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Abstract
Various shell theories have been used in the past to study the free vibration of the elliptic cylindrical shells. However, 
as the thickness ratio of the shell increases, the accuracy of the results for shear deformation theories declines. In this 
article, the classical theory of elasticity is employed to study the free vibration of a thick cylinder with an elliptic cross-
section. The milestone of the analytically established model is based on Navier’s equation, Helmholtz decomposition 
and Mathieu equations. The new model would specifically be applicable to the high thickness ratios where the structure 
response becomes highly complex and the high-order shell theories fail to obtain accurate results. Numerical example 
have been conducted in order to show the key effect of the cylinder’s aspect ratio on the dispersion curve and deformed 
mode shape of the elliptical cylinder. Finally, the validity of the proposed analytical solution was compared to a finite 
element simulation in Comsol Multiphysics.

Keywords Linear elasticity · Mathieu functions · Helmholtz decomposition · Frequency · Parallel computing

1 Introduction

The majority of literature regarding the free vibration of 
shells are limited to specific shapes such as sphere, cylin-
der, and plate [1–7]. Recently, multidisciplinary research 
has drawn scientists’ attention to investigate other com-
plex structural shapes [8–11]. For instance, the biomedical 
practice of vibration of bone modeling has necessitated 
using non-circular cylindrical shells.

In this regard, Ethier and Simmons [12], Kelley [13] con-
sidered the reflection of waves in the branching of blood 
vessels. Casciaro et al. [14], Jaganathan et al. [15] worked 
on hemodynamic computational modeling by wave prop-
agation in blood vessels. Papathanasiou et al. [16], Auric-
chio et al. [17] compared the natural frequencies of differ-
ent types of metallic structure of heart stent. Mesh-free 
method has been also used to handle complicated geome-
tries [18–20]. Tanaka et al. [21] used the mixed-mode stress 

resultant intensity factors (SRIFs) to study a cracked folded 
structures.

An encyclopedic treatment of vibration of circular and 
non-circular cylindrical shell expresses more than 500 
references for circular cylindrical shells while only a few 
references dealing with non-circular cylindrical shells [22]. 
Donnell [23] presented a new theory for thin shell buck-
ling during axial compression and bending. The theory has 
been applicable for many projects done by researchers. 
Karman [24] considered the stability of circular cylindrical 
shells by experiment and analytical solution. The results 
show that the linear modeling is not reliable to predict 
buckling phenomena. Conversely, nonlinear analysis can 
create a safe design.

Amabili et al. [25, 26] considered free and forced vibra-
tion of circular cylindrical shells for the case of those empty 
and filled by fluid. Their results express the traveling wave 
response close to resonance. There is a good agreement 
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between their numerical results with the work of other 
researchers in this field [27–29]. Amabili et al. [30–33] 
used Donnell’s nonlinear shell theory to investigate the 
forced vibration of circular cylindrical shells with simply 
supported boundary conditions. Amabili [34] studied 
vibration of cylindrical shells for large deformation along 
with excitation near lowest resonance. Amabili et al. [35], 
Pellicano et al. [36] considered internal resonance prob-
lems for a shell filled with water using both modal point 
excitations.

Laing et al. [37], Foale et al. [38], Amiro and Prokopenko 
[39] considered the vibration of circular cylindrical panel 
under radial loading. Three different methods such as the 
Galerkin method, the nonlinear Galerkin method and the 
post-processed Galerkin method have been used in this 
study. As a result, the post-processed Galerkin method is 
known as the best method compared to other methods. 
Kubenko and Kovalchuk [40] studied vibration of the cir-
cular cylindrical shell by following Donnell’s theory along 
with Galerkin method. They included driven and com-
panion modes in their study, but they did not investigate 
axisymmetric terms in the mode expansion. Nagal and 
Yamaguchi [41] considered shallow cylindrical panels by 
performing an accurate study of chaotic motion. A com-
plete literature review regarding vibration of cylindrical 
shells with circular-cross section has been performed by 
Leissa [22], Kumar et al. [42].

The vibration modeling of cylindrical shells with the 
non-circular cross-section is important due to its appli-
cation in some structures such as aircraft wings, acoustic 
mufflers, acoustic transducers, and fuselages. Pusey and 
Sewall [43] studied experimental and numerical analysis 
of the elliptical cylindrical shell. The eccentricities of shells 
change from zero to 0.916. The results show a good agree-
ment between mode shapes and frequencies of experi-
mental and analytical work.

Shirakawa and Morita [44] presented a free vibration of 
an elliptical cylinder under external pressure. They used 
the composition of two circular arcs to show the elliptical 
cross-section. The effect of out-of-roundness on natural 
frequency is investigated. Suzuki [45] proposed a new 
method to analyze the vibration of a non-circular cross-
section of cylindrical shells. The method is applicable to 
in-flight structure, chemical plants, and nuclear plants. It 
also can be applied to various types of non-circular cylin-
drical shells. For freely supported ends, they obtained 
natural frequencies and mode shapes. Yamada et al. [46] 
worked on tabulating of natural frequencies of elliptical 
cylindrical shells by six boundary condition combinations. 
Hayek and Boisvert [47] derived the vibration equation of 
an elliptical cylindrical shell using the Ritz approach. They 
used an assumption in the thickness of the shell to allow 

the feasibility of numerical results. The assumption was 
acceptable for a specific range of frequencies but not for 
all.

