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Abstract
This paper deals with the free transverse vibration characteristics of a rotating non-uniform nanocantilever with multiple 
open cracks. Employing Eringen’s nonlocal elasticity and the Timoshenko beam theory, the non-dimensional governing 
differential equations for the above-mentioned problem are derived. The cracked beam is divided into intact sub-beams 
between two subsequent cracks connected by linear and rotational springs. Differential quadrature element method is 
utilized to solve the established governing equations of motion of each segment, along with the corresponding bound-
ary conditions and compatibility conditions at the cracked sections. The frequency parameters and vibration modes of 
the rotating cracked beam for different crack positions and severities under various nonlocal, geometric and dynamic 
conditions are studied, and the relevant graphs are plotted. Since rotating nanocantilevers are found mostly as blades 
of rotating nanodevices, the results can provide useful guidance for the study and design of the next generations of 
nanoturbines, nanogears etc.
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1  Introduction

Since the invention of carbon nanotubes, first observed 
and identified by Iijima [1], nanomaterials have engrossed 
a great deal of attention of engineers and scientists. Nowa-
days, many nanostructures are being fabricated and used 
as the building blocks in the novel fields of nanotechnol-
ogy. Numerous nanodevices such as nanomechanical res-
onators, electromechanical nanoactuators and nanogen-
erators incorporate different structural elements such as 
rods, beams and plates in nanolength scale [2, 3]. Accord-
ing to the fact that the dimensions of these structures are 
small and comparable to molecular distances, size effects 
are significant to analyze their mechanical behavior. The 
atomic and molecular modes require a great computa-
tional effort; therefore, simplified theories of continuum 

mechanics considering small length scales are useful tools 
to study such structures.

In other words, since the traditional continuum theories, 
which are scale-free, do not take account of the size influ-
ences, modified version of those have to be employed to 
study the mechanical behavior of structures at mico- and 
nanoscale levels accurately. The couple stress and strain 
gradient elasticity theories are often applied as the size-
dependent models to analyze and estimate the mechani-
cal behavior of microstructures such as microbeams [4–14] 
and microplates [15–19]. Among the size-dependent con-
tinuum theories, Eringen’s theory of nonlocal continuum 
mechanics [20–22] has been widely accepted and used to 
address various phenomena and subjects such as dynam-
ics, wave propagation, dislocation and cracks for problems 
involving nanostructures [23–25]. In the nonlocal theory, 
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the small-scale effects are captured by assuming that the 
stress at a point is a function of strains at all points in the 
domain. Indeed, this theory considers long-range intera-
tomic interaction and therefore yields results comparable 
with those of discrete atomistic or molecular dynamics 
simulations [26].

Recently, some researchers shown that circularly polar-
ized light can spin nanotubes [27, 28], and after that a 
great effort has been devoted to the study of carbon nano-
tubes (CNTs) and nanobeams under rotation. Pradhan and 
Murmu [29], used the nonlocal elasticity theory to investi-
gate the flap wise bending vibration of a rotating uniform 
nanocantilever modeled by an Euler–Bernoulli beam. They 
utilized the differential quadrature method to solve the 
problem. Murmu and Adhikari [30], studied the vibration 
characteristics of the same problem subjected to an initial 
prestress. Narendar and Gopalakrishnan [31], investigated 
the wave dispersion behavior of a rotating uniform nano-
tube, using a nonlocal Euler–Bernoulli beam. They con-
sider the maximum centrifugal force (at the root of the 
nanocantilever) as the axial force. Aranda-Ruiz et al. [32], 
analyzed the natural frequencies of the flap wise bending 
vibrations of a rotating non-uniform nanocantilever. They 
used a nonlocal Euler–Bernoulli beam to obtain the gov-
erning equations, and considered the true spatial variation 
of the axial force due to the rotation. More recently, Khanik 
[33], applied a modified differential quadrature method 
to solve and analyze the transverse vibration of a rotat-
ing nanobeam. He used the Euler–Bernoulli beam theory 
and Eringen’s nonlocal model to derive the equations of 
motion. Pouretemad et al. [34], applied Hamilton’s prin-
ciple and the differential quadrature element method to 
investigate the effects of rotation and presence of multiple 
concentrated masses on the vibration behavior of nonlo-
cal Timoshenko beams. They studied various geometric, 
dynamic and nonlocal conditions for this problem.

