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Abstract

Glaucoma is one of the leading severe retinal disease which damages the optic nerve head on the retinal part of the eye
irreversibly. Once the person is diagnosed with glaucoma, it cannot be treated entirely, but it can be controlled. If glau-
coma is not diagnosed in time, it will lead to vision loss by damaging the Optic Nerve Head. The glaucoma detection is
performed based on the optic disc and optic cup parameters on the retinal part of the eye. In the existing system, many
image processing and machine learning techniques used for the segmentation and classification of optic disc and optic
cup. To improve the precision of diagnosis, the existing techniques used need an improvement. This article helps readers
with more information about the existing methods applied for the diagnosis of glaucoma, it also lists the research gaps
and technical challenges to improve the accuracy of segmentation and classification methods.

Keywords Intraocular pressure (IOP) - Optic disc (OD) - Optic cup (OC) - Optic nerve head (ONH) - Convolutional neural

network (CNN)

1 Introduction

Medical imaging is a process of creating images of inter-
nal parts of the human body for medical diagnosis. The
internal structure of the body can be easily visualized
with medical images. Many recordings and measurement
techniques are used to produce images. Computer vision
techniques and medical analysis concepts are designed to
provide medical image data. It is extended to all fields of
medical science, especially to Ophthalmology.
Ophthalmology [1]is a medical branch in which it deals
with diagnosis and treatment of eye disorder. There are
many retinal diseases, such as glaucoma, diabetic retin-
opathy, cataracts, etc. From the past 15 years, various
techniques for the automatic detection of glaucoma are
developed but these methods need an improvement.

1.1 Retinal fundus images

The human eye is an essential organ in the human body in
which allows vision. The human eye is capable to differen-
tiate more than 10 million colors, enables depth percep-
tion. It is composed of two segments, namely the anterior
segment and the posterior segment. The anterior segment
consists of iris, cornea, and lens. The posterior segments
composed of retina, vitreous, choroid, and sclera. The area
where the connection between sclera and cornea is the
limbus. The central part of the eye is called the pupil and
which is surrounded by a pigmented circular area called
iris. Figure 1 [2] shows the anatomical structure of the
human eye.

The fundus camera is used to capture the retinal
images, and these images are called fundus images. These
images help doctors to quickly diagnose most varieties of
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Fig. 1 Structure of the human eye

Fig.2 Structure of retina

eye diseases which occur on the retina. The various eye
diseases like glaucoma, maculopathy, retinopathy, etc. can
be easily measured. Figure 2 represents the Structure of
Retina and its main components. There are different reti-
nal features like an optic disc, optic cup, fovea, macula,
exudates, etc. These features vary from person to person.
Mainly glaucoma will be identified by measuring the reti-
nal part of optic disc and optic cup.

Optic disc [3, 4] is the bright yellow part of the retina
containing more neurons. The shape slightly looks like cir-
cular, but it varies from person to person. It is also named
as blind spot because it does not provide the color-attiring
photoreceptors such as rods and cones. Optic Cup is the
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bright central part of the optic disc and which is an essen-
tial parameter for detecting glaucoma. Compared to the
optic disc, the optic cup is smaller in size. For a healthy
patient, the optic cup shape is one-third of the optic disc.
If the size of the optic cup increases than the standard size,
it leads to glaucoma.

The macula is the central part of the retina. Which is
approximately yellow, and the size is 5.5 mm. It receives
images and light signals. The macula is a very delicate
region in which many photoreceptor cells used to get
color and subtle details. Due to degeneration, infection,
vascular trauma, and inflammatory problems, the mac-
ula may get affected. The fovea is the central part of the
macula, and it does not contain any blood vessels. It is a
minimal area, and the diameter is approximately 1.5 mm.
The fovea helps to give a central vision for the human eye,
which is dark brown or red, and it is the dark part of the
retina. Exudates are one of the features of the retina, which
forms due to the leakage of the arteries and veins. It is
a bright patch form of the retina, and the appearance is
yellow-white.

1.2 Main contribution of this paper

There are many survey papers till date, which gives infor-
mation about the optic disc and optic cup segmenta-
tion and classification techniques used for the diagnosis
of glaucoma. But in most of the existing survey papers,
we get the information about image processing tech-
niques applied for both segmentation and classification
approaches, and also there are only a few survey papers
that are particular about the optic disc, optic cup segmen-
tation and classification process. In the current system,
there is an automatic and early detection of glaucoma to
make the system faster. Hence, in recent years most of the
researchers applying machine learning and deep learning
techniques to make the decision-making system. In this
paper, all the existing till date published articles includ-
ing both image processing and deep learning techniques
applied for fundus image segmentation and classification
methodologies are collected from multiple resources. This
article helps to compare the image processing and deep
learning technique by performance metrics. Hence, this
paper promotes the researcher to improve performance.

