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Abstract
In this work, we present the Overwatch-M platform, a novel approach that combines Bayesian theory with mixed reality 
(MR) to assess the user’s sensorimotor control. This platform is composed of a set of simple MR tests, which are short, and 
guides the user through a series of activities while monitoring the user’s interaction. The main advantage of this strategy 
relays on its ability to combine prior and observed user’s interaction to determine the impact on the user’s functional 
performance. This approach aims to detect changes in the user’s functional performance that could lead to sensorimo-
tor problems in older adults at an early stage. For validation, a Bayesian model is implemented into the system to collect 
and analyze datasets and to provide a quantitative estimation of functional performance by providing a probabilistic 
conditioning assessment of their test-interaction over time. The strategy has been implemented to test the sensorimo-
tor function, eye-hand coordination.
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1  Introduction

Scientific studies have found that many sensorimotor func-
tions, like body coordination, eye-hand coordination, pos-
tural, gaze function, and spatial perception, tend to decay 
as a person’s age. Sensorimotor control is a nervous system 
mechanism within the human body that receives sensory 
stimuli from its environment, and it transmits, processes, 
and integrates the neural signal as motor command out-
puts to accomplish a goal [14]. As people age, daily life 
activities such as walking, cooking, showering, and manip-
ulating objects become difficult tasks to achieve due to a 
reduction in their functional performance [2]. As a result, 
many older adults are at risk of accidents or injuries, caus-
ing an individual to relinquish their independence. Estima-
tions show that in the United States, during 2014, 28.7% 
of adults 65 years or older fell, with an approximated cost 

of $31.3 billion to Medicare [6]. Thus, motor performance 
deficit is a severe problem caused by a dysfunction of the 
central and peripheral nervous system.

One of the aspects of this disorder is impaired coor-
dination [16], such as eye-hand coordination. In neuro-
physiology, the study to model eye-hand coordination is 
essential to determine the spatial position of the hands 
concerning the body [1]. This coordination is vital since it 
integrates two critical senses, vision and proprioception, 
which are used by the central nervous system (CNS) for 
motor planning [5]. Proprioception is a sense that provides 
spatial information of different limbs to CNS; it encodes 
information about all the joint angles between the hand 
and the rest of the body [5]. Therefore, a reduction in the 
transmission of these senses through the CNS can alter 
neuromuscular control [14]. Different experiments have 
been developed to acquire sensorimotor information; for 
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example, observational cross-sectional and matching tasks 
[4, 14]. The matching task experiment calculates the preci-
sion of the spatial probability distribution of the localiza-
tion of proprioception and visual senses [4]. For instance, 
a proprioception localization test allows a user to point 
to a visual target with his unseen hand. The exercise is 
repeated over time to obtain a spatial probability distri-
bution of the hand’s proprioceptive and visual localization 
of the target [4]. However, the sensory system is suscep-
tible to variability and noise, which limits the precision of 
our senses. Therefore, computational principles for sen-
sorimotor control have been explored and implemented 
to reduce uncertainty. Techniques like Bayesian methods 
reduce sensory uncertainty because our brain’s perceptual 
representation and Bayesian theory, share a similar system 
of conditioning probability for unknown parameters [3, 
11].

In this work, we present a novel approach that com-
bines a machine learning technique based on Bayesian 
theory with Mixed Reality (MR) to assess the user’s sensori-
motor control and impact on functional performance. The 
base of this approach is on four main phases, as shown in 
Fig. 1. First, Mixed Reality Training Sample phase, where the 
process of collecting training sample information from the 
user as it performs a series of short physical tests. Second, 
Motor Control Estimation phase, where collected sensori-
motor information is analyzed to estimate the user’s opti-
mal motor control and minimizing uncertainty and finding 
the likelihood parameters that maximize the probability 
of the observed samples. Third, Multisensory Integration 
phase, where the maximized models for vision and pro-
prioception are integrated and mixed to represent a joint 
probability distribution. Forth, Dynamic Bayesian Network 
Prediction phase, where we condition the joint probabili-
ties of the Multisensory Integration phase with other con-
ditional nodes in a Dynamic Bayesian Network (DBN) to 
predict eye-hand coordination disorders at different peri-
ods of time. This phase is not part of this work; however, 
we give a brief description to explain how it could be used 
as future work.