In the above-mentioned literature, it is assumed that 
the structures are intact, while the presence of defects 
may have profound effects on the mechanical behavior of 
structures. For instance, cracks, as a common defect, make 
structures more flexible and reduce their natural frequen-
cies. Therefore, it is very important to detect the presence, 
size and position of cracks in a structure. Belytschko et al. 
[35], studied the fracture of carbon nanotubes by molec-
ular mechanics simulations. Luque et al. [36], employed 
molecular dynamics techniques to investigate the tensile 
behavior of cylindrical copper wires of nanometric diame-
ter, considering atomically sharp surface cracks. Loya et al. 
[37], studied flexural vibrations of cracked nanobeams 
modeled by nonlocal Euler–Bernoulli beams. Torabi and 
Dastgerdi [38], used an analytical method to address the 

same problem for the nonlocal Timoshenko beam model. 
Hasheminejad et al. [39], and Hosseini-Hashemi et al. [40], 
investigated the transverse vibration of cracked nanobe-
ams in the presence of the surface effects. Also, Wang and 
Wang [41], studied the free vibration of a nanobeam based 
on the Timoshenko model with a single crack. They took 
account of the surface energy and shear deformation, and 
showed that the effect of shear deformation is significant 
on the vibration behavior of nanobeams, especially for 
higher modes.

Nanoelectromechanical system (NEMS) devices are 
emerging as the next generation technology which can 
change people’s lives significantly. Since rotating devices 
and rotary motors are particularly crucial for such advanc-
ing technology, in the present work, the vibration char-
acteristics of nanobeams under rotation are studied. Also 
in order to have a more accurate study of the mechanical 
behavior of rotating parts, presence of cracks and varia-
tion of cross-section of these elements have to be consid-
ered. In the first place, the extended Hamilton’s principle 
is utilized to derive the equations of motion of a rotating 
cantilever Timoshenko beam, accounting for rotary iner-
tia and shear deformation effects. The general constitutive 
equations of the nonlocal elasticity theory are introduced, 
and then the dynamic governing equations of a nonlo-
cal Timoshenko beam undergoing rotation are obtained. 
Next, by dividing a cracked beam into intact segments 
between two subsequent cracks, and connecting them by 
massless linear and rotational springs, the cracked beam 
model is established. The differential quadrature element 
method (DQEM) is employed to solve the derived equa-
tions of motion with respect to the compatibility con-
ditions of the cracked sections, and also the cantilever 
boundary conditions. The accuracy, convergence and ver-
satility of the presented approach are confirmed in com-
parison with some relevant references using various solu-
tion methods. Finally, a parametric analysis is conducted 
in order to investigate the influences of the nonlocal, hub 
radius and rotational velocity parameters, as well as cracks 
positions and cracks severities on the final vibration char-
acteristics of rotating non-uniform nanocantilever. It is 
shown that the application of this method makes It pos-
sible to efficiently solve the problem under different and 
arbitrary conditions of geometric, mechanical, dynamic 
properties while there are multiple cracks along the 
rotating beam, which is very time-consuming and even 
impossible for other present approaches in the literature. 
Therefore, the presented equations and solution of such a 
complex problem along with the results and various com-
parisons can be very helpful to design better and more 
accurate rotating devices on nano-scale in the future.



Vol.:(0123456789)

SN Applied Sciences (2019) 1:1092 | https://doi.org/10.1007/s42452-019-1130-z	 Research Article

2 � Rotating Timoshenko beam

The present study focuses on rotating nanotubes based on 
the Timoshenko beam theory. Unlike the Euler–Bernoulli 
beam theory, the Timoshenko theory takes into account 
the rotational inertia of the cross-section and shear defor-
mation. Therefore, this theory is more accurate for nano-
beams, which are stubby and have high frequencies. The 
following governing equations are derived based on the 
assumptions that the beam is linear elastic and the steady 
state axial strain is small, also the material is homogenous 
and isotropic. Let a non-uniform beam of length L rotate 
about an axis parallel to the y-axis at a constant angular 
velocity Ω. The beam is clamped at point O (x = 0) to a rigid 
hub of radius R as shown in Fig. 1.