The paper contains eight sections. Section 2 describes
detail description and various types of glaucoma. Section 3
contains the information about various publicly available
database, Sect. 4 describes different types of parameters
used to detect the OD and OC, Sect. 5 contains the related
works to find disc and cup, Sect. 6 describes the perfor-
mance metrics used for checking the performance of the
method applied, Sect. 7 describes the research gaps that
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are identified after the survey and final section concludes
the findings.

2 A brief overview of glaucoma

Glaucoma is a significant eye disease that occurs on the
retina of the eye, and it is the second-largest eye disease
in the world which causes blindness. The optic nerve con-
nects to the brain and it helps to scan the images from the
eye. The glaucoma damages to these optic nerves. If glau-
coma is not detected in the early stage, it leads to vision
loss. The regular eye check-up is the only precautionary
measure to avoid glaucoma. Mainly glaucoma occurs due
to the Intraocular Pressure (IOP) [5, 6] on the eye. Intraocu-
lar pressure is the high pressure on the eye; due to this,
more fluid is produced on the eye, leading to the block-
age on the eye’s channel. Due to this, the optic nerve gets
damaged and it gives rise to glaucoma.

Some standard tests like Tonometry, Ophthalmoscopy,
Perimetry, Pachymetry, etc., are used for glaucoma detec-
tion. The pressure that occurs within the eye is diagnosed
by conducting tonometry, and the device is called a
tonometer. If the value is more than 21 mm Hg, it will be
classified as glaucoma. In Ophthalmoscopy, the doctors
detect any damage to the Color and Shape of the optic
nerve. Perimetry helps to find the range of pressure inside
the eye. Based on the cornea’s thickness, the shape and
color of the optic nerve is detected by the Pachymetry test.

Mainly glaucoma is classified into three types (1) Open
Angle Glaucoma (2) Closed Angle Glaucoma and (3) Nor-
mal-tension Glaucoma.

2.1 Open angle glaucoma

It is a major and most common type of glaucoma. In this
case, there are no early symptoms or early warning signs.
During the initial stages, it isn't easy to identify. The peo-
ple who are suffering from open-angle glaucoma will feel
normal in the beginning stages. Once they lose the vision,
the doctors will come to know that the person is suffering
from glaucoma. Out of all glaucoma cases, 90% of cases
suffering from this type of glaucoma.

In the case of open-angle glaucoma, the produced eye
fluid will not be drained clearly in the drainage canals. The
liquid will be slowly blocked and resulting in slow fluid
flow through the drainage canals. Due to this, the intraocu-
lar pressure on the eye increases, causing the optic nerve
to get damaged. In this case, a wide-angle will be devel-
oped between the cornea and iris. If the blockage occurs
beyond or somewhere inside the drainage canals, it will
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Fig.3 Open-angle glaucoma

lead to open-angle glaucoma. Figure 3 [7] shows the com-
plete architecture of open-angle glaucoma.

2.2 Closed-angle glaucoma or acute angle
glaucoma

Closed-angle glaucoma is one of the types of glaucoma.
The symptoms of closed-angle glaucoma are nausea,
headache, eye pain, and vision will get blurred. The gen-
erated eye fluid will not get adequately drained in the
drainage canals. Due to this, intraocular pressure occurs
and causes the optic disc to get damage. The narrow-angle
form between iris and cornea. If the blockage occurs at
the entrance of the drainage, canals lead to closed-angle
glaucoma. Figure 4 [7] shows the complete architecture of
closed-angle glaucoma.

2.3 Normal-tension glaucoma

It is also called low-tension glaucoma [8]. In this case, the
optic nerve gets affected even though there is no much
pressure on the eye. The average pressure on the human
eye is in the range between 12-22 mm Hg. The people
having normal eye pressure also sometimes suffer from
glaucoma. Mainly it occurs due to family history. They were
treated by decreasing the pressure on the eye as low as
possible using laser treatment, medications, and by some
surgery.
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Fig.4 Closed-angle glaucoma

3 Retinal image acquisition

In the retinal imaging technique [9], the two-dimensional
images converted into three-dimensional retinal tissues.
These images are useful for diagnosing and managing
several eye diseases. Capturing the rear image of the eye
is called the fundus. Hence it is named a fundus camera.
The detailed visualization of the eye can be easily obtained
by using a fundus camera [10]. The fundus cameras are
readily available in most of the eye care centres and hos-
pitals. Some of the eye’s main components that can easily
visualized from the fundus camera are optic disc, fovea,
exudates retina, and macula.