Suzuki and Leissa [48] used an exact solution to solve 
free vibration of non-circular cylindrical shells by variation 
in circumferential thickness. For those elliptical cylindrical 
shells which have a thickness variation of second degree, 
the natural frequencies are obtained. Rosen and Singer 
[49] worked on the effect of circularity deviation of cylin-
drical shells. They showed that the vibration frequencies 
change significantly by imperfections in the circularity of 
the order of shell thickness. Bentley and Firth [50], Firth 
[51] considered the experimental studies of shells filled 
with fluid. They expressed that asymmetric shell modes 
can be excited by axisymmetric of acoustic modes, but 
such phenomena are influenced by circumferential varia-
tion of thickness or material properties. These superficial 
conclusions motivated more additional research by Yousri 
and Fahy [52], Tonin and Bies [53].

Hasheminejad and Sanaei [54] used the theory of elas-
ticity to study the ultrasonic scattering from a cylinder 
with the elliptical cross-section. Hayek and Boisvert [47] 
used higher-order shell theories that included the effect 
of rotary inertia and shear deformation along with ben-
efiting from the Ritz approach to study the vibration of 
elliptical shells. Tornabene et al. [55] used the generalized 
differential quadrature method (GDQM) and different shell 
theories to investigate the free vibration of composite oval 
and elliptical cylindrical shell. Later on, they used the same 
method to investigate the free vibration of elliptical shells 
made of composite materials [56]. Zhao et al. [57] used the 
first-order shear deformation theory to study the effect 
of general boundary conditions such as elastic and classi-
cal boundary on the free vibration of elliptical cylindrical 
shells.

1.1  Motivation and objective of this work

The above review shows that while there have been many 
investigations regarding the free vibration of infinite ellip-
tical shells using thin shell theories of different orders, 
there has been no rigorous analytical study for an infinite 
elliptical cylindrical body with arbitrary thickness using 
the classical three-dimensional theory of elasticity. The 
current work would specifically be applicable to the high 
thickness ratios where the structure response becomes 
highly complex and nonlinear. In addition, while the shell 
theories give infinite numbers of natural frequencies as 
the circumferential mode number, n, and axial mode 
number, m, increase, they give a finite number of modes 
at specific n and m. However, the three-dimensional 
theory of elasticity gives infinite numbers of natural fre-
quencies in any circumferential and axial mode numbers. 
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Accordingly, the main goal of this manuscript is to engage 
Navier’s equation, Helmholtz decomposition, radial and 
angular Mathieu functions with a suitable technique to 
enforce boundary conditions in order to develop an ana-
lytical solution for an infinite elliptical cylinder based on 
the linear theory of elasticity. Namely, here for the first 
time the relation between the non-dimensional natural 
frequency and aspect ratio is investigated for an infinite 
hollow elliptical cylindrical shell. The suggested solution 
in conjunction with an inverse technique may also be used 
to monitor the ellipticity in different mechanical elements. 
The validity of the proposed solution is checked via finite 
element simulations in Multiphysics COMSOL package.

2  Problem description

The geometry of an elliptical hollow cylinder is depicted in 
Fig. 1. The elliptic cylindrical coordinates (� , �) are defined 
according to the transformation x + iy = a cosh[(� + i �)] 
in which, the � coordinate is the asymptotic angle of con-
focal hyperbolic cylinders with symmetric axis y=0, while 
the � coordinate is confocal elliptic cylinders centered on 
the origin. The semi major and minor axes of elliptic cyl-
inders are parallel with the x-axis and y-axis, respectively. 
The explicit relations between the Cartesian coordinates 
(x, y) and the elliptic cylindrical coordinates (� , �) are given 
by [58] 

where � is a radial coordinate with a non-negative real 
number, � ∈ [0,∞) and the coordinate � is the angular 

(1a)x = a cosh(�) cos(�),

(1b)y = a sinh(�) sin(�),

coordinate ranging from [0, 2�] . Furthermore, a is the semi-
focal length of the cylinder elliptical cross section. The cur-
vilinear axes are the confocal ellipses and hyperbolae with 
two foci located at ± a as it depicted in Fig. 1. Moreover, 
the surface of the internal ellipse can be defined by � = �0 
with the major and minor axes of R1 = a cosh(�0) and 
R2 = a sinh(�0) , respectively. Likewise, the surface of the 
external ellipse can be describe by � = �1 with the major 
and minor axis of R

�

1
= a cosh(�1) and R

�

2
= a sinh(�1) , 

respectively. Here we should note that as simultaneously 
the values of a and � converge to zero and infinity, respec-
tively, the focal points approach to each other which this 
case is the transition to the limiting case of the circular 
cylinder shell.

2.1  Constitutive relations

The constitutive relations for a linear homogeneous iso-
tropic elliptical cylinder can be given as [59]

in which [�ij] , [�ij] and [�ij] are Kronecker delta function, sec-
ond order Green–Cauchy stress and strain tensors, respec-
tively. Furthermore � and � are Lame constants.

2.2  Kinematic assumptions

The Green–Cauchy strain tensor is related to the pertinent 
material displacement vectors via the linearized kinematic 
relation as [60]

where � = [u� u� uz]
T and ΓΓΓ are the Lagrangian displace-

ment vector and Green–Cauchy strain tensor, respectively. 
In addition, the superscript “T” denotes the transpose of a 
matrix which flips a matrix over its diagonal. The expanded 
form of Eq. 3 is given in Eq. 27.