Now, we will use the extended Hamilton’s principle to 
derive the equations of motion governing the free trans-
verse vibration of a rotating Timoshenko beam. According 
to Meirovitch [42], the extended Hamilton’s principle for a 
dynamic system is expressed as:

where T and V are the total kinetic and potential energy 
of the system, respectively, and Wnc denotes the virtual 
work done by the nonconservative forces. The required 
equations of the energies and virtual work for a rotating 
Timoshenko beam are presented by Kaya [43]; there-
fore, introducing v = v(x, t) and � = �(x, t) to represent, 
respectively, the translational deflection along the coordi-
nate y and rotation of the beam cross-section, the kinetic 
energy of the system is given by:

(1)∫
t2

t1

{
�T − �V + �Wnc

}
dt = 0,

(2)

T =
1

2 ∫
L

0

[�A(x)
(
�v

�t

)2

+ �I(x)

(
��

�t

)2

+ �I(x)�2Ω2]dx ,

where A(x) and I(x) are the beam cross-section area and 
moment of inertia, respectively, and ρ is the mass density. 
The total potential energy of the system is evaluated as:

where ks is a coefficient introduced to take into account 
the geometry-dependent distribution of the shear stress. 
Additionally, the virtual work is expressed as:

where N(x) is the centrifugal tension force due to the rota-
tion of the beam and can be determined as follows:

Substituting Eqs. (2)–(4) into Eq. (1) and using integra-
tion by parts, the equations of motion can be derived as:

where the local moment M and the local shear force Q are 
defined as:

3 � Nonlocal nanobeam model

Behavior of materials on the nanoscale is different from 
those of their bulk counterparts. In order to study micro- 
and nanoscale Timoshenko beams the small-size effects 
have to be included into the derived equations [44–49]. 
For analysis of nanoscale materials, Eringen proposed the 
nonlocal elasticity theory [21, 22]. This theory states that 
the stress at point x in a body depends not only on the 
strain at that point but also on those at all other points of 
the body. Thus, the nonlocal stress tensor σ at point x is 
defined as:

(3)V =
1

2 ∫
L

0

[EI(x)

(
��
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)2

+ ksGA(x)
(
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− �

)2

]dx,
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1

2 ∫
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0
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(
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)2
]
dx ,

(5)N(x) = ∫
L

x

[�A(x)Ω2(R + x)]dx .

(6)
�Q

�x
+

�

�x

(
N(x)

�v

�x

)
= �A(x)

�2v

�t2
,

(7)�M

�x
+ Q + �I(x)Ω2� = �I(x)

�2�

�t2
,

(8)M = EI(x)
��

�x
,

(9)Q = ksGA(x)
(
�v

�x
− �

)
.

(10)� = ∫Θ

�(|x� − x|, h)Tc(x�)dΘ(x�),
Fig. 1   Configuration of a rotating beam
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where Tc(x�) is the classic, microscopic stress tensor at 
point x′ , �(|x� − x|, h) is the nonlocal modulus or attenu-
ation function introducing into the constitutive equation 
the nonlocal effect at the reference point x produced by 
local strain at the source x′. |x� − x| is the Euclidean dis-
tance, and h = e0a/l is defined as the scale coefficient that 
incorporates the small-scale factor, where e0 is a material 
constant determined experimentally or approximated. 
Also, a and l are the internal and external characteristic 
lengths, respectively.

For a beam structure, the sizes in height and width are 
much smaller than the size in length. Therefore, for an elas-
tic beam with transverse motion in the x − y plane, the 
nonlocal constitutive relations can be simplified to one-
dimensional form as [23–25, 50]:

where E and G are Young’s modulus and shear modulus, 
respectively, ɛxx is the axial strain, and γxy is the shear strain. 
Noting that the scale length e0a takes into account the size 
effect on the response of nanostructures and when this 
parameter is equal to zero, one obtains the constitutive 
relations of the classical (local) theory.

4 � Rotating nonlocal Timoshenko beam

In this section, the governing equations of motion of a 
rotating nanocantilever with non-uniform cross-section 
are derived by combining the resulted local equations 
with the nonlocal constitutive relations. Note that the 
expressions of the bending moment and shear force in 
the nonlocal beam theory are different from those in the 
classical beam theory.

Recall that the definitions of the bending moment, 
shear force and kinematic relations in a beam structure 
are given as:

Integrating Eqs. (11) and (12), multiplied by y, along the 
cross-section of the beam, and using Eqs. (13) and (14), the 
nonlocal constitutive relations can be expressed in terms 
of Mand Q. Now, combining the resulted expressions with 
Eqs. (6) and (7) leads to the nonlocal relations of the bend-
ing moment and shear force as follows:

(11)�xx − (e0a)
2
d2�xx

dx2
= E�xx ,

(12)�xy − (e0a)
2
d2�xy

dx2
= G�xy ,

(13)M = − ∫
A
�xxydA, Q = ∫

A
�xyydA ,

(14)�xx = −y
��

�x
, �xy =

�v

�x
− � .