3.1 Publicly available dataset

Some of the publicly available datasets used to detect
glaucoma are discussed below,

3.1.1 DRIVE dataset

DRIVE (Digital Retinal Images for Vessel Extraction) [11]
database was acquired from the diabetic retinopathy
research program in the Netherlands and consist of
nearly 40 images. Out of 40 images, 7 of them are having
pathology, and remaining are normal images. The images
automatically divided into two groups with 20 images
for testing purposes and the other 20 images for training
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purposes. Those images captured using a canon CR5 non-
mydriatic 3eco camera with a 45-degree field of view to
get high clarity fundus images.

3.1.2 MESSIDOR dataset

MESSIDOR Dataset [12] consists of two sets of images
containing 1200 images. One set used for retinopathy
grade, and another set is for the risk of macular edema.
French Ministers of research and defence capture the
images by ophthalmological department. The captured
images stored in the TIFF format. The nonmydriatic retin-
opathy with a 45-degree field of view is used to capture
the images.

3.1.3 ORIGA dataset

ORIGA [13] dataset mainly used for Glaucoma analysis and
research purposes. This dataset consists of 650 images. Out
of 650 images, 160 images were glaucomatous, and 482
were non-glaucomatous images.

3.1.4 REFUGE dataset

The REFUGE [14] dataset is a part of the Retinal Fundus
Glaucoma Challenge (REFUGE), which is in conjunction
with MICCAI 2018. This dataset contains 1200 fundus
images, and it is the current largest publicly available fun-
dus image database. Here, the ground truth segmented
images and the fundus images clinical values are also
available in the database.

3.1.5 DRISHTI-GS dataset

The DRISHTI-GS [15] dataset consists of 101 fundus images,
including 50 training images and 51 testing images. The
images include OD and OC masks with their CDR values.
This dataset is collected by joint association of Arvind Eye
hospital located in Mumbai and researchers of IlIT Alla-
habad. It consists of all age group images and is useful only
for research purposes.

4 Parameter analysis

The image classification methods help to differentiate the
images from glaucoma and healthy images based on some
parameters. Some of the parameter metrics are CDR, ISNT
rule, DDLS (Disk Damage Likelihood Scale), GRI (Glaucoma
Risk Index), etc.
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4.1 CDR

Finding horizontal, vertical, and area ratio between the
cup to disk is called CDR (Cup to Disk Ratio) [16]. If the
ratio is less than or equal to 0.3, then it is considered as
healthy eye. Once the ratio increases by more than 0.3,
then it is treated as an abnormal eye. Based on CDR value,
we can quickly identify whether the person is having glau-
coma or not. HCDR (Horizontal Cup to Disk Ratio) is used
to calculate the horizontal ratio and calculated using the
below Eq. (1).

Hepr = Heup/ Hoisk (M

Hcup Hpisk is the horizontal length of the optic cup and
optic cup respectively.

To calculate the vertical ratio, VCDR (Vertical Cup to Disk
Ratio) is used and Eq. (2) gives the formula to calculate

Veor
Veor = Veur/ Voisk (2)

Veup Voisk is the vertical length of the cup and disk
respectively.

To calculate Area, ACDR (A rea of Cup to Disk Ratio) is
used with the Eq. (3).

Acor = Acup/ Apisk 3)
Acyp is an Area of the optic cup. Ap s is an Area of the

optic disk.

4.2 ISNT rule

The inner layer of the optic disk contains neuroretinal rim.
The rim consists regions of inferior, superior, temporal, and
nasal. All these regions are ordered based on the ISNT rule.
The below-mentioned order is the standard ISNT rule form
for the normal eye.

I >S>N>T

here | is inferior, S is superior, N is nasal, and T is temporal.
4.3 DDLS (Disk damage likelihood scale)

The scale which measures the disk damage likelihood is
called DDLS [2], and also it calculates the severity of the
disease.

DDLS = MinRim, g,/ DD )

here DD is the Disk Diameter, MinRim,,,y, is the minimum
width of rim and is calculated using the Eq. (4).

