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Abstract
The present paper deals with the behavior of gyrotactic microorganisms in nanofluid affected by the magnetic field and 
porous medium. The advantage of adding motile microorganism is to stabilize the nanoparticle suspension generated 
by the combined effects of buoyancy force and magnetic field. Gyrotactic microorganisms enhanced the heat transfer, 
mass transfer and improve the stability of the nanofluids. The mathematical model includes the equations of conservation 
of mass, momentum, energy, nanoparticle concentration and microorganism equations. The governing equations have 
been fabricated for long wavelength and low Reynolds number approximations. The solutions have been evaluated for 
pressure gradient, nanoparticle concentration, temperature and motile microorganism equations are solved by using 
a powerful technique known as the homotopy analysis method. Effects of physical parameters like a fluid parameter, 
Brownian motion parameter, thermophoresis parameter, bioconvection Peclet number, Hartmann number and Grashof 
number are considered. Obtained results are displayed in graphs. The results reveal that bioconvection decreases the 
pressure gradient because convection instability takes place within the system that causes convection pattern which 
decreases the pressure gradient. Such result helps in biomedical sciences and engineering. Since, microorganisms are 
favorable in the decomposition of organic material, producing oxygen and maintaining human health.

Keywords  Bioconvection · Gyrotactic microorganism · Peristaltic flow · Eyring–Powell fluid model · Porous medium and 
magnetic field

1  Introduction

Peristalsis is a form of fluid flow mechanism produced 
by a continuous wave of clasping and compressing the 
fluid flow over a channel or tube, such a mechanism is 
found in the swallowing of food through the oesopha-
gus, movement of chime in gastrointestinal tracts and 
the vasomotion of small blood vessels in a human body. 
The concept of the peristaltic mechanism was first initi-
ated by Latham [1] in 1966. After the work of Latham, 
Jaffrin et al. [2] in 1971 explore the peristaltic pumping 
system. He studied that the peristaltic flow for the long 
wavelength and low Reynolds number. Many researchers 
and scientists diverted their research interest towards the 

study of peristaltic transport by considering viscous and 
non-viscous fluids with different models and with differ-
ent geometries, few references are given in the reference 
list [3–7]. Recent developments on the theoretical and 
experimental mechanism of peristaltic flow are given in 
the references [8–10].

The word “nanofluid” was first formulated by Choi 
[11]. Nanofluid is a liquid containing nanoparticles [12]. 
In biomedical, magnetite nanoparticles are targeted for 
magnetic resonance imaging (MRI) and during drug deliv-
ery. In present days, non-Newtonian fluids have received 
much awareness due to its applications in medical, indus-
tries and technology. To study the non-Newtonian fluids 
several models have been developed. Among them, the 
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Eyring–Powell model has certain advantages over other 
fluid models. Because firstly, this model holds the kinetic 
theory of liquid used to obtain the concentrate of the 
fluid model. Secondly, at low and high shear rates the 
concentrated model helps to recover the error-free results 
of viscous nanofluid. Eyring–Powell fluid model was first 
initiated by Eyring and Powell [13]. Many researchers are 
studied the peristaltic flow in different geometrics by con-
sidering the Eyring–Powell fluid model as cited in refer-
ences [14–16].

The bioconvection is flow induced by collective swim-
ming of motile microorganisms which are little denser 
than water [17]. The self- propelled motile microorganisms 
intensify the base fluid density in a particular direction. 
The collection of microorganisms in the upper layer makes 
suspension too dense that causes instability. Under such 
circumference, convection instability and generation of 
convection patterns take place. Such a quick and random 
movement pattern of microorganisms causes bioconvec-
tion within the system. Bioconvection instability is devel-
oped from an initial uniform suspension without an unsta-
ble density disturbance that was studied by Pedley et al. 
[18]. Many researchers working on the bioconvection with 
different geometries are given in the references [19–21]. 
In biological fluid mechanics, recent significant growing 
areas are flows including nano-bioconvection suspended 
with nanoparticles and base fluids. The nanoparticles are 
not self-propelled like motile micro-organisms, nano-
particles motion is due to thermophoresis and Brown-
ian motion. If the concentration of nanoparticle is small, 
bioconvection occurs in a nanofluid. The recent develop-
ments of nano-bioconvection containing microorganisms 
are mentioned in references [22–26].

The porous medium is the ratio of pore volume to 
the total volume of a given sample of material. A porous 
medium is a material containing Pores. The pores typi-
cally filled with liquids. Important applications of porous 
medium are human lungs, kidney, vascular beds, bones 
and also other human health issues. The effect of the mag-
netic field on the peristaltic flow through porous media 
has been the center of attraction because of its contribu-
tion to controlling the thickness of the fluid viscosity. Peri-
staltic flow in presence of magnetic field and porous media 
is discussed in the references [27–29] and Peristaltic blood 
flow is discussed in the references [30, 31].

