnt

�
+ bnsin

�
wnt

�
 is the 

approximated value using the Fourier series. It is clear that 
gm(t) can be written as

where

3.2 � Legendre polynomials

A typical inner product can be expressed as

where f ∗(x) is the complex conjugate of the f (x) . If (17) 
takes the value of zero, two functions f  and g are orthog-
onal. It has been shown in [28, 31] that a function h(x) 
defined on the interval 

[
x1x2

]
 can be expressed as

where the set 
{
�1(x) ⋯ �m(x)

}
 forms an orthogonal basis 

and �m(x) is the approximation error or truncation error.
Considering the interval 

[
− 1 1

]
 and the inner product 

(17), the Legendre polynomials can be written as

(13)g(t) = a0 +

∞∑
n=1

an cos
(
wnt

)
+ bnsin

(
wnt

)

(14)�m(t) = g(t) − gm(t)

(15)gm(t) = PT�(t)

P =
[
a0 a1 b1 … am bm

]T

(16)

P =
[
a0 a1 b1 … am bm

]T

�(t) =
[
1 cos

(
w1t

)
sin

(
w1t

)
… cos

(
wmt

)
sin

(
wmt

)]T

(17)⟨f , g⟩ = ∫ f ∗(x)g(x)dx

(18)h(x) =

m∑
i=1

ai�i(x) + �m(x)

(19)

�0(x) = 1, �1(x) = x, (i + 1)�i+1(x) = (2i + 1)x�i(x)

− i�
i−1(x) i = 1,… ,m − 1

These polynomials form an orthogonal basis [28, 31, 36]. 
As a result, a function h(x) defined on the interval [− 1 1] 
can be approximated using Legendre polynomials in the 
form of

where

3.3 � Adaptive fuzzy systems

Generally, the fuzzy rule has the following IF–THEN form,

where x =
[
x1, x2,… , xn

]T
 and y are the inputs and output 

of the fuzzy system, respectively; l = 1, 2,… ,M is the num-
ber of fuzzy rules, M is the total number of rules; Al

i
 and Bl 

are the fuzzy sets described by fuzzy membership func-
tions �Al

i

(
xi
)
 and �Bl (y) respectively.

When the inputs x =
[
x1, x2,… , xn

]T
 are given, the out-

put y of the fuzzy inference system with singleton fuzzifier, 
product inference engine and center average defuzzifier can 
be expressed as [17, 37] 

where P =
[
ȳ1, ȳ2,… , ȳM

]T
 is the adjustable parameter vec-

tor of the fuzzy system, and �(x) =
[
�1(x), �2(x),… , �M(x)

]T
 

is the vector of fuzzy basis functions defined as below:

According to the approximation property of adaptive 
fuzzy systems [37, 38], a continuous nonlinear function F(x) 
can be represented by adaptive fuzzy systems, i.e.,

where �m is the fuzzy approximation error.

(20)hLP(x) =

m∑
i=1

ai�i(x) = PT�

(21)
P =

[
a0 a1 … am

]T

� =
[
�0 �1 … �m

]T

(22)Rl∶ IF x1 is A
l
1
and… xnisA

l
n
, THEN y is Bl

(23)y(x) =

∑M

l=1
ȳ l
�∏n

i=1
𝜇Al

i

�
xi
��

∑M

l=1

�∏n

i=1
𝜇Al

i

�
xi
�� = PT𝜉(x)

(24)�l(x) =

∏n

i=1
�Al

i

�
xi
�

∑M

l=1

�∏n

i=1
�Al

i

�
xi
��

(25)F(x, P) = PT�(x) + �m
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4 � The proposed controller

With the use of the independent joint method, the stability 
analysis becomes simpler [35]. Let us define the tracking 
error as e = qd − q . Using (12), we have

Now, define a sliding surface as

In which a1 and a2 are positive constants. Taking the 
time derivative of (27), the following equation can be 
obtained