4.4 GRI (Glaucoma risk index)

Using various Principal Components, GRI is Calculated.
Based on the range of PCA (Principal Component Analysis),
eye can be classified as normal or abnormal. The principal
component PC1 to PC5 is calculated. Equation (5) used to
calculate the GRl value.

GRI = 6.8375 — 1.1325 (PC1) + 1.6500 (PC2)

+2.7225 (PC3) + 0.6750 (PC4) + 0.6650 (PC5) ©)

If the GRI range is (8.68+1.67), then the eye is treated
as a healthy eye and if the GRI range is (4.84+2.08), then
the eye is treated as the abnormal eye.

5 Literature survey

In recent years, medical imaging is growing very fast for
medical diagnostics by using digital imaging systems. Many
techniques like image processing, machine learning, deep
learning, etc., are applied to identify glaucoma. The glau-
coma is mainly identified on ONH (optic nerve head). So, to
detect ONH many localization and segmentation methods
are used. After the localization of optic nerve head, locating
the boundary of optic disc and optic cup is the challeng-
ing task here. In the existing system, many methods were
applied, but to increase the parameters like accuracy, sensi-
tivity, and specificity, new methods has to be identified. As
glaucoma leads to vision loss in severe cases, detection in
the early stages is the key to avoid vision loss.

The literature survey on various segmentation and clas-
sification approaches over retinal fundus images are dis-
cussed in the below Tables 1 and 2 respectively. Table 3
explains the Literature survey based on some of the per-
formance metrics.

By comparing all the segmentation approaches from
Table 1, it is clear that all the above captured methods
have both advantages and disadvantages. The Level set-
based approach [36, 37] is mainly used for handling sharp
corners and it is an efficient and versatile approach. Itis a
very time-consuming method and it results in under seg-
mentation or over-segmentation. The threshold-based
approach [38, 39] is fast and simple. This method does not
give good results with a flat and broad range of pixels.
The clustering-based approach [40] is easy to eliminate
noise and works well with differentiating homogeneous
and heterogeneous regions. According to the survey, the
segmentation of images with a clustering-based approach
is better than other approaches.

The KNN is very effective for a large number of training
data, but the computation cost is very high. It is not a para-
metric methodology for data arrangement. The information
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(continued)

Table 1

Remarks

Performance value Database used

Performance measure

Method

Reference

The method consumes less time and

RIM ONE DRISHTI-GS

0.15
0.91
0.16
0.90
0.69
0.82
0.75
0.85
0.93
0.88

Accuracy

Level set based adaptively regular-

ized Kernel-based intuitionistic
Fuzzy C means (LARKIFCM)

Niharika Thakur et al. [30]

gives more accurate result

Dice similarity

Accuracy

Dice similarity

[o]V]

Simple framework and Simple

RIM-ONE v.3, DRISHTI-GS

Modified U-net

Sevastopolsky [31]

implementationConsumes less

prediction time

Dice

[o]V]

Dice

Separate individual Unet models for

DRISHTI-GS

Dice metric

10C

Deep learning GNET (glaucoma

Mamta Juneja et al. [32]

OC and OD segmentation helps to

get more accurate results
Compared with the results of multi-

network)-an enhanced model of

UNet

RIGA dataset,

0.9798
0.9910
0.9881

Sensitivity
Specificity

Accuracy

FCN (Fully connected network)

Jongwoo Kim et al. [33]

class FCN and the binary class FCN

Used minimum epochs and

MESSIDOR RIGA

97.38%
94.92%

Disc dice

Modified U-net from Resnet-34

Shuang Yu et al. [34]

achieved good performance

Disc Jacc

88.77%
0.9989
0.9985

Cup dice

Five publicly available database Results with high-quality segmenta-

Accuracy(OD)
Accuracy(0Q)

Fully convolutional densenet

Baidaa Al-Bander et al. [35]

tion

comprises of k models. In SVM, the searching capability is
very high. But the disadvantage is, it is very inefficient for
binary image classification. It is a supervised learning tech-
nique of data analysis and an administered learning tech-
nigue for information investigation. In Naive Bayes classifi-
cation, images are trained quickly, but it assumes that the
extracted features are independent. It is a straight forward
classifier, in which it is dependent on Bayes’ hypothesis.
Random forest works well with broad number dataset clas-
sification, but it is not best fit for the dataset that contains
noise. In ANN, less time is required for training model with
training the data but the computation cost is high. ANN is a
computational model, dependent on the working of neu-
rons in the organic cerebrum with an enormous gathering
of straightforward unit associations called axons. Its associa-
tions convey actuation signals with shifting quality. If the
approaching sign is solid, neurons get enacted and travel to
another associated neuron. Hence, the SVM classifier is the
most commonly used classifier in which it gives maximum
accuracy compared to all classification approaches. How-
ever, every method has its advantages and disadvantages,
but improved methods need to be proposed for the detec-
tion of the optic disc and optic cups to diagnose glaucoma.