Literature review revealed that no work has been done 
on bioconvection peristaltic flow considering Eyring–Pow-
ell nanofluid in presence of magnetic field and porous 
medium. However, recently Noreen [32] has studied 
the bioconvection peristaltic flow containing gyrotactic 

microorganisms in a symmetric channel. Bhatti et al. [33] 
has investigated the peristaltic flow of non- Newtonian 
Jeffrey nanofluid in presence of coagulation and variable 
magnetic field containing gyrotactic microorganism in 
annulus. Since, Peristalsis is well known mechanism to 
transport the physiological fluid in most biological organs. 
Many biological systems are observed to be non-uniform, 
we purpose the study of free convection peristaltic trans-
port in a non-uniform channel filled by Eyring–Powell 
nanofluid containing gyrotactic microorganism. The 
present study has wide range of applications in biomedi-
cal science and engineering. Since microorganisms are 
favorable in decomposition of organic material, produc-
ing oxygen and maintaining human health. The dilution 
of microorganisms in the nanofluids modifies the thermal 
conductivity. In the present paper, the solution for Pres-
sure gradient, temperature, concentration and motile 
microorganism density along with boundary conditions 
are solved by using the homotopy analysis method [34, 
35]. Different physical parameters on pressure gradient, 
temperature, nanoparticle concentration and motile-
microorganisms density are analyzed through graphs.

2 � Flow formulation of the problem

Consider a peristaltic flow formulation of the problem in a 
two-dimensional channel. The physical model of the wall 
surface can be written as

here b(X̃ ) = a20 + kX̃  is the half width of tube. Let Ũ and Ṽ  
are velocity components. The velocity field V  can be writ-
ten as

Eyring–Powell fluid model of shear stress tensor S̃ is

where � is coefficient of shear viscosity, � and c∗ are the 
fluid parameters.

The governing equations of mass, momentum, energy, 
nanoparticle mass transfer and density of motile microor-
ganism for conservation nano Eyring–Powell fluid can be 
formulated as follows
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where �p is nanoparticle mass density, �f  is the effective 
density of the fluid, (�c)f  and (�c)p are the heat capacity 
of the fluid and effective heat capacity of the nanopar-
ticle material, respectively k∗ is thermal conductivity of 
the fluid, g is the acceleration due to gravity, �1 is volume 
expansion coefficient, K1 is permeability constant of the 
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𝜕Ṽ

𝜕X̃
+ Ṽ

𝜕Ṽ

𝜕Ỹ
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𝜕Ỹ

)
,

porous medium, � is electrically conductivity of the fluid. 
C̃ is the nanoparticle concentration, T̃  is the temperature of 
the fluid. Further, DB and DT are the Brownian diffusion and 
thermophoresis diffusion coefficients, Tm is the mean fluid 
temperature, b and WC are the chemotaxis and assumed 
to be constants of the microorganism, �1 is the volume 
fraction. The laboratory frame and wave frame are intro-
duced as

where (ũ, ṽ) are velocity components in (x̃, ỹ) coordinates.
Corresponding boundary conditions are

Introducing the following dimensionless variables
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�
�
1 − 𝜙1

�
𝛽1
�
T̃1 − T̃0

�
𝜌f
,

Nb =
(𝜌c)pDB

�
C̃1 − C̃0

�
(𝜌c)f 𝜈

, Nt =
(𝜌c)pDT

�
T̃1 − T̃0

�
(𝜌c)f Tm𝜈

, h =
h�

a20
= 1 +

𝜆kx

a20
+ 𝛼 sin 2𝜋x, 𝛼 =

d

a20
,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1276 | https://doi.org/10.1007/s42452-019-1281-y

where A and B are dimensionless fluid parameters, Pr is the 
Prandtl number, Gr is the Grashof number of the local tem-
perature,Nr is the buoyancy ratio, Pe and Rb are the biocon-
vection Peclet number and bioconvection Rayleigh num-
ber respectively. Nb and Nt are the Brownian motion and 
thermophoresis parameters, Da is Darcy number, M is 
magnetic field and � is the amplitude ratio. Defining 
stream function � as u =

��

�y
and v = −�

��

�x
.