5 � Rotating cracked nanocantilever

Consider now the rotating nanobeam subjected to n open 
cracks as depicted in Fig. 2. Indeed, the absence of one or 
more atoms in the structure of a nanobeam leads to increase 
in the strain energy, and is modeled as an edge crack. Here, 
the beam with n cracks is treated as n + 1 intact sub-beams 
connected by elastic linear and rotational springs. The stiff-
ness of the springs depends on the crack severities deter-
mined from molecular dynamics models [35].

Therefore, the equations of motion for each segment 
can be evaluated according to the analysis conducted for 
the rotating nonlocal Timoshenko beam in the previous 
sections. Substituting Eqs. (15) and (16) into Eqs. (6) and 
(7), the governing equations of the free vibration of a rotat-
ing uncracked nanoblade are derived, which can be solved 
by using the separation of variables method as:

where ω is the natural frequency of vibration. Using the 
resulted equations and the non-dimensional variables and 
constants given by:
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�
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,
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.

(17)v(x, t) = LV (x)ei�t , �(x, t) = Ψ(x)ei�t ,

(18)A∗(x) =
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A0
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, l
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L
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, s
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,

Fig. 2   Beam with edge cracks
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in which A0 and I0 are the cross-section area and moment 
of inertia of the beam at the clamped edge, respectively. 
Finally, the governing equations for the ith segment are 
derived as:

(20)

−�4s2h2

A∗(�)

�
�

1

�

A∗(�)(� + �)d�

��
1

l(i)

�4 �4V (i)
�
� (i)

�

�
�
� (i)

�4
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(
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)}
= 0.

Note that the above 2i equations must be solved with 
the present boundary conditions of the beam, clamped-
free, and the compatibility conditions in the vicinity of 
each crack.

Since the rotating beam is considered a cantilever 
beam, the deflection and derivative of the deflection are 
equal to zero at the hub, and also there is no bending 
moment and shearing force at the free end. Therefore, the 
following boundary conditions can be written:

Also, in order to take into account the effects of the 
cracks, the successive segments of the beam are con-
nected by linear and rotational elastic springs. Actually, 
the presence of the cracks increases the strain energy of 
the system, and this additional energy is considered by 
introducing one linear spring and one rotational spring 
for each crack. As a result, the compatibility conditions at 
the common node of two adjacent segments ( � = �crack ) 
are calculated as follows [51]:

Continuity in the natural parameters:

Discontinuity in the geometric parameters:

where αq and αm are the non-dimensional flexibility 
constants for linear and rotational springs, respectively. 
� = �∕t is the ratio of the crack extension, τ, to the height 
of the beam, t (see Fig. 2), and υ is Poisson’s ratio. q(�) 
and Θ(�) are configuration functions for the cracks and 
are dependent on ɛ and the cross-section geometry of 
the beam. For a beam with rectangular cross-section 
the following equations are evaluated based on fracture 
mechanics [52, 53]:

(22)
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6 � Differential quadrature element method 
(DQEM)

The differential quadrature method (DQM) is based on the 
idea that all derivatives of a function can be easily approxi-
mated by means of a weighted linear sum of the function 
values at N pre-selected grid of points as:

where A(r) is the weighting coefficient associated with the 
rth order derivative and is given by Bert and Malik [54]:

Distribution of the grid points is an important aspect 
in convergence of the solution. A well-accepted set of the 
grid points is the Gauss–Lobatto–Chebyshev points given 
for interval [0, 1] as:

The DQM may be employed as an efficient numerical 
tool for solving the domain problems having any kind of 
discontinuity in geometry, material, loading and boundary 
conditions in the form of small sub-domain elements to 
be called DQEM. In order to simplify the DQEM analogue 
of the equations, a modified form of the weighting coef-
ficients of element i is defined as:

Applying the above-mentioned rules and rearrang-
ing, the DQ form of the governing set of Eqs. (20) and (21) 
becomes:
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where the following vectors are defined:

also, the elements of the mentioned matrices, are 
expressed in “Appendix”.

Using the DQ rules in a similar manner, the compatibil-
ity conditions and boundary conditions, respectively, can 
be expressed in the following matrix forms:

where the elements of the mentioned matrices, are pre-
sented in “Appendix”.