Fundamental sensorimotor mixed reality (MR) tests, 
short and easy to implement, guide the user through a 
series of activities while monitoring user interaction. The 
Bayesian model collects and analyzes data sets from the 
tests and determines the impact on the user’s functional 
performance. The advantages of this strategy rely on its 

ability to combine prior and observed user’s interaction 
within simple tests. Other methods like neural networks, 
naive Bayes, logistic regression, support vector machines, 
and regression trees can attain results. However, these 
methods solely classify the information and fail to produce 
a probability distribution, which provides a better quan-
titative estimation of the data [13]. This approach aims to 
detect changes in the user’s functional performance that 
could lead to sensorimotor problems by providing a prob-
abilistic conditioning assessment of their test-interaction 
over time.

2 � Mixed reality training samples

In this phase, we collect training sample information from 
the user as they perform a series of short physical tests. 
Hence, an interface in Mixed Reality (MR) was developed 
to simulate a match tasking test. MR gets defined as the 
blend of the real world and digital elements, or holograms, 
anchored into our environment for manipulation [1]. 
Therefore, the interface aims to facilitate the user to grab, 
hold, and drag a virtual object in an MR environment while 
aiming to reach a holographic target, as shown in Fig. 2.

From these motions, the program will extract the spatial 
motor output distribution to understand the user’s preci-
sion of their sensory input. The cues provided to the user 
are holographic objects displayed in a headset called the 
Hololens developed by Microsoft The Hololens provides 
a substantial increase to the user’s interest in the train-
ing because of its immersive and realistic display, which 
reduces cognitive load [9]. The definition of cognitive load 
is the total mental effort used to perform a new task by 
using adequate instructions [18]. Therefore, this aspect 
impels older adults to focus on the program. Also, the 
device is portable and compact, and no extra features 
like mirrors, tables, laser pointers, or video cameras are 
required to acquire users’ motor output data because the 
Hololens is equipped with sensors to capture the user’s 
motion. Additionally, this system collects information on 
the fly, which can be used to provide immediate results to 
the user after completing the training. The training pur-
pose, as mentioned earlier, simulates a match tasking exer-
cise similar to the one proposed by van Beers [4] in which a 
user tries to point to a target with their unseen hand using 
as reference a mirror reflection. In our test, the user tries to 

Fig. 1   Predicting eye-hand 
coordination disorder via 
Bayesian theory and mixed 
reality
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reach a target using holographic cues that move at specific 
time intervals. Thus, the procedure to collect spatial train-
ing samples requires the user to control a manipulating 
object from an initial to a final position, as shown in Fig. 3.

The location of the target for this task is the cross-
section of the vertical time guide and horizontal path. 
However, the user gets conditioned to be within certain 
bounds of the window time frame. Additionally, the user 
must traverse those bounds at a certain speed interval 
to the best of their abilities. Otherwise, the program will 
detect if the user is not controlling the object effectively, 
and it will force the user to restart the repetition. Some of 
the different objects that the user will interact with the 
short tests are:

1.	 Manipulating Object Interactive object, which after 
selection it allows the user to hold and drag around 
the virtual world using his/her hand motions.

2.	 Training Selection Predefined test objects that, when 
selected, with the Manipulating Object, condition the 
test’s repetition number and speed.

3.	 Path Static object and visual cue to the user to deter-
mine if the Manipulating Object is within an accept-

able manipulating range or not. User should keep 
the Manipulating Object in contact with the Path at all 
times, this will lit the Path green. Otherwise, it will turn 
red, indicating that the user is not within an acceptable 
range.

4.	 Time Guide It moves parallel to the Path at a certain 
speed as a visual cue to move the Manipulating Object.

5.	 Window Time Frame It is used primarily as a visual 
capsule for optimal range manipulation.

6.	 Nodes They are waypoints objects properly arranged 
along the path. Their purpose is to collect spatial 
data of the Path and the Manipulating Object at every 
instance the Time Guide reaches a Node. Forty different 
waypoints construct the spatial position of the target’s 
position over time. In other words, the program col-
lects spatial information of the target and the path at 
forty different points.

7.	 Initial and Final Spheres They are flags located at 
opposite ends of the path, which condition the origin 
and culmination of a repetition (round-trip path).