Using (26), (28) can be expressed as

The secondary sliding surface is considered as

In which c1 and c2 are positive constants. The time deriv-
ative of (30) becomes

Using (27) and (29), (31) can be written as

Substitution of (26) into (32) yields

(26)ë = q̈d − v + f

(27)s(t) = ė + a1e + a2

t

∫
0

e(𝜏)d𝜏

(28)ṡ(t) = ë + a1ė + a2e

(29)ṡ(t) = q̈d − v + f (t) + a1ė + a2e

(30)𝜎(t) = ṡ + c1s + c2

t

∫
0

s(𝜏)d𝜏

(31)𝜎̇(t) = s̈ + c1ṡ + c2s

(32)𝜎̇(t) = (q⃛d − v̇ + ḟ (t) + a1ë + a2ė) + c1
�
q̈d − v + f (t) + a1ė + a2e

�
+ c2

⎛
⎜⎜⎝
ė + a1e + a2

t

∫
0

e(𝜏)d𝜏

⎞⎟⎟⎠

(33)

𝜎̇(t) = q⃛d − v̇ + ḟ (t) + a1
(
q̈d − v + f

)
+ a2ė + c1q̈d − c1v + c1f (t) + a1c1ė

+ a2c1e + c2ė + a1c2e + a2c2

t

∫
0

e(𝜏)d𝜏

= q⃛d − v̇ +
(
a1 + c1

)(
q̈d − v

)
+ ḟ (t) +

(
a1 + c1

)
f (t) + (a2 + a1c1 + c2)ė

+
(
a2c1 + a1c2

)
e + a2c2

t

∫
0

e(𝜏)d𝜏

We can rewrite (33) as

where 𝛹 (t) = q̈d − v, g = ḟ + 𝜆1f , 𝜆1 = a1 + c1, 𝜆2 = a2+

a1c1 + c2, �3 = a2c1 + a1c2 and �4 = a2c2 . The controller v 
is designed such that 𝜎̇(t) = 0 , then s̈ + c1ṡ + c2s = 0 . Thus, 
s(t) converges to zero. By 𝜎̇(t) = 0 and (34), we have [16]

Like conventional SMC, a trial and error technique is 
usually utilized to obtain the control gain �DSMC . In order 
to eliminate the term �DSMCsgn(�(t)) from (35), an adap-
tive dynamic sliding mode control (ADSMC) is proposed 
to replace �DSMCsgn(�(t)) by the uncertainty estimation 
ĝ . This estimation can be obtained by fuzzy systems, 
Legendre polynomials or Fourier series. In this paper, 
their performances will be compared. Thus, the control 
law in ADSMC is given by

(34)

𝜎̇(t) = q⃛d − v̇ + 𝜆1𝛹 (t) + g + 𝜆2ė + 𝜆3e + 𝜆4

t

∫
0

e(𝜏)d𝜏

(35)

v̇DSMC = q⃛d + 𝜆1𝛹 (t) + 𝜆2ė + 𝜆3e + 𝜆4

t

∫
0

e(𝜏)d𝜏 + 𝜌DSMCsgn(𝜎(t))

vDSMC(t) =

t

∫
0

v̇DSMC(𝜏)d𝜏

|g| < 𝜌DMSC
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where ĝ is estimated value of g using fuzzy systems, Leg-
endre polynomials or Fourier series and vr is the continu-
ous robust control term to compensate the approxima-
tion error. One can represent g(t) as linear combinations 
of basis functions � as

where P is weighting vector, and � is the approximation 
error. Now, making use of the same set of basis functions, 
we propose

The basis functions can be fuzzy basis functions, Leg-
endre polynomials or sinusoidal functions in Fourier 
series. Also, the weighting vector can be the adjustable 
parameters of the fuzzy system in the consequent part 
of the fuzzy rules, Legendre coefficients or the Fourier 
series coefficients. It follows from (34) and (36) that

Using (37) and (38), we can write

As a result, (40) can be rewritten as

The sampling interval in the experiment is short 
enough as compared with the variation of �m , thus, the 
term �m is assumed to be a constant during the estima-
tion (i.e.𝜀̃m = 𝜀m − 𝜀̂m → ̇̃𝜀m = − ̇̂𝜀m ) [39–41].

5 � Stability analysis

Usually, the adaptation laws for online adjustment of P̂ , 
include a constant parameter, for instance � , called as 
convergence rate which plays an important role in reduc-
ing the tracking error. However, increasing � may result 
in initial high control effort if there is an initial tracking 
error. To solve this problem, it has been assumed that � 
is given by an increasing time-varying function.