2.3  Elastodynamics

In the absence of body forces, the wave equation of 
motion in the isotropic solid medium is expressed by the 
classical Navier’s equation as follows [61]

where � is the unperturbed material density. Moreover, the 
gradient operator, ∇ in the elliptical coordinate system can 
be defined as [62]

(2)[�ij] = � [�ij]�kk + 2� [�ij],

(3)ΓΓΓ =
1

2

(
∇� + ∇�T

)
,

(4)�∇2
� + (� + �)∇(∇ . �) = �

�2�

�t2
,

∇ = (𝜕∕𝜕𝜁 �̂𝜁 + 𝜕∕𝜕𝜂 �̂𝜂)∕aJ(𝜁 , 𝜂),

Fig. 1  Schematic of elliptical shell
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where J(� , �) =
√

cosh(2� )−cos(2�)

2
 . In addition, �̂𝜁 and �̂𝜂 are 

the orthogonal unit vectors in the radial and tangential 
directions, respectively.

2.4  Helmholtz decomposition in elliptical 
coordinate

Helmholtz partial differential equations can be obtained 
by equating the material displacement, � as the sum of the 
irrotational and solenoidal part as [62]

in which ΨΨΨ = Ψ(𝜁 , 𝜂)�̂z with the gauge condition, ∇∇∇.ΨΨΨ = 0 
applied to the solenoidal part. Next, the Lagrangian dis-
placement of the elliptical cylinder can be obtained using 
the definition of gradient of Φ and curl of ΨΨΨ for an elliptical 
cylindrical coordinate in Euclidean space. Then the Eq. 5 
can be rewritten as [63] 

Next, substituting Eq. 5 into the Navier’s equation of 
motion, Eq. 4, two sets of fully uncoupled wave equations 
can be obtained as [54, 64]

where Ω could be any of Ψ or Φ . Furthermore, k2
c
 and k2

s
 

are given as [65]

in which cp = (� + 2�)∕� and cs = �∕� are propagation 
velocities of distortional and dilatational waves in the solid 
medium.

Using the Laplacian operator,∇2 in the elliptic cylindrical 
coordinate, Eq. 7 result in [58]

substituting Ω(�, �) = Ω� (�) Ω�(�) into the Eq.  8, after 
rewriting equations in the way that each of two variables 
appears on a separate side of equations (Separation of var-
iables), the partial differential Eq. 8 will be transformed to 
two sets of ordinary differential equations in which Ω� (�) 
and Ω�(�) are satisfying the ordinary (angular) Mathieu’s 

(5)� = ∇Φ + ∇ ×ΨΨΨ,

(6a)u� =
1

aJ(� , �)

(
�Φ

��
+

�Ψ

��

)

(6b)u� =
1

aJ(� , �)

(
�Φ

��
−

�Ψ

��

)

(7)(∇2 + k2
i
)Ω = 0; i = c, s,

k2
c
=

�2

c2
p

; k2
s
=

�2

cs
,

(8)
1

a2J2(� , �)

(
�2Ω

��2
+

�2Ω

��2

)
+ k2

i
Ω = 0,

differential equation and modified (radially) Mathieu’s dif-
ferential equation, respectively [58],

where, q =
k2
i
a2

4
 is a pre-defined constant and � is a sepa-

ration constant. The computation of the angular Mathieu 
function will be discussed next.

2.5  Angular Mathieu function and its derivatives

According to the Floquet theory, for a set of discrete values 
of � , namely the roots of characteristic equation, Eq. 10 
admits periodic solutions. It can be simply distinguished 
that there are four kinds of countable set of eigenvalues 
of � in the way that angular Mathieu functions of even 
indices are �-periodic while those of the odd indices are 2�
-periodic. For every eigenvalue, there is a set of transcen-
dental functions related to each eigenvalue. These infinite 
set of transcendental functions are associated with four 
classes of modified solutions satisfying [66] 

in which An
m

 and Bn
m
, n,m = 0, 1,… ,∞ are the expansion 

coefficients for the even and odd Mathieu functions. In addi-
tion, Ce and Se are even and odd radial Mathieu functions, 
respectively. Substitution of Eq. 11 into the Eq. 10, result in 
the following recurrence relations, respectively, as [66] 

(9)
d2Ω� (�)

d�2
− [� − 2q cosh(2�)] Ω� (�) = 0,

(10)
d2Ω�(�)

d�2
+ [� − 2q cos(2�)] Ω�(�) = 0,

(11a)

1 even−even∶ Ce2n(�, q) =

∞∑
m=0

A2n
2m
(q) cos(2m�),

(11b)

2 even−odd∶ Ce2n+1(�, q) =

∞∑
m=0

A2n+1
2m+1

(q) cos[(2m + 1)�],

(11c)

3 odd−even∶ Se2n(�, q) =

∞∑
m=1

B2n
2m
(q) sin(2m�),

(11d)

4 odd−odd∶ Se2n+1(�, q) =

∞∑
m=0

B2n+1
2m+1

(q) sin[(2m + 1)�],

(12a)

even−even∶

�A2n
0

− qA2n
2

= 0,

− 2qA2n
0

+ (� − 4)A2n
2

− qA2n
4

= 0,

− qA2n
2m−2

+ [� − 4m2]A2n
2m

− qA2n
2m+2

= 0, m = 2, 3, 4,…
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the recurrence relations can be rewritten in the form of 
eigenvalue problems with four sets of characteristic values 
and characteristic vectors. The expanded form of eigen-
value problems is given in “Appendix 2”. After calculating 
the characteristic values and characteristic vectors of the 
infinite tridiagonal matrices, the modified angular Mathieu 
functions are normalized by implementing the following 
relations [66] 

Next, the orthogonality of angular Mathieu functions will 
be achieved according to McLachlan normalization [67] as

where �mm′ is the Kronecker delta function. Substitution of 
Eq. 11 into the Eq. 14, result in the following normalized 
relations as [66] 