We have many segmentation approaches for the detec-
tion of the optic disc and optic cup. In a Level set-based
approach, it tracks interfaces of moving articles by taking
care of the issue of bend and surfaces in an understood
way by utilizing advancing shape. It utilizes the idea of sign
capacity whose zero compares to a unique curve. Active
contour modeling based approach depicts the layout
of the limit by limiting the energy-dependent on forces
which apply weight toward shapes of the item and inner
powers that oppose the deformation. Active shape dem-
onstrating based approach iteratively disfigures to recog-
nize the state of the article in the new picture. Here, the
state of the model is obliged by the distribution of focuses
on the object. It utilizes Mahalanobis separation depend-
ent on standard deviation and intends to search for solid
edges in the picture. The clustering-based approach is an
iterative methodology of collecting a bunch of objects
having comparable conduct lie on one gathering while
lying on another gathering which dependent on like-
nesses. It depends on the estimation of the functioning
of density, the total number of clusters, threshold get
formed, and distance function. A hybrid approach is used
for the segmentation of an object, which is the combina-
tion of many segmentation approaches. To extract the ROI
(Region of Interest), this technique will be mainly used.

In the existing systems, there is a manual detection
process, in that it requires manual input from the oph-
thalmologist to proceed for the diagnosis of glaucoma.
This process requires more time; also, there is no quality
in recognition. Hence, it's essential to develop a faster and
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Table 2 (continued)

Performance measure Performance value Database used Remarks

Method

Reference

More helpful for large scale data-

Shanghai Zhongshan Hospital

database

0.941

Deep Residual Neural Network  Accuracy

Feng Li et al. [76]

set screening of fundus images

0.957

Sensitivity
Specificity

AUC

0.929

0.992

automatic system. The machine learning and deep learn-
ing techniques help in all the computer vision tasks, espe-
cially in the medical field. This deep learning technique
also plays a major role in the segmentation and classifi-
cation of images. In the existing papers, the researcher
applied different types of architecture using deep learn-
ing techniques and achieved good results. This tech-
nique helps the system to train and test a large number
of images in a limited amount of time. It helps to extract
the hierarchical information from the images and to dis-
tinguish from glaucoma and non-glaucomatous images.
The understandings of the existing system methods
applied for the detection of glaucoma discussed below,

e Compared to image processing techniques, machine
learning and deep learning techniques give good accu-
racy for the detection of glaucoma.

e The survey suggests that Pre-Processing is an essential
initial step to be concentrated.

o The optic disc is more visible on the green channel of
the RGB image. In the green channel, the image back-
ground and the blood vessels will be easily differenti-
ated. It helps for the removal of blood vessels in the
detection of optic disc.

¢ Finding optic disc and central bright pixel of optic disc
are used for the detection of the optic cup.

¢ Identifying morphological technique for detecting the
optic disc and optic cup boundary to calculate cup-to-
disc ratio.

6 Performance metrics

The performance of the methodologies applied for the
detection of optic disc and optic cup can be estimated
by using some parameters. The few metrics used for the
performance analysis is discussed below,

6.1 CDR acceptability

The CDR acceptability is the difference between the CDR
which is calculated manually and the clinical CDR. If the
difference between the two is less than 0.2, then it is nor-
mal; otherwise, it is abnormal. The CDR acceptability meas-
ured by using below Eq. (6),

CDRacc = CDRclinical — CDRcal < 0.2 (6)

SN Applied Sciences
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Table 3 Literature survey based on some of the performance metrics

Cheng et al. [23] Clustering-based approach for Mean CDR error 0.107 MESSIDOR Over segmentation or under seg-
both segmentation of optic mentation of OD and OC
disc and optic cup

Xu et al. [66] Histogram features for feature The relative absolute  31.5% ORIGA The localization of the optic cup is
extraction, SVM for classifica- area difference improved
tion

Liu etal. [77] Level set approach (optic disc Avg. CDR acceptability 97%  Local dataset Manual inputs are decreased dur-

segmentation) of 73 ing segmentation
images
Mahapatra et al. [78] Random forest for classification  Correlation 0.85 DRISHTI-GS  The classification accuracy is more
6.2 Mean error Sensitivity = TP/(TP + FN) )

The closeness between the observed outcome and the
actual result is called a mean error. If the mean error
increases, the performance decreases.