(36)

v̇ADSMC = q⃛d + 𝜆1𝛹 (t) + 𝜆2ė + 𝜆3e + 𝜆4

t

∫
0

e(𝜏)d𝜏 + ĝ + vr

vADSMC(t) =

t

∫
0

v̇ADMSC(𝜏)d𝜏

(37)g(t) = PT� + �

(38)ĝ(t) = P̂T𝜉

(39)𝜎̇ = g − ĝ − vr

(40)

g̃ = g − ĝ = PT𝜉 + 𝜀 − P̂T𝜉 =
(
P − P̂

)T

𝜉 + 𝜀m = P̃T𝜉 + 𝜀m

(41)𝜎̇ = P̃T𝜉 + 𝜀m − vr

Assumption 1  The convergence rate � is given by 

 where �0 and �f  are initial and final values of �(t) and � is a 
positive constant parameter.

Theorem 1  If the following rules are applied to the system 
(12) and the control law (36), then the closed loop signals are 
bounded and the tracking error asymptotically converges to 
zero. 

 where kp and kI are positive scalars and �(t) is given by (42).

Proof  Consider the following positive definite function 

 where 𝜀̃m = 𝜀m − 𝜀̂m and P̃ = P − P̂ . Differentiating V  with 
respect to time, we have 

Using (41), we can write

Using (44), we can write

Using (43), (49) is simplified to

Also, using (45), (50) is simplified to

According to (42), 𝛾̇ is calculated as

(42)𝛾(t) =
(
𝛾0 − 𝛾f

)
exp(−𝛽t) + 𝛾f , 𝛾f > 𝛾0 > 0

(43)̇̂
P = 𝛾(t)𝜎(t)𝜉

(44)vr = kp𝜎(t) + 𝜀̂m

(45)̇̂𝜀 = kI𝜎(t)

(46)V =
𝜎2(t)

2
+

P̃T P̃

2𝛾(t)
+

𝜀̃2
m

2kI

(47)V̇ = 𝜎𝜎̇ −
P̃T

̇̂
P

𝛾(t)
−

𝛾̇
(
P̃T P̃

)
2𝛾2(t)

−
𝜀̃m

̇̂𝜀m

kI

(48)V̇ = 𝜎
(
P̃T𝜉 + 𝜀m − vr

)
−

P̃T
̇̂
P

𝛾(t)
−

𝛾̇
(
P̃T P̃

)
2𝛾2(t)

−
𝜀̃m

̇̂𝜀m

kI

(49)V̇ = 𝜎
(
P̃T𝜉 + 𝜀̃m − kp𝜎(t)

)
−

P̃T
̇̂
P

𝛾(t)
−

𝛾̇
(
P̃T P̃

)
2𝛾2(t)

−
𝜀̃m

̇̂𝜀m

kI

(50)V̇ = 𝜎
(
𝜀̃m − kp𝜎(t)

)
−

𝛾̇
(
P̃T P̃

)
2𝛾2(t)

−
𝜀̃m

̇̂𝜀m

kI

(51)V̇ = −kp𝜎
2(t) −

𝛾̇
(
P̃T P̃

)
2𝛾2(t)

(52)𝛾̇ = −𝛽
(
𝛾0 − 𝛾f

)
exp(−𝛽t)
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Using Assumption 1, it follows that 𝛾̇ is positive and 
consequently V̇  in (51) is negative semidefinite. Therefore, 
V
(
𝜎(t), P̃(t), 𝜀̃m(t)

) ≤ V
(
𝜎(0), P̃(0), 𝜀̃m(0)

)
 [42] which implies 

that � , p̃ and 𝜀̃m are bounded. Define 𝛺(t) = kp𝜎
2(t) ≤ −V̇  . 

Integrating �(t) with respect to time yields

Because V
(
𝜎(0), P̃(0), 𝜀̃m(0)

)
 i s  bounded,  and 

V
(
𝜎(t), P̃(t), 𝜀̃m(t)

)
 is nonincreasing and bounded, the fol-

lowing result is obtained:

By utilizing Barbalat’s lemma [42], we obtain 
limt→∞�(t) = 0 . As a result, �(t) will converge to zero 
which implies that s(t) and consequently the tracking error 
e(t) converge to zero. According to a proof presented in [5], 
the motor voltage is bounded, i.e. ||vADMSC

|| ≤ vmax , thus, q̇ 
and Ia are bounded. Therefore, state variables X  in (5) are 
bonded.