(12b)

even−odd∶

(� − 1 − q)A2n+1
1

− qA2n+1
3

= 0,

− qA2n+1
2m−1

+ [� − (2m + 1)2]A2n+1
2m+1

− qA2n+1
2m+3

= 0, m = 1, 2, 3,…

(12c)

odd−even∶

(� − 4)B2n
2

− qB2n
4

= 0,

− qB2n
2m−2

+ [� − 4m2]B2n
2m

− qB2n
2m+2

= 0, m = 2, 3, 4,…

(12d)

odd−odd∶

(� − 1 + q) B2n+1
1

− aB2n+1
3

= 0,

− qB2n+1
2m−1

+ [� − (2m + 1)2]B2n+1
2m+1

− qB2n+1
2m+3

= 0, m = 1, 2, 3,…

(13a)even−even∶

∞∑
m=0

A2n
2m
(q) = 1,

(13b)even−odd∶

∞∑
m=0

A2n+1
2m+1

(q) = 1,

(13c)odd−even∶

∞∑
m=1

2mB2n
2m
(q) = 1,

(13d)odd−even∶

∞∑
m=0

(2m + 1)B2n+1
2m+1

(q) = 1.

(14)∫
2�

0

Sm(�, q) Sm� (�, q) d� = ��mm� , S = Ce, Se,

Once the characteristic coefficients are calculated, the 
angular Mathieu functions and its derivatives can be deter-
mined. The derivatives of the angular Mathieu functions 
can be obtained by taking differentiation of Eq. 11 as [66] 

The higher derivatives of angular Mathieu functions can 
be obtained with the same manner.

2.6  Radial Mathieu function of the first kind and it’s 
derivatives

Solution of Eq. 9 can be expressed in the form of four dis-
tinct classes of modified Mathieu functions of the first kind 
as [66] 

(15a)
even−even∶ 2(A2n

0
(q))2 +

∞∑
m=1

(A2n
2m
(q))2 = 1,

(15b)even−odd∶

∞∑
m=0

A2n+1
2m+1

(q) = 1,

(15c)odd−even∶

∞∑
m=1

B2n
2m
(q) = 1,

(15d)odd−odd∶

∞∑
m=0

B2n+1
2m+1

(q) = 1.

(16a)

even−even∶
dCe2n(�, q)

d�
= −

∞∑
m=1

2mA2n
2m
(q) sin(2m�),

(16b)

even−odd∶
dCe2n+1(�, q)

d�

= −

∞∑
m=0

(2m + 1)A2n+1
2m+1

(q) sin[(2m + 1)�],

(16c)

odd−even∶
dSe2n(�, q)

d�
=

∞∑
m=1

2mB2n
2m
(q) cos(2m�),

(16d)

odd−odd∶
dSe2n+1(�, q)

d�
=

∞∑
m=0

(2m + 1)B2n+1
2m+1

(q) cos[(2m + 1)�].
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(17a)

even−even∶Mc2n(� , q) =

√
2�

2A2n
0
(q)

∞�
m=0

(−1)(m+n)A2n
2m
(q)

Jm(
√
qe−� )Jm(

√
qe� ),

(17b)

even−odd∶Mc2n+1(� , q)

=

√
2�

2A2n+1
1

(q)

∞�
m=0

(−1)(m+n)A2n+1
2m+1

(q)[Jm(
√
qe−� )

Jm+1(
√
qe� ) + Jm(

√
qe� )Jm+1(

√
qe−� )],

where, Mc and Ms are even and odd radial modified 
Mathieu functions, respectively. In addition Jm(x) is the 
Bessel function of the first kind which satisfies the ordinary 
differential equation x2 d2y(x)

dx2
+ x

dy(x)

dx
+ (x2 −m2)y(x) = 0 . 

Subsequently, the first derivatives of the modified Mathieu 
function can be obtained as [66] 

(17c)

odd−even∶Ms2n(� , q) =

√
2�

2B2n
2
(q)

∞�
m=1

(−1)m+nB2n
2m
(q)[Jm−1(

√
qe−� )

Jm+1(
√
qe� )] − Jm−1(

√
qe� )Jm+1(

√
qe−� )],

(17d)
odd−odd∶Ms2n+1(� , q) =

√
2�

2B2n+1
1

(q)

∞�
m=0

(−1)(m+n)B2n+1
2m+1

(q)[Jm(
√
qe−� )

Jm+1(
√
qe� ) − Jm(

√
qe� )Jm+1(

√
qe−� )],

(18a)

even−even∶

dMc2n(� , q)

d�
=

√
2�

2A2n
0
(q)

∞�
m=0

(−1)(m+n)A2m
2n
(q)[

√
�e−� Jm+1(

√
qe−� )

Jm(
√
qe� ) −

√
qe� Jm(

√
qe−� )Jm+1(

√
qe� )],

(18b)

even−odd∶

dMc2n+1(� , q)

d�
=

√
2�

2A2n
1
(q)

∞�
m=0

(−1)(m+n)A2n+1
2m+1

(q){(
√
qe� −

√
qe−� )[Jm(

√
qe−� )

Jm(
√
qe� ) − Jm+1(

√
qe−� )Jm+1(

√
qe� ) + (2m + 1)[Jm+1(

√
qe−� )Jm(

√
qe� )

− Jm(
√
qe−� Jm+1(

√
qe� ))]}

The higher derivatives of radial Mathieu functions can be 
obtained with the same manner.