Following the acquisition of the training samples, the 
information gets stored into the Azure cloud, and the 

Fig. 2   Overwatch-M system: set of basic mixed reality tests, short in duration and easy to complete, were developed to assess user’s interac-
tion. Each test collects data such as objects’ position error and time response

Fig. 3   Diagram depicting the 
different objects that construct 
the mixed reality test, which 
enables the user to interact for 
short periods of time
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target and user’s control position information gets saved in 
the cloud for download. The documents contain the node 
number, X, Y, and Z spatial information, the direction of the 
movement, and a time counter from when the training got 
initiated. After the collected information gets stored in the 
cloud, the information is available for analysis.

3 � Motor control estimation

Analyzing the collected sensorimotor information entails 
estimating the user’s optimal motor control and minimiz-
ing uncertainty and finding the likelihood parameters that 
maximize the probability of the observed samples. In this 
phase, we use the information collected from the interface 
developed in MR and stored in the Azure cloud to solve 
these problems. The final output of this section is a set 
of probability density models of precision of state of the 
hand given the sensory stimuli for vision and propriocep-
tion for each Node. However, to reach these conclusive 
models, the collected information needs to get filtered 
and fit accordingly to maximize the probability of the 
sampled data. This analysis is essential because sensory 
information contains noise which propagates through all 
states of the sensory system. Therefore, that noise needs 
to get reduced, and the user’s optimal motor control dis-
tribution parameters found to provide appropriate esti-
mations about the state of the hand. Hence, to minimize 
the uncertainty in the sampled information, Bayes’s rule is 
applied to enhance the belief of the data as more informa-
tion becomes available.

For visual localization, collected spatial data got 
assessed in azimuth movements along the plane or X-axis, 
and proprioception estimated in depth or Z-axis. Once 
data gets read and classified between vision and pro-
prioception, the information for these two senses must 
be structured accordingly to the node from which they 
got collected. In this work, forty nodes have been defined 
(nodes’ location are illustrated in Fig. 3); therefore, forty dif-
ferent distributions for vision and proprioception respec-
tively will be generated. Afterward, Bayes’s rule, Eq. 1, is 
applied to these 80 distributions to minimize uncertainty.

Bayes’ rule in Eq. 1, estimates the posterior probability den-
sity of the state of the hand � given the observed sensory 
information Sk , where k is the sensory input, for vision or 
proprioception, and i indicates the collected node index, 
and each node contains a set of collected samples. Thus, 
as described in Section sec:1, the MR programs collect sen-
sory information at forty nodes. Hence, if an MR test asks 

(1)P(�|Sk)i =
P(Sk|�)iP(�)i

P(Sk)i

to complete three repetitions, in a forward and backward 
direction, each node will have a minimum of six observa-
tions. Therefore, we calculate forty posterior probabilities 
per sense or eighty distributions in total. Hence, we calcu-
late the likelihood P(Sk|�)i assuming a normal distribution 
of the sampled sensory information.

Additionally, the prior distribution P(�)i provides the 
previously estimated posterior probability density. Finally, 
for normalization, the factor P(Sk)i sums all the probabili-
ties of the observed information to scale the posterior 
distribution between zero and one. This posterior distri-
bution estimates the probability of precision of the hand 
state given the sensory input. Then, this posterior becomes 
the new prior, which continually updates based on new 
sensory information. This method properly weights both 
distributions, prior and likelihood, given the precision 
obtained from the sensory input [3]. Then, we need to 
make the data the most likely because humans determine 
the maximum likelihood estimate (MLE) when confronted 
with different sources of information to perform a task [7, 
10, 19]. Nevertheless, when prior information is missing, 
there is no difference between maximizing the likelihood 
and the posterior distribution. However, in the case in 
which we know the prior information of the training, we 
use the Bayes’ Rule Equation 1 to estimate the posterior 
[19]. Thence, we calculate the maximum point of the pos-
terior distribution, or the maximum a posterior (MAP), to 
estimate the optimal parameter of the hand state.

Hence, these Bayesian estimations trade bias over 
variance because the posterior distribution will be more 
biased towards the mean of the prior than of the likeli-
hood. Therefore, if someone misses a target on average, 
it does not mean that they do not know how to perform 
the training but rather that they are optimal for statistics 
that differ from the one we know [19]. Therefore, we con-
sider the idea that as the user learns to manipulate a vir-
tual object, it learns to infer the probabilities of its sensory 
system by combining Bayes’s rule and MLE to determine 
how the observed and unobserved parameters are related. 
The result of this estimation is a model with the most rea-
sonable belief of the location of the target, given their 
sensory input. Ultimately the highest point in this model 
is the most likely parameters of the precision of the state 
of the hand [19]. Thence, it calculates the maximum esti-
mation from the dataset for the sensory input S given by 
f (S|�)p(�j) where �j is the observed hand states and P(�j) 
is the probability of the hand state.