6.3 Standard deviation

The difference between the cluster of objects and the
mean error is the standard deviation. If the mean error
increases, then the performance decreases.

6.4 F-score

F-score is the metric used to measure the accuracy in
which the value is between 0-1. If the resultant value close
to 1, then it gives better performance.

6.5 Correlation coefficient

The correlation coefficient is used to find the relationship
between the direction and strength of two variables that
are in the range of 0-1.

6.6 Sensitivity, specificity and accuracy

Based on the diagnostic examinations, the test will be ana-
lysed on the view of accuracy, sensitivity, and specificity
[17] characteristics. The test which is used for the detection
of positive infection is sensitivity. How likely the patients
without sickness will be effectively eliminated with the
help of specificity. The correctness of the test is measured
by accuracy. The below mentioned Egs. (7), (8), (9) gives
the formula to calculate Accuracy, Specificity, and Sensitiv-
ity respectively.

Accuracy = (TN +TP)/(TN + TP +FN + FP) )
Specificity = TN/(TN + FP) @)
SN Applied Sciences

A SPRINGER NATURE journal

TN =True Negative FN = False Negative TP = True Posi-
tive FP = False Positive

7 Research gap

The retinal image analysis is a very difficult task because
of its structural feature variations of the patient. According
to the survey, the diagnosis of glaucoma is based on the
proper detection of the optic cup and optic disc. The dif-
ficulties faced during the detection of glaucoma is listed
below,

a Over segmentation or under segmentation occurs due
to the low contrast of an image and invisible borders
between the optic cup and disc.

b The presence of peripapillary atrophy and blood ves-
sels on the retina decreases the performance of the
segmentation. Hence, the pre-processing of an image
is a very important step to remove the blood vessels
and to avoid the peripapillary region on the retina as a
disc region. So, by applying many filters and improved
morphological approaches during pre-processing will
help to segment the optic region easily.

¢ Comparatively the features of OD and many other
parts of the retina are same. Because of the entire
brightness and the lesion around the OD, it is very dif-
ficult to locate. Hence extracting more features helps
to increase the performance in the detection of OD.

d Increasing the number of datasets for image classifi-
cation will decrease the performance of the model.
Hence, improving the classification approaches helps
to classify the normal and glaucoma image.
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8 Findings

e The usage of more filters and morphological operations
to remove blood vessels during image pre-processing
may lead to the problem during the segmentation pro-
cess.

e The red channel is more suitable for its clear appear-
ance during optic disc segmentation as compared to
the other channels.

e The green channel is more suitable for optic cup seg-
mentation due to its high contrast in the channel com-
pared to other channels.

9 Conclusion

The paper includes many segmentation and classification
methodologies applied till date for the diagnosis of glau-
coma. Here we summarise many challenges that have to
be taken for consideration to overcome the problems of
segmentation and classification techniques. In the exist-
ing papers, the researchers considered many features
for classification purposes. To increase the classification
performance, still more features can be extracted. The
main challenge is to avoid under segmentation or over-
segmentation of optic disc and cup boundary due to the
presence of more number of blood vessels on this part.
This problem can be overcome by segmenting the disc on
the red channel due to the highest inequality between the
disc and non-disc region and many challenges in optic disc
segmentation due to the presence of blood vessels can
also be avoided by applying morphological operations in
the pre-processing stage. Compared to the segmentation
of optic disc, the optic cup segmentation is very tedious
due to its interlink with many surrounding tissues and
blood vessels. Hence, due to the less visibility of blood
vessels in the green channel, the optic cup segmentation
can be done on this channel. From the study of the exist-
ing technique, it shows that the deep learning techniques
applied during the segmentation and classification of fun-
dus images give more accurate result compared to image
processing techniques. But, it shows that the techniques
applied can be improved for getting more accuracy in
locating the boundary of the optic disc and the optic cup.
Finally, the paper concludes that the improvement in the
segmentation and classification approaches helps for the
early diagnosis of glaucoma.
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