Using non-dimensional terms (13), the basic Eqs. (1)-
(12) reduces to

The corresponding dimensionless boundary conditions 
are

(14)

�p

�x
= (1 + B)

�3�

�y3
− A

(
�2�

�y2

)2
�3�

�y3

−

(
M2 +

1

Da

)
��

�y
+ Gr(� − Nr� − Rb�),

(15)
�p

�y
= 0,

(16)
�2�

�y2
+ PrNb

��

�y

��

�y
+ PrNt

(
��

�y

)2

= 0,

(17)
�2�

�y2
+

Nt

Nb

�2�

�y2
= 0,

(18)
�2�

�y2
− Pe

��

�y

��

�y
− Pe�

�2�

�y2
− Pe�

�2�

�y2
= 0.

(19)
� = 0,

��

�y
= 0, � = 0, � = 0, � = 0 at y = 0,

� = F ,
��

�y
= −1, � = 1, � = 1, � = 1 at y = h = 1 +

�kx

a20
+ � sin 2�x,

⎫⎪⎬⎪⎭

3 � HAM solution

The solutions of the nonlinear Eqs. (14–18) are evaluated 
by using homotopy analysis method, homotopy analysis 
method (HAM) is general approximation solution. The 
method works for the nonlinear problems that contain 
small and large physical parameters. The Method pro-
vides great freedom to select the initial approximations 
and auxiliary linear operators. By using this any compli-
cated non-linear problems can be transformed into linear 
subproblems.

To find the solutions of Eqs. (14)-(18). The initial guess 
for the Eqs. (14)-(18) are as follows

Furthermore, the linear operator of the problem is taken 
as

which satisfies the properties

According to the methodology, the zeroth-order defor-
mation of the problems are
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F is the time mean flow rate in wave frame related to the 
non-dimensional, � in the laboratory frame as given in the 
following form

where F= q

cb
and � =
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where q ∈ [0, 1] is  the embedding parameter, 
h� , h� , h� and h� are the non-zero auxiliary parameters, L 
is an auxiliary linear operator H� ,H� ,H� andH� are the aux-
iliary functions. The nonlinear operators N� , N� , N� andN� 
can be written as

The initial approximations �0(y, q) , �0(y, q),�0(y, q) and 
�0(y, q) approach �(y, q) , �(y, q),�(y, q) and �(y, q) respec-
tively, when q takes the values from 0 to 1.

Evidently

Using Taylor’s series expansion, the equation of �(y, q) , 
�(y, q) , �(y, q) with embedding parameter q , can be 
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Differentiating zeroth-order deformation with n-times 
and setting q = 0 , we obtain mth-order deformation 
equations
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Fig. 1   ℏ curves for the function of �(h),�(h),�(h) and �(h) at 25th 
order approximations when t = 0.1 , x = 0.2,� = 0.6 , Q = 0.25, � = 10, 
k = 0.1, a20 = 2.0, Nt = 0.4, Pr = 6.9, Nb = 0.4, � = 0.5, Gr = 1.5, Nr = 1.5, 
Rb = 1.5, B = 2.0, M = 0.5, Da = 0.5, A = 0.001, Pe = 2.0
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where

The solutions of the problem can be easily found with 
the help of Mathematica.

3.1 � Convergence analysis of the HAM solution

The expression �(h),�(h),�(h) and �(h) contains the aux-
iliary parameters h� , h� , h� and h� . The auxiliary linear 
parameters are adjusting and controlling the homotopic 
solutions. Plotting the ℏ curves at 25th order approxima-
tion to find the appropriate values of h� , h� , h� and h� 
(see in Fig. 1). From Fig. 1 can see that suitable values of 
h� , h� , h� and h� are −0.8 < h𝜓 < 0.2, −0.9 < h𝜃 < −0.1,

−0.8 < h𝛺 < 0.2 and −0.8 < h𝜒 < 0.2 respectively. In 
this problem, we choose the convergence solution 
h� = h� = h� = h� = −0.6.

4 � Discussion

In the current research paper, the results of our research 
problem are discussed by utilizing the homotopy analysis 
method with symbolic software MATHEMATICA. This sec-
tion represents the detailed analysis of the various physical 
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parameters of pressure gradient, temperature, nanopar-
ticle concentration and density of motile microorganism 
profiles are analyzed.