(18c)

odd−even∶

dMs2n(� , q)

d�
=

√
2�

2B2n
2
(q)

∞�
m=0

(−1)(m+n)B2n
2m+2

(q)(4m + 4){Jm(
√
qe−� )

Jm(
√
qe� ) + cosh(2�) Jm+1(

√
qe−� )Jm+1(

√
qe� ) − (m + 1)[

1√
qe−�

Jm+1(
√
qe−� )Jm(

√
qe� ) +

1√
qe�

Jm(
√
qe−� )Jm+1(

√
qe� ))]

(18d)odd−odd∶

dMs2n+1(� , q)

d�
=

√
2�

2B2n+1
1

(q)

∞�
m=0

(−1)(m+n)B2n+1
2m+1

(q){(
√
qe−� +

√
qe� )

[Jm(
√
qe−� )Jm(

√
qe� ) + Jm+1(

√
qe−� )Jm+1(

√
qe� ) − (2m + 1)[Jm+1(

√
qe−� )

Jm(
√
qe� ) + Jm(

√
qe−� )Jm+1(

√
qe� )}.

2.7  Longitudinal and transverse waves

The strain components inside the elastic elliptical cylinder 
can be expressed in terms of compressional and shear 
waves potential functions by substitution of Eq. 6 into 

Eq. 3 as 

(19a)��� =
sin(2�)

2a2J4(� , �)

(
�Φ

��
−

�Ψ

��

)
,

(19b)

��� =
−sin(2�)

4a2J4(� , �)

(
�Φ

��
+

�Ψ

��

)
+

sinh(2�)

4a2J4(� , �)

(
�Ψ

��
−

�Φ

��

)
,

(19c)��� =
sinh(2�)

2a2J4(� , �)

(
�Φ

��
+

�Ψ

��

)
.
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The tangential and radial stress components in the elastic 
elliptical cylinder may be expressed by substituting Eq. 19 
into the constitutive relations isotropic materials, i.e. Eq. 2 
for isotropic materials as 

Finally, using Eqs. 10 and 9, the longitudinal and trans-
verse wave potential functions in the elastic elliptical cyl-
inder can be written respectively, as 

(20a)
��� =

1

a2J4(� , �)

[
2�J2(� , �)

�2Ψ

����
+ � sin(2�)

(
�Φ

��
−

�Ψ

��

)
− � sinh(2�)

(
�Φ

��
+

�Ψ

��

)
+ (� + 2�)J2(� , �)

�2Φ

��2
+ �J2(� , �)

�2Φ

��2

]
,

(20b)

��� = −
1

a2J4(� , �)

[
� J2(� , �)

(
−2

�2Φ

����
+

�2Ψ

��2
−

�2Ψ

��2

)
+ � sin(2�)

(
�Φ

��
+

�Ψ

��

)
+ � sinh(2�)

(
�Φ

��
−

�Ψ

��

)]
.

(21a)
Φ(� , �,�) =

∞∑
n=0

[en(�)Mcn(� , qc)Cen(�, qc)

+ fn(�)Msn(� , qc)Sen(�, qc)],

in which en(�), fn(�), gn(�) and hn(�) are unknown modal 
coefficients. Furthermore, qi = k2

i
a2∕4; i = c, s.

2.8  Mechanical boundary conditions

The appropriate mechanical boundary conditions that 
must be held on the internal and external surfaces of the 
elliptical cylinder can be written as

substitution of Equation 21 into the field equations Eq. 20, 
and resubstituting the ensuing results into the mechanical 
boundary Eq. 22, result in 

(21b)
Ψ(� , �,�) =

∞∑
n=0

[gn(�)Mcn(� , qs)Cen(�, qs)

+ hn(�)Msn(� , qs)Sen(�, qs)],

(22)��� |�=�i = 0, ���|�=�i = 0; i = 0, 1,

(23a)

���

=

∞∑
n=0

1

a2J4(�i , �)

{[
�J2(�i , �)

d2Cen(�, qc)

d�2
Mcn(�i , qc) + � sin(2�)

dCen(�, qc)

d�

Mcn(�i , qc) + (� + 2�)J2(�i , �) Cen(�, qc)
d2Mcn(�i , qc)

d�2
− � sinh(2�i)Cen(�, qc)

dMcn(�i , qc)

d�

]
en(�) +

[
(� + 2�)J2(�i , �)

d2Mcn(�i , qc)

d�2
Sen(�, qc) + �J2(�i , �)

Msn(�i , qc)
d2Sen(�, qc)

d�2
− �sinh(2�i)

dMsn(�i , qc)

d�
Sen(�i , qc) + � sin(2�)

Msn(�i , qc)
dSen(�, qc)

d�

]
fn(�) +

[
2� J2(�i , �)

dCen(�, qs)

d�

dMcn(�i , qs)

d�
− �

sinh(2�i)
dCen(�, qs)

d�
Mcn(�i , qs) − �sin(2�)Cen(�, qs)

dMcn(�i , qs)

d�

]
gn(�)

+

[
2�J2(�i , �)

dMsn(�i , qs)

d�

dSen(�, qc)

d�
− � sin(2�)

dMsn(�i , qs)

d�
Sen(�, qs) − �

sinh(2�i)Msn(�i , qs)
dSen(�, qc)

d�

]
hn(�)

}
= 0; i = 0, 1,
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The boundary conditions given in Eq. 23 cannot be 
satisfied as the angular Mathieu functions and their 
derivatives do not construct an orthogonal set due to the 

(23b)

���

=

∞∑
n=0

{[
2J2(�i , �)

dCen(�, qc)

d�

dMcn(�i , qc)

d�
− sinh(2�i)

dCen(�, qc)

d�
Mcn(�i , qc)

− sin(2�)Cen(�, qc)
dMcn(�i , qc)

d�

]
en(�) +

[
2J2(�i , �)

dMsn(�i , qc)

d�

dSen(�, qc)

d�

−sin(2�)
dMsn(�i , qc)

d�
Sen(�, qc) − sinh(2�i)Msn(�i , qc)

dSen(�, qc)

d�

]
fn(�)