To estimate the MLE distribution with prior informa-
tion, we draw the probabilities of the hand state per node 
for likelihood P(Sk|�j)i and prior P(�j)i distributions, where 
j = 0,… , s , represent the index of the observed hand state 
probability. Then, for each node sample, we generate new 
distribution parameters using an iterative maximization 
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algorithm. Consequently, the optimal global solution of 
the algorithm determines the distribution parameters 
that maximize the likelihood of the sample’s information. 
Thence, with these calculated parameters, we generate a 
maximum likelihood distribution, which becomes a node’s 
new posterior probability distribution. However, in case 
of no prior information, the same process unrolls but with 
just the likelihood distribution samples. With these final 
distributions, we intend to find the most likely distribu-
tion parameters of the precision of the hand’s position per 
node using the MAP point.

4 � Multisensory integration

The ultimate objective of the system is to provide a predic-
tive estimation of the user’s risk of developing an eye-hand 
coordination disorder given hand state information and 
medical data. However, to estimate that value, the joint 
probability distribution of the sampled information must 
be derived. Calculating the estimated control distribution 
at forty different positions/nodes results in forty different 
distributions. Therefore, a joint probability distribution 
estimates the model parameters of the mixed models for 
all forty distributions for vision and proprioception. Then 
use this model as evidence in a Bayesian network (BN) with 
the user’s personal and medical information for prediction 
of sensorimotor problems. However, first, we must inte-
grate the output of the user’s control estimation for vision 
and proprioception into a unimodal localization distribu-
tion of the hand state. This integration takes into account 
the direction-dependence of vision and proprioception 
precision to integrate both senses [5]. Thus, the output of 
this process is a normal distribution with its parameters 
describing the bimodal distribution of the hand localiza-
tion. Therefore, as defined in Eq. 2, the parameters of the 
unimodal hand localization integrate the bimodal sensory 
model, where Σ is the covariance matrix, and � is the mean 
of the integrated distribution; p and v represent proprio-
ception and visual sense, while PV show the integration 
of p and v.

Henceforward, we approximate the joint probability dis-
tribution of each model to estimate its mixed parameters 
in a BN. With this process, we approximate a posterior 
probability distribution by combining each multisensory 
integrated model. Hence, to compute the joint probability 
distribution, we choose a Gaussian Mixture Models (GMM). 
This method weights the combination of the multisensory 

(2)
ΣPV =(Σ−1

p
+ Σ−1

v
)−1

�PV =ΣPV (Σ
−1

p
�p + Σ−1

v
�v)

models x to estimate its joint probability in a conditional 
BN with M mixture components described in Eq. 3.

The parameters of the GMM are Θ = (�1,… , �M, �1,… , �M) , 
�l is a mixing proportion which sum equals to one, and pl is 
a Gaussian probability density with �l = (�l , �l), l = 1,… ,M 
[12]. After building the mixed model, its distribution 
becomes an observed node in a BN, with its objective to 
predict eye-hand coordination disorders. The benefits of 
using BN rely on its ability to combine heterogeneous 
data, and the interpretability of the graphical network [15]. 
Also, BN excels at handling events in which information 
might be missing and can compute prior knowledge with 
information on a current event [17]. Hence, the prediction 
formulation conditions the observed nodes of the hand 
localization precision estimation, medical, and personal 
information of the user to detect patterns of eye-hand 
coordination.

5 � Experimental results

The experimental section estimates the user’s sensori-
motor control after a user completes a test for vision and 
proprioception sensory input using a Bayesian framework. 
Then, the estimated sensory models, for vision and pro-
prioception, get integrated to estimate a unimodal dis-
tribution per node. Finally, all the unimodal distributions 
are mixed to generate a Gaussian mixed model (GMM) 
of all the nodes in a test. As preliminary results, we show 
the analysis of four users with no previous coordination 
problems after performing the same five tests, with three 
repetitions each.