4.1 � Pressure gradient profile

Figure 2 describes the flow behavior of various physical 
parameters on pressure gradient. Figure 2a, b are plotted 
to show the behavior of fluid parameters A and B. From 
these two figures, one can observed that fluid parameters 
have opposite behavior on pressure gradient. Fluid param-
eter A increases with an increasing of pressure gradient, 
which occurs in the non-linear part of the momentum 
equation. The considerable part of the channel is compara-
tively small x ∈ [0, 0.3] and x ∈ [0.6, 0.7], the pressure 
gradient is relatively small and the flow can be easily pass 
without forcing of large pressure gradient. However, the 
tapered part of channel x ∈ [0.3, 0.6] much immense pres-
sure gradient is required to maintain the same flux to pass 
through it. Besides, the fluid parameter B increases on 
pressure gradient (> 0) is decreased. Since B =

1

��c
 , by 

increasing B but the viscosity of fluid � decreases, which 
cause decreases in pressure gradient. Figure 2c shows the 
effect of buoyancy force Nr on pressure gradient. As 
expected, the pressure gradient decreases with increase 
of buoyancy parameter. This is due to the fact that buoy-
ancy force gives rise to fluid flow. This force tends to accel-
erate the motion of the fluid which results in decreasing 
the pressure gradient. Figures 2d is plotted to show the 
effect of Grashof number Gr on pressure gradient. We 
noticed that as Grashof parameter increases and the pres-
sure gradient is decreases. This is due to reduction in the 
drag force. In Fig. 2e depicted the bioconvection Rayleigh 
parameter effect. Convection instability takes place in the 
system and that cause convection pattern which decreases 
the pressure gradient. Figure 2f is plotted to show the 
effect of magnetic field M on pressure gradient. The resist-
ance to the fluid flow by the magnetic field is represented 
in the Fig. 2f. It is noted that for higher values of M, pres-
sure gradient decreases near the center of the channel. 
Since, Lorentz force acts like a retarding force for flow. The 
effect of porous medium on the pressure gradient is pre-
sented in Fig. 2g. It is noticed that the center of channel 
enhanced with higher values of the permeability porous 
medium Da.

Our results are compared with those obtained results by 
Rathod and Shridhar [36] in the case of no porous medium. 
Such as comparison is illustrated in Table 1. In this table, 
we have observed good agreement founded between 
our results and published results by Rathod and Shridhar 
[36] and also notice the light difference between the two 

Fig. 2   dp
dx

 versus x, when t = 0.1 , x = 0.2 , Pr = 6.9,� = 0.6 , Q = 0.25, 

� = 10, k = 0.1, a20 = 2.0, � = 0.5, Nt = 0.4, Nb = 0.4; a Gr = 1.5, Nr = 1.5, 
Rb = 1.5, B = 2.0, M = 0.5, Da = 0.5. b A = 0.001, Gr = 1.5, Nr = 1.5, 
Rb = 1.5, M = 0.5, Da = 0.5. c A = 0.001, B = 2.0, Gr = 1.5, Rb = 1.5, 
M = 0.5, Da = 0.5. d A = 0.001, B = 2.0, Nr = 1.5, Rb = 1.5, M = 0.5, 
Da = 0.5. e A = 0.001, B = 2.0, Gr = 0.4, Nr = 0.3, M = 0.5, Da = 0.5. f 
A = 0.001, B = 2.0, Gr = 0.4, Nr = 0.3, Rb = 1.5, Da = 0.5. g A = 0.001, 
B = 2.0, Gr = 0.4, Nr = 0.3, Rb = 1.5, M = 0.5
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solutions in the middle of the channel and coincide near 
to the walls of the channel.

4.2 � Temperature profile

Figure 3 is plotted to show the behavior of physical param-
eters Nb,Nt and Pr on the temperature profile � by fixing 
other physical parameters. Figure 3a, b are plotted to show 
the behavior of temperature distribution for different val-
ues of Nb and Nt . Further, it is noticed that enhancement 
of temperature profile for increasing values Nt . Since, the 
collision between the particles enhance the fluid particles 
which produce plenty of heat, so it raises the tempera-
ture. Physically, thermophoresis parameter and Brownian 
motion parameter regulate the concentration fields due 
to the random motion of the particles. Brownian motion 
and thermophoresis parameters are showing the mixed 
response in temperature. Figure 3c describes the Prandtl 
number effect. It is observed that increases in Prandtl 
number Pr the temperature distribution increases. It is 
fact that the rising values of Prandtl number enhance the 
thermal field. This leads to suppress the heat transfer.