To summarize, Fig. 1 shows the overall approach of the 
adaptive dynamic sliding mode control proposed in this 
paper.

(53)

t

�
0

𝛺(𝜏)d𝜏 ≤ V
(
𝜎(0), P̃(0), 𝜀̃m(0)

)
− V

(
𝜎(t), P̃(t), 𝜀̃m(t)

)

(54)limt→∞

t

∫
0

𝛺(𝜏)d𝜏 < ∞

6 � Simulation results

To show the effectiveness of the proposed method, it is 
applied to a SCARA robot driven by permanent magnet 
dc motors. The parameters of robotic system are given 
in [29]. A symbolic representation of the manipulator is 
illustrated in Fig. 2. The maximum voltage of each motor 
is set to vmax = 50 V . The desired trajectory should be 
sufficiently smooth such that all its derivatives up to the 

Fig. 1   Overall approach of the proposed adaptive dynamic sliding mode controller

Fig. 2   Symbolic representation of the SCARA manipulator
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required order are bounded. The desired position for every 
joint is given by

The external disturbance is inserted to the inputs 
at t = 5 s as a step function with the amplitude of 3 V. 
The sliding surface parameters have been chosen as 
a1 = 20, a2 = 0.2, c1 = 10, c2 = 0.1 . The initial joint posi-
tions have been selected as q(0) = −0.2 . The parameters 
kp and kI have been set to the values of 1 and 10, respec-
tively. Simulation 1 investigates the influence of conver-
gence rate on the tracking error and control efforts. It 
has been assumed that the lumped uncertainty is esti-
mated using adaptive fuzzy system. The characteristics 
of the fuzzy system are the same as explained in [17]. In 
other words, in (37), the vector � is calculated based on 
fuzzy membership functions. Simulation 2, compares the 
performances of different uncertainty estimators.

6.1 � Simulation 1: the effect of convergence rate 
on the controller performance

In this simulation, the effect of convergence rate is inves-
tigated. Three cases have been considered as

As shown in Fig. 3, the tracking error for Case 1 is not 
acceptable, since �(t) is small. Although, the tracking error 

(55)qd = 1 − cos (�t∕10)

(56)Case 1∶ �(t) = 10

(57)Case 2∶ �(t) = 1000

(58)Case 3∶ �(t) = (10 − 1000)e−0.2t + 1000

for Case 2 in Fig. 4 is satisfactory, the control efforts at ini-
tial times are not acceptable as shown in Fig. 5. In fact, in 
case 2, due to large convergence rate, the tracking errors 
are good. Nevertheless, this large convergence rate results 
in actuator saturation and chattering phenomenon. The 
proposed convergence rate for Case 3 has solved the 
trade-off problem between accuracy and control effort. 
According to Fig. 6, the tracking error is acceptable. Also, 
as illustrated in Fig. 7, the control signal does not reach to 
saturation region at initial times. The proposed conver-
gence rate is small at initial times to prevent from actua-
tor saturation and the chattering phenomenon. To make 
the steady state tracking error as small as possible, the 
convergence rate is gradually increased.

Fig. 3   The tracking errors in Simulation 1 for case 1

Fig. 4   The tracking errors in Simulation 1 for case 2

Fig. 5   The control signals in Simulation 1 for case 2
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6.2 � Simulation 2: comparison between different 
uncertainty estimators

Suppose that instead of fuzzy systems, the Fourier series is 
used for uncertainty estimation. In other words, the vector 
� is in the form of [1, 29, 30]

In the case of using Legendre polynomials for uncertainty 
estimation, the vector � is in the form of [28, 31]

(59)� =
[
1 cos (�t∕10) sin(�t∕10

]T

(60)� =
[
1 x

1

2

(
3x2 − 1

)
1

2

(
5x3 − 3x

) ]T

In which x = sin (�t∕10) . In order to have a quantitative 
comparison, consider the criterion Fitness = ∫ 10