5.1 � Samples collection

As a first step, the user completes a mixed reality (MR) tuto-
rial to familiarize themselves with the system. Following 
after, the user sits down to set the head position as origin 
of the virtual world; otherwise, the user might perform the 
test poorly since they might lose perception of the origin 
to which the program gets anchored. Next, the user must 
tap and drag the manipulating object to select one of the 
tests. For instance, training one requires three repetitions 
at a slow speed of approximately 28 cm per second with 
a relative path of five meters in the MR World, as shown 
in Fig. 4. The testing time lasts approximately two min-
utes if the training gets completed flawlessly. Otherwise, 
it will run until the program completes all the repetitions 
correctly.

(3)p(x|Θ) =
M∑

l=1

�lpl(x|�l)



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:129 | https://doi.org/10.1007/s42452-019-1666-y

Depending on the training and accuracy of the user, the 
number of collected samples points in every node might 
vary. For example, if the user moves the manipulating 
object away from the path, the path’s color turns red and 
while the time guide is at node n the direction of the train-
ing will change to a retrospective movement, so instead of 
moving to n+1 it will move to n−1 towards ninitial . Therefore, if 
this event happens frequently, nodes between node n and 
ninitial will contain more sample points than nodes between 
n and nfinal . In this experiment, the motion of the repeti-
tions is horizontal, extended right arm moving towards the 
left shoulder, or left extended arm moving away from the 
body. This motion forces the user to stretch their arm from 
the initial to the final sphere position. Also, the user needs 
to ensure that their hands are always within the HoloLens’s 
field of view. If the object is not within the view of the 
headset, the manipulation event and the Time Guide will 
pause. Additionally, a counter shows the number of com-
pleted repetitions to aid the user in maintaining a record 
of their progress. When the user completes all the repeti-
tions, it can stop dragging and holding the Manipulating 
Object and exit the program with a bloom gesture. Video 
at https​://drive​.googl​e.com/open?id=1mgQ3​ZRQ8z​4lY7D​
N4s3g​8x0At​xKCfc​xYo.

5.2 � Motor control estimation results

Experimental results show that the Bayesian framework 
provides a quantitative estimate for motor control, given 

vision, and proprioception because it estimates the users’ 
most likely control and minimizes uncertainty. By finding 
the most likely parameters of the likelihood model P(S|�) , 
it filters the sampled information to estimate the optimal 
motor control MAP in Fig. 5 ( MAP0).

For test two analysis uses Eq. 1 to minimize uncertainty 
about visual sensory precision, by multiplying the prior 
and likelihood models to estimate a posterior model. Then, 
we calculate the maximum posteriori estimates of visual 
input by finding the model that maximizes the likelihood 
of the posterior model and the sampled information to 
determine optimal control, as seen in Fig. 5 MAP1 . After 
this, the posterior model adjusts accordingly to the user’s 
sensory input with every new test, from test 2 to test 5 
using the Bayesian framework and maximum likelihood. 
Likewise, this method is also applied for proprioception, 
as shown in Fig. 6.

Moreover, Fig. 7a, b show maximum probabilities for 
proprioception and vision, respectively at node 30 for four 
users. Thus, we observe the case of user 3, with changes in 
hand position precision during test 4 due to a diverging 
performance in relationship with other users, which sug-
gests bad performance at that point in space-time. Never-
theless, results seem to ascertain a steady rate of progress, 
indicating a slow but stable rate of control at that node for 
most users.

5.3 � Multisensory integration results

Motor control estimation results presented individual 
posterior probabilities for vision and proprioception 
at a single instance of space (e.g., node 30). The next 
step is to integrate all distributions in both, vision and 
proprioception, among all nodes within the path. This 
distribution combination will create a more robust 
representation of the hand state. Thence, if vision and 
proprioception are equally precise, this indicates that 
the mean of the integrated models will get calculated 
between them. Otherwise, if a sense is more precise than 
the other, the integrated model will be biased towards 
that sense [3]. After integrating all sensory distributions, 
their final models (specific to the user) would look like in 
Fig. 8a for user 1 and Fig. 8b for user 4. The GMM joints 
the probability of the forty nodes along the path. The 
results of mixing the integrated distributions show that 
for instance, user 1 in Fig. 8c, on average, the standard 
deviation remains relatively constant during those five 
tests (0.623, 0.6451, 0.7568, 0.773 and 0.755), which 
resulted in a consistent average probability of hand state 
precision for all five tests. This consistency improves pre-
cision and suggests that the user controlled the object 
at the best of its ability through a persistent approach. 