4.3 � Concentration profile

The Fig. 4 describes the various physical parameters Nt , Nb 
and Pr on nanoparticles concentration profile. In Fig. 4a, 
we have observed that the nanoparticles concentration 
increases with an increasing Brownian motion parameter. 
This fact is due to huge transfer of nanoparticle from cold 
region to hot region which yield the increment of concen-
tration distribution. Figure 4b shows the effect of thermo-
phoresis parameter, when the thermophoresis parameter 
increased, the concentration nanoparticle decreases. The 
decline in nanoparticle concentration is examined due 
to inference in fluid molecules. Since, in thermophoresis, 
where the particles are moved away from the hot region to 
cold region, which results the disturbances in nanoparticle 
and hence there is a decrease in concentration of nano-
particles. The Fig. 4c describes the flow of nanoparticle 

concentration decreases when the Prandtl number is 
increased. As the Prandtl number Pr increases the thermal 
conductivity of the fluid decreases thus the concentration 
of nanoparticle decreases. Since, it is evident that the ris-
ing values of Prandtl number declines the concentration 
field. This leads to enhance the mass transfer.

4.4 � Density of motile microorganism profile

Figure 5 describes the behavior of motile microorganism 
profile for different values of physical parameters. From 

Table 1   Comparison of Pressure gradient profile for present 
work when Gr = 0 Nr = 0, Rb = 0, B = 0, M = 0.5, Da = 0 and the work 
obtained by Rathod and Sridhar for the values of t = 0.1 , x = 0.2 , 
Q = 0.25, � = 10, k = 0.1, a20 = 2.0

� Rathod and Shridhar [36] Present work

0.1 1.37132 1.37133
0.3 1.26857 1.26860
0.5 1.16462 1.16470
0.7 1.05914 1.05924
0.9 0.951852 0.95255

Fig. 3   Temperature � versus y when t = 0.1 , x = 0.2,� = 0.6 , 
Q = 0.25, � = 10, k = 0.1, a20 = 2.0; a Nt = 0.4, Pr = 6.9. b Pr = 6.9, 
Nb = 0.4. c Nt = 0.4, Nb = 0.4
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Fig. 5a, it is observed that the density of motile micro-
organism profile increases with an increase of Brownian 
motion parameter Nb . It is obvious that motile microor-
ganism transfer rate increases when Nb is increased. Fig-
ure 5b depicted the thermophoresis parameter effect on 
the motile microorganism density, it is noticed that den-
sity of motile microorganism profile decreased when the 
thermophoresis parameter Nt increases. Enhancement Nt 

brings the nanoparticle at higher state heat region which 
increases the fluid temperature. Hence the density of 
microorganism decreases.

In Fig. 5a, b, we observed that the presence of Brownian 
motion and thermophoresis parameter affects the swim 
of microorganism. The bioconvection takes place in sus-
pension of nanoparticles. Based on Oberbeck-Boussinesq 
approximation. Figure 5a shows the enhancement of the 
density of microorganism to swim in the upward directions 
and Fig. 5b shows the reduction in the density of up word 
swimming microorganism. Figure 5c expresses the effect 
of bioconvection Peclet number on motile microorganism 
density. It is observed that as bioconvection Peclet num-
ber increases the motile microorganism density decreases. 
Since, stronger Peclet number intimates weaker Brown-
ian motion diffusion coefficients which results relatively 
small penetration depth for swimming of microorganism. 
In Fig. 5d shows the effect of bioconvection constant � 
on motile microorganism density. The motile microorgan-
ism density appears to be decreases when bioconvection 
constant is increases. Physically, this can be traced to the 
fact the effects of Lorentz force on density fluid flow and 
consequently on shear stress are more substantial.

5 � Conclusion

Here we analyzed the bioconvection peristaltic flow of a 
nano Eyring–Powell fluid through non-uniform channel 
containing gyrotactic microorganism is investigated under 
long wavelength and low Reynolds number approxima-
tions. The results are displayed in the form of graphs and 
following the important points are mentioned below.

•	 Pressure gradient gives opposite behavior with increas-
ing values of Eyring–Powell fluid parameters A and B.

•	 The opposite behavior observed on the pressure gradi-
ent for magnetic field M and porous medium Da.

•	 Opposite behavior of nanoparticle concentration and 
temperature profiles increases with a Brownian motion 
parameter, thermophoresis parameter and Prandtl 
number.

•	 Pressure gradient profile decreases with increasing val-
ues of Grashof number, buoyancy ratio and bioconvec-
tion Rayleigh number.

•	 Density of motile microorganism gives the oppo-
site outcomes increasing values of Brownian motion 
parameter and thermophoresis parameter.

Fig. 4   Concentration Ω versus y when t = 0.1 , x = 0.2,� = 0.6 , 
Q = 0.25, � = 10, k = 0.1, a20 = 2.0; a Nt = 0.4, Pr = 6.9. b Pr = 6.9, 
Nb = 0.4. c Nt = 0.4, Nb = 0.4
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•	 Similar behavior for density of motile microorganism 
profile increases with increasing values of bioconvec-
tion Peclet number and bioconvection constant.
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