+

[
J2(�i , �)

d2Cen(�, qs)

d�2
Mcn(�i , qs) − sin(2�)

dCen(�, qs)

d�
Mcn(�i , qs) − J2(�i , �)

Cen(�, qs)
d2Mcn(�i , qc)

d�2
+ sinh(2�i)Cen(�, qs)

dMcn(�i , qc)

d�

]
gn(�) +

[
J2(�i , eta)

Msn(�i , qs)
d2Sen(�, qs)

d�2
− J2(�i , �)

d2Mcn(�i , qc)

d�2
Sen(� , qs) + sinh(2�i)

dMsn(�i , qc)

d�
Sen(�, qs) − sin(2�)Msn(�i , qs)

dSen(�, qs)

d�

]
hn(�)

}
= 0; i = 0, 1.

existence of even and odd Mathieu function with different 
wave numbers in their arguments. Thereby, the classical 
wave-function expansion technique cannot be employed 

(a) (b)

(c) (d)

Fig. 2  Comparison between MatlabⓇ code written based on Cojocaru [66] and result provided by Abramowitz et al. [67] for angular Mathieu 
functions and it’s derivatives
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to explicitly satisfy the mechanical boundary conditions 
on the inner and outer surfaces of the elliptical shell. The 
complexity in the boundary condition emerges due to 
the presence of variable � in the terms such as sin(2�) and 
J2(�i , �) . The complexity can be advantageously avoided by 
benefiting from the transcendental expansion of even and 
odd angular Mathieu functions given in Eq. 11.

Equation 23 which are intensively complex formulas, 
can be transformed into a new system of independent lin-
ear equations in terms of unknown modal coefficients. To 
this end, Equation 11 are substituted into Equation 23 and 
the ensuing equations are separately multiplied by the fac-
tors cos(k�) and sin(k�) , k = 0, 1, 2, 3,… and are integrated 
from 0 to 2� as [68, 69]

where

wherein, the entries of the matrix �n are given in “Appen-
dix 3”. The natural frequencies of the elliptical shell can be 
obtained by solving the eigenvalue problem of Eq. 24, as

where |�n| is the determinant of Matrix �.

(24)�n vvv = 0,

(25)vvv� = [e0,… , eN ; f0,… , fN ; g0,… , gN ; h0,… , hN],

(26)|�n| = 0,

3  Model validation

In order to check the validity of the current solution, a 
general MatlabⓇ code was first developed to calculate the 
characteristic values and characteristic vectors given in 
Eq. 28 for radial and angular Mathieu functions. Then the 
characteristic values and vectors are used to calculate the 
even and odd Mathieu and modified Mathieu functions. 
In addition, the first and second derivatives of angular and 
radial Mathieu functions were achieved by taking differ-
entiation of Eqs. 11 and 17. The reliability and accuracy of 
calculation of radial and angular Mathieu functions were 
finally checked by comparing with the result given in Ref. 
[67].

Figure 2a compares the results given in Ref. [67] for the 
even angular Mathieu function of orders 0–5 with respect 
to � for a fixed value of q = 1 . Figure 2b illustrates the 
results for the odd Mathieu functions of orders 1–5 with 
respects to � for a fixed value of q = 1 . Figure 2c displays 
the radial Mathieu function of the first kind with order 
zero for different value of q. Figure 2d displays the first 
derivative of the radial Mathieu function of the first kind 
with order zero for different values of q. The results show 
perfect accuracy of the current MatlabⓇ code and result 
given in Ref. [67].

Table 1  Comparison of first 
nine natural frequencies, 
f = �∕2� (Hz) calculated by 
finite element model using 
Comsol MultiphysicsⓇ simulation 
software with the analytical 
MatlabⓇ code for selected 
aspect ratios of a hollow steel 
elliptical cylinder

n Aspect ratio e

1.06 1.13 1.29 1.5

Analytical FEM Analytical FEM Analytical FEM Analytical FEM

0 198.215 198.218 316.072 316.076 504.632 504.641 665.167 665.169
1 276.936 276.946 433.266 433.272 655.823 655.932 827.242 827.243

281.499 281.501 451.900 451.901 729.318 729.321 994.844 994.850
2 18.981 18.982 46.119 46.120 102.566 102.568 153.477 153.482

18.994 18.995 46.318 46.319 105.252 105.254 165.022 165.027
3 53.043 53.046 127.054 127.059 277.152 277.161 412.322 412.343

53.043 53.047 127.067 127.071 277.496 277.504 414.229 414.249
4 99.997 100.006 234.960 234.974 496.462 496.478 737.501 737.556

99.997 100.006 234.964 234.978 499.575 499.600 738.898 738.951
5 158.367 158.389 364.035 364.067 752.060 752.115 1094.428 1094.454

158.367 158.389 364.035 364.067 752.988 752.041 1097.306 1097.419
6 226.775 226.819 509.515 509.577 1023.051 1023.155 1470.908 1471.115

226.775 226.819 509.515 509.578 1023.097 1023.201 1475.395 1475.581
7 303.890 303.970 667.507 667.618 1307.228 1307.408 1846.169 1846.510

303.890 303.970 667.507 667.618 1307.229 1307.409 1846.308 1846.650
8 388.468 388.601 834.935 835.116 1598.621 1598.909 2235.465 2236.015

388.468 388.601 834.935 835.116 1598.621 1598.909 2235.473 2236.024
9 479.381 479.591 1009.413 1009.694 1894.746 1894.309 2623.123 2623.935