Fig. 4   User grabs virtual object and tries to match the object’s cen-
troid with the cross sectional position of the Time Guide and the 
Path. Each test contains different speeds and number of repeti-
tions. After completing the test, information is stored and analyzed 
by the Bayesian model

https://drive.google.com/open?id=1mgQ3ZRQ8z4lY7DN4s3g8x0AtxKCfcxYo
https://drive.google.com/open?id=1mgQ3ZRQ8z4lY7DN4s3g8x0AtxKCfcxYo
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This pattern can also be seen for user 2 but with higher 
average standard deviation than user 1.

Furthermore, user 4 GMM in Fig.  8b displays that 
during the first two tests, their probability of precision 
increased because their average standard deviation was 
relatively small. Nevertheless, after test 3, the pattern of 
the model changed, decreasing the probability of preci-
sion of the hand state. Postulating that from test 2 to test 
3, the user changed their method to perform the test, 
which suggests that they failed to attain a technique to 
manipulate the object because it was not steadfast to its 
original method of manipulation. We observe this pat-
tern can in user 3 within test 3; its standard deviation 

increased drastically compared with the previous test, 
as shown in Fig. 8c.

6 � Conclusions

In this work, we developed a strategy that combines Bayes-
ian Theory with mixed reality (MR) to asses sensorimotor 
functions. To validate the approach, we selected the sen-
sorimotor case, eye-hand coordination disorder. Within the 
MR test, the user interacted through a series of short tests, 
and data sets of spatial information collected for analy-
sis. Results display that users’ performance or precision 

Fig. 5   Posterior and likelihood 
distributions for vision sense
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in executing the task improves over time. Experimental 
results from the eye-hand coordination case, show that 
the level of precision increases given the sensory infor-
mation from the previous to the current test. Within the 
first tests, the user experiences a quick increment in pre-
cision, as it adapts to the new technology. Eventually, the 
user reaches a certain precision level that remains almost 
constant (small increments in precision as tests continue). 
Also, we conclude that GMM is a suitable representation 
for pattern recognition to determine changes in perfor-
mance within the eye-hand coordination case, given both 
vision and proprioception senses.

As future work, the observed mixed model will be 
used as a continuous probability distribution evidence in 
a Dynamic Bayesian Network (DBN) (Fig. 9) to condition 
the probability of an eye-hand coordination disorder as 
presented in Eq. 4.

A DBN is a model with a repeated structure of a static 
Bayesian network (BN), in which arcs display local or transi-
tional dependencies among variables. A DBN’s structure is 

(4)
P(Pred_CDt|Aget−1,Med_Histt−1,

Current_CDt−1,Hand_Statet−1)

Fig. 6   Posterior and likelihood 
distributions for propriocep-
tion sense
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time-invariant because it remains fixed without modifica-
tion to its dependencies topology throughout time. Also, 
a DBN only depends on its parent at a current time t and 
prior time t − 1 , which constitutes that a node is independ-
ent of all previous states before t − 1 , known as Markovian 
property [8]. Furthermore, two essential aspects construct 
a DBN; developing a network structure, and learning the 
parameters of the network. Hence, after each test, the 
network learned the likelihood of a sensorimotor disorder 

given the observed test performance and expected per-
formance from the user’s medical and personal informa-
tion throughout time. Eventually, additional sensorimotor 
functions such as posture, and balance, will be included in 
the system to perform a complete analysis of functional 
performance. Also, we plan to evaluate the performance 
of the system by comparing healthy subjects with subjects 
presenting sensorimotor problems.

Fig. 7   a Proprioception’s MAP 
for four different users. b 
Vision’s MAP for four different 
users. From these graphs we 
can observe the correlation 
between vision and pro-
prioception of four users after 
completing a test for node 
thirty. Hence, suggesting a 
clear dependence between 
these two senses



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:129 | https://doi.org/10.1007/s42452-019-1666-y

Fig. 8   a Gaussian mixed model 
per test for user 1. b Gaussian 
mixed model per test for user 
4. c Average probability of 
precision, standard deviation, 
and mean of the multisensory 
integration distributions. The 
unit of the probability of preci-
sion is probability in decimals, 
while the standard deviation 
unit is a distance in meters
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