0

�∑
i e

2

i

�
dt 

[43–52]. All the controller parameters are the same as 
those presented in simulation 1. The convergence rate 
given in Case 3 is selected in this simulation for all uncer-
tainty estimators. The criterion for the fuzzy system, Fou-
rier series and Legendre polynomials is 0.0368, 0.0251 
and 0.0289, respectively. Thus, it seems that Fourier series 
outperforms the others. The tracking error for the Fourier 
series is illustrated in Fig. 8. As shown in this figure, track-
ing errors reduce as fast as possible and after the transient 
state is terminated at t = 2 s , the tracking errors are around 
− 0.001. In addition, the effect of external disturbance is 

Fig. 6   The tracking errors in Simulation 1 for case 3

Fig. 7   The control efforts in Simulation 1 for case 3

Fig. 8   The tracking errors in Simulation 2 using the Fourier series 
expansion

Fig. 9   The control signals in Simulation 2 using the Fourier series 
expansion
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negligible on this controller. The control efforts using the 
Fourier series are presented in Fig. 9. In comparison with 
Fig. 7 (fuzzy system), although motor voltages are larger 
in the transient state, they do not exceed the permitted 
range. In fact, these larger voltages in the Fourier series 
expansion have resulted in smaller tracking errors.

The tracking error for Legendre polynomials is illus-
trated in Fig. 10. As shown in this figure, tracking errors 
reduce as fast as possible and after the transient state 
is terminated at t = 3 s , the tracking errors are around 
− 0.001. In comparison with Fig. 8 (Fourier series expan-
sion), it seems that the transient state for Legendre poly-
nomials is longer. The effect of external disturbance on this 
controller is also small. The control efforts using Legendre 
polynomials are presented in Fig. 11. Motor voltages for 

Legendre polynomials in this figure are similar to those 
illustrated in Fig. 9. However, it seems that after applying 
the external disturbance at t = 5sec , the Fourier series 
expansion has a smoother performance.

Remark  It is obvious that increasing kp will increase the 
amplitude of the control signal. For example, if kp = 15 , 
actuator saturation will occur. Also, decreasing the param-
eter kI will deteriorate the tracking performance and the 
performance criterion will increase. For the sliding surface 
parameters a1 and c1 , small values such as 2 or 1 will result 
in poor tracking performance and the convergence of the 
tracking error will occur after even 10 s. Selecting large val-
ues for a2 and c2 , will deteriorate the tracking performance 
and the control signal will increase.

Fig. 10   The tracking errors in Simulation 2 using Legendre polyno-
mials

Fig. 11   Control signals in Simulation 2 using Legendre polynomials

Fig. 12   The profile of noise signal

Fig. 13   The tracking errors using the Fourier series expansion in the 
presence of noise
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Finally, the system performance in the presence of white 
noise is studied. It has been assumed that the position and 
velocity signals are contaminated by noise. The noise signal 
is presented in Fig. 12 [53]. The proposed estimator in this 
section is the Fourier series expansion with exponential con-
vergence rate. The tracking errors and the voltage signals are 
plotted in Figs. 13 and 14, respectively. As shown in Fig. 13, 
the tracking error reduces to small values and its mean in the 
steady state is around zero. Also, the control signal illustrated 
in Fig. 14 is acceptable. In fact, the noisy signals cannot dete-
riorate the voltage signal profile considerably.

7 � Conclusion

In this paper, an adaptive control scheme for robotic 
systems using uncertainty estimators with exponential 
convergence rate has been presented. For chattering 
eliminating in dynamic sliding mode control, the lumped 
uncertainty has been estimated using various estimators 
such as fuzzy systems, Legendre polynomials and Fourier 
series expansion. As a result, there is no need to obtain the 
upper bound of uncertainty using the tedious trial and 
error procedure. Moreover, the convergence rate of the 
estimators has been gradually increased in order to pre-
vent from actuator saturation at initial times. In compari-
son with constant convergence rates, the proposed con-
vergence rate results in a superior performance. Moreover, 
a comparison between fuzzy systems, Legendre polyno-
mials and Fourier series expansion has been performed 
that verifies the superiority of Fourier series.

8 � Future recommendation

Future works in this field can be designing observer for 
dynamic sliding mode control. Also, the performance of the 
proposed controller on flexible joint robots can be studied. 
In addition, optimization techniques can be examined for 
tuning the controller parameters to improve its performance.
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