479.381 479.591 1009.413 1009.694 1894.746 1894.309 2623.123 2623.935
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After precise calculation of angular and radial Mathieu 
functions and it’s derivatives, a second MatlabⓇ script 
file (M-file) was constructed to calculate the elements 
of matrix D given in Eq. 24 and its determinant in order 
to find the resonance frequencies and mode shapes as a 
function of aspect ratio. Calculation of Bessel function of 
the first kind (BesselJ) is accomplished by using MatlabⓇ 
special function, besselj. A very efficient and robust root-
finding method based on the interval halving technique 
was utilized to calculate the resonance frequencies of the 
system. The roots can be obtained by repeatedly bisecting 
extremely small frequency intervals and then selecting the 
sub-interval in which the sign of characteristic equations 
changes because the selected interval must have a root to 
cause a sign change. The same procedure was applied to 
all different aspect ratios utilizing extremely small aspect 
ratio steps. Subsequently, any disappeared resonance fre-
quencies were determined and directly included. Due to 
the slow nature of the interval halving method, calcula-
tion of roots will be very computationally time-consum-
ing. Therefore, MatlabⓇ Parallel Computing ToolboxTM was 
engaged to increase the speed of calculation by taking 
advantage of computers with multicore processors and 
additional GPUs. By executing MatlabⓇ M-file that can 
perform independent iterations in parallel on multicore 
processors, the MatlabⓇ operations could speed up sig-
nificantly in order to manage the drawback of the interval 
halving method.

After evaluating the natural frequencies of the elliptic 
cylinder by the above-discussed method, each frequency 
is then inserted back into Eq. 24, and subsequently the cor-
responding shape modes is calculated by employing Mat-
labⓇ Null space function which gives an orthonormal basis 
for the null space of Dn . The calculation was executed on a 
server computer with number of terms of truncated series 
N = 200 in order to guarantee reliable results in high-fre-
quency ranges and high aspect ratios while keeping the 
running time in a reasonable scale. The convergence of 
the suggested solution was assured by using a general 
method of trial and failure, by increasing the attempt 
variable of mode number, n, while searching for reliable 
natural frequencies.

In order to check the accuracy of the current solution, 
our MatlabⓇ code was employed to calculate the first 
nine clusters of resonance frequencies, f = �∕2� for dif-
ferent aspect ratios, e = �1∕�0 while the thickness ratio 
along y-axis, � = (R

�

2
− R2)∕a were kept constant(� = 0.5 ). 

The elliptic cylinder is assumed to be made of steel 
(� = 7.67 × 1010 N∕m2,� = 7 × 1010 N∕m2, � = 7900 kg∕m3). 
Table 1 clearly shows a perfect agreement between the 
results calculated by our MatlabⓇ code with the numerical 

calculations performed by utilizing finite element package 
Comsol Multiphysics 5.3 Ⓡ [70]. The natural frequencies pro-
vided by the current model and FEM were very close for 
the first few frequencies. However, in higher frequencies 
and modes, the analytical model is deemed more accu-
rate. It is worth mentioning that the finite element model 
used for the latter verification consists of 4284 domain 
elements and 970 boundary elements. In addition, the 
mapped meshed was used due to the high aspect ratio 
of geometry. We note that the repeated deformed mode 
shapes were omitted for the sake of brevity.

4  Effect of aspect ratio: results 
and discussion

In order to explain the behavior and nature of the sug-
gested solution, a few example with different aspect ratios 
will be considered. The material properties and geometry 
of the elliptical cylinder were assumed to be equal to the 
values given in Sect. 3.

Figure  3 illustrates the two-dimensional deformed 
mode shapes related to the first nine clusters of natu-
ral frequencies given in Table 1 for various aspect ratios 
(e = 1.06, 1.13, 1.29, 1.5) . As it can be readily seen, 
the mode shapes associated with low aspect ratios 
(e.g. e = 1.06) for the elliptic cylinder is very similar to the 
case of circular cylindrical shell regardless of the value of 
the wave number (Hamidzadeh and Jazar [71]). As the 
value of aspect ratio increases, the change in the deformed 
mode shape progressively developed into a more cor-
rupted shape, especially for the breathing mode (n = 0) in 
which the cylinder radius expands and contracts, all parts 
of the cylinder moving inward or outward at the same rate. 
Another interesting observation can be seen for the lobar 
modes (n > 1) in which the number of lobes matches the 
value of wavenumber while as the aspect ratio, e increases, 
the lobes become more distorted, especially in the high 
value of circumferential wave number. Such mode shapes 
(0 and 1) could not be predicted via any of the common 
shear theory methods [47, 47].

Figure  4 shows the dispersion curve of the non-
dimensional resonance frequencies (Ω) = �a∕cp versus 
the aspect ratio parameter e for the selected circumfer-
ential mode number of the elliptical cylinder. It is worth 
mentioning that that the thickness ratio of � was kept 
constant (� = 0.5) for all calculations. The associated cir-
cumferential mode number, n is also described in the plot. 
The dispersion curve of the elliptical cylinder displays very 
unique features. When the aspect ratio is not very high 
(e.g. e=1) the elliptical cylinder is perfectly symmetric 
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and the vibration modes can appear with the same value 
of repeated resonance frequencies. As the aspect ratio, 
e increases, the elliptical geometry of the cylinder can 
cause the curve of repeated resonance frequencies to be 
divided into modes with different natural frequencies. 

As it can be clearly seen the level of curve bifurcation is 
very dependent on the circumferential mode number and 
aspect ratio. For instance, the high level of curve bifur-
cation can be seen for lower modes such as n = 1 and 
n = 2 especially for the high aspect ratio numbers while 

Fig. 3  Selected two dimen-
sional deformed mode shapes 
related to the first nine clusters 
of natural frequencies associ-
ated with natural frequencies 
given in Table 1 for various 
aspect ratios
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the bifurcation decreases for the high value of circumfer-
ential wave number (e.g. n = 3) and low value of aspect 
ratio. Another interesting observation is that the natural 
frequency associated with the breathing mode (n = 0) 
remains single value regardless of the value of aspect 
ratio. Consequently, it can be concluded that the repeated 
double roots of the elliptic cylinder with a low value of 
aspect ratio (e = 1) displays a unique decoupling of sym-
metric and anti-symmetric modes [1]. Another interest-
ing observation that can be seen from Fig. 4 is the cross 
over of resonance frequencies associated with different 
circumferential mode numbers (e.g. note the breathing 
mode n = 0 and lobar mode n = 4 cross each other at the 
aspect ratio e = 1.3 ). This indicates that beyond the aspect 
ratio of e = 1.3 , the stiffness of elliptical cylinder in the 
breathing mode (n = 0) will increase in comparison with 
mode number (n = 4).

5  Concluding remarks

This paper illustrated an exact two-dimensional analytical 
solution for free vibration of an infinitely long thick-walled 
hollow elliptical cylinder. Solution of the classical Navier’s 
equation by taking advantage of the Helmholtz decompo-
sition yielded to the angular and radial Mathieu functions 
of the first kind. The displacement and stress fields were 
calculated using both even and odd forms of the radial 
and angular Mathieu function. It is important to note that 
the angular form of Mathieu function on the boundary 
conditions does not create an orthogonal set. Hence, the 
difficulty was tackled by using the trigonometric expan-
sion of the even and odd angular Mathieu functions, 

leading to a linearly independent set of equations in terms 
of the unknown modal coefficients. The prime interests 
was to study the effect of the cylinder’s ellipticity on the 
resonance frequencies, deformed mode shapes and dis-
persion curves of an elliptical cylinder. Numerical studies 
were investigated for a stainless steel elliptical cylinder at 
different ranges of aspect ratios.

The results revealed that the mode shapes associated 
with low aspect ratios display similar behavior to the case 
of a circular cylindrical shell regardless of the value of cir-
cumferential wave number. While, by increasing the value 
of aspect ratios, the change in the deformed mode shape 
progressively developed into a more corrupted shape, 
especially for the breathing mode. As the elliptical shape 
of the cylinder increases, the curve of repeated natural 
frequencies bifurcates into two identical branches. The 
separation of natural frequencies is more apparent for 
the lowest modes. In general, the magnitude of separa-
tion is dependent on the value of aspect ration and mode 
number. In addition, the natural frequency associated 
with breathing mode remains single value regardless of 
the value of aspect ratio. Another interesting observation 
was the cross over of natural frequencies associated with 
different mode numbers. Two different types of modes 
may share the same value of resonance frequency at the 
crossover point. The associated modes were found to 
switch the values across the crossover point. Finally, it is 
worth noting that, compared to the shear theories, the 
presented modeling framework would be more applicable 
to the problems with high shell thickness ratios where the 
structures response becomes complex and highly nonlin-
ear [72, 73]. In addition, depending on the order, the shell 
theories only provide finite number of natural frequen-
cies, while the employed theory of elasticity gives infinite 
number of natural frequencies [74]. It is worth noting that 
for other solution methods such as finite element analysis, 
as the thickness of the cylinder increases, the mesh size 
should be refined, and hence the computational time will 
parabolically increase, in order to obtain a reliable approxi-
mation of natural frequencies and mode shapes; however 
using the developed analytical solution, the exact results 
can be obtained fairly fast (e.g. for initial design trials) for 
any given thickness of the given structure.
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Appendix 1: Kinematic relations

The expanded matrix form of Cauchy-Green infinitesimal 
strain tensor for the plane-strain case in the elliptical coor-
dinate system becomes

Equation 27 corresponds to the one of Eq. 3.

Appendix 2: Characteristic values 
and characteristic vectors of Mathieu 
function

In a linear algebra, the recurrence Eq. 12, can be rewritten 
in the form of eigenvalue problems as follows [75] 

(27)

�
��� ���
��� ���

�
=

⎛
⎜⎜⎜⎝

u� sin(2�)

2aJ3(� ,�)
−

u� sin(2�)+u�sinh(2� )

4aJ3(� ,�)

.
u� sinh(2� )

2aJ3(� ,�)

⎞
⎟⎟⎟⎠
.

(28a)

even−even ∶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−� q 0 0 0 0 …

2q 4 − � q 0 0 0 …

0 q 16 − � q 0 0 …

0 0 q 36 − � q 0 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A2n
0

A2n
2

A2n
4

A2n
6

⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0,

(28b)

even−odd ∶

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + q − � q 0 0 0 0 …

q 9 − � q 0 0 0 …

0 q 25 − � q 0 0 …

0 0 q 49 − � q 0 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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1
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3
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7

⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0,

(28c)

odd−even ∶

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 − � q 0 0 0 0 …

q 16 − � q 0 0 0 …

0 q 36 − � q 0 0 …

0 0 q 64 − � q 0 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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6
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8

⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0,

Equation 28 is corresponding to the recurrence Eq. 12. 
Excluding the Eq. 28b, all the left-hand side matrices are 
symmetric, tridiagonal with non-imaginary matrix entries.

Appendix 3: The Block Matrix of known 
Coefficients

The element of the known matrix given in Eq. 24 can be 
obtained as

where,

(28d)

odd−odd ∶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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0 q 25 − � q 0 0 …

0 0 q 49 − � q 0 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
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5
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7

⋮
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where

in which j = 0, 1, 2,… ,N.
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where k = 0, 1, 2, 3,… and i = 1, 2.
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