For the sake of ability to satisfy the compatibility equa-
tions and boundary conditions, the domain of the solution 
should be divided into three parts as follows [55]:

the boundary points:

the common nodes at adjacent elements:

(30)
[
K11

]
{V} +

[
K12

]
{Ψ} = �4

[
M1

]
{V},

(31)
[
K21

]
{v} +

[
K22

]
{Ψ} = �4

[
M2

]
{Ψ},

(32)
{V}T =

{{
V (1)

}T
,
{
V (2)

}T
,… ,

{
V (n+1)

}T
}
,

{Ψ}T =
{{

Ψ(1)
}T

,
{
Ψ(2)

}T
,… ,

{
Ψ(n+1)

}T
}
,

(33)[P]{V} + [Q]{Ψ} = �4([R]{V} + [S]{Ψ}),

(34)[T ]{V} + [X ]{Ψ} = �4([Y]{V} + [Z]{Ψ}).

(35){V}b =

⎧⎪⎨⎪⎩

�
V
(1)

1

�
�
V
(n+1)

N

�
⎫⎪⎬⎪⎭
, {Ψ}b =

�
Ψ

(1)

1

�
�
Ψ

(n+1)

N

� ,

(36)

{V}T
c
=

{{
V
(1)

N

} {
V
(2)

1

V
(2)

N

}T

⋯

{
V
(n)

1

V
(n)

N

}T {
V
(n+1)

1

}}

{Ψ}T
c
=

{{
Ψ

(1)

N

} {
Ψ

(2)

1

Ψ
(2)

N

}T

⋯

{
Ψ

(n)

1

Ψ
(n)

N

}T {
Ψ

(n+1)

1

}}

and the domain points:

(37){V}T
d
=

⎧⎪⎨⎪⎩

⎧
⎪⎨⎪⎩

V
(1)

2

⋮

V
(1)

N−1

⎫
⎪⎬⎪⎭

T ⎧
⎪⎨⎪⎩

V
(2)

2

⋮

V
(2)

N−1

⎫
⎪⎬⎪⎭

T

⋯

⎧
⎪⎨⎪⎩

V
(n+1)

2

⋮

V
(n+1)

N−1

⎫
⎪⎬⎪⎭

T ⎫⎪⎬⎪⎭
, {Ψ}T

d
=

⎧⎪⎨⎪⎩

⎧
⎪⎨⎪⎩

Ψ
(1)

2

⋮

Ψ
(1)

N−1

⎫
⎪⎬⎪⎭

T ⎧
⎪⎨⎪⎩

Ψ
(2)

2

⋮

Ψ
(2)

N−1

⎫
⎪⎬⎪⎭

T

⋯

⎧
⎪⎨⎪⎩

Ψ
(n+1)

2

⋮

Ψ
(n+1)

N−1

⎫
⎪⎬⎪⎭

T ⎫⎪⎬⎪⎭
.
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where V (i)

k
 and Ψ(i)

k
 , are V (i)(�k) and Ψ(i)(�k) , respectively.

Therefore, by rearranging and partitioning Eqs. (30), 
(31), (33) and (34) into the boundary, adjacent and domain 
displacement and rotation components, one reaches the 
following eigenvalue problem:

where [0] is the zero matrix. The natural frequencies and 
corresponding modes will be obtained by solving this 
standard eigenvalue equation as long as one chooses the 
proper number of grid points satisfying the following rela-
tion for convergence of first m frequencies:

(38)

⎡⎢⎢⎢⎣

�
K̄11

�
b

�
K̄11

�
c

�
K̄11

�
d

�
K̄12

�
b

�
K̄12

�
c

�
K̄12

�
d�

K̄21
�
b

�
K̄21

�
c

�
K̄21

�
d

�
K̄22

�
b

�
K̄22

�
c

�
K̄22

�
d

[P]b [P]c [P]d [Q]b [Q]c [Q]d
[T ]b [T ]c [T ]d [X ]b [X ]c [X ]d

⎤⎥⎥⎥⎦

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

{V}b
{V}c
{V}d
{Ψ}b
{Ψ}c
{Ψ}d

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

= 𝜆4

⎡⎢⎢⎢⎣

�
M̄1

�
b

�
M̄1

�
c

�
M̄1

�
d

[0] [0] [0]

[0] [0] [0]
�
M̄2

�
b

�
M̄2

�
c

�
M̄2

�
d

[R]b [R]c [R]d [S]b [S]c [S]d
[Y]b [Y]c [Y]d [Z]b [Z]c [Z]d

⎤⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

{V}b
{V}c
{V}d
{Ψ}b
{Ψ}c
{Ψ}d

⎫⎪⎪⎪⎬⎪⎪⎪⎭

,

(39)
||||
�
(N)

l
−�

(N−1)

l

�
(N−1)

l

|||| ≤ 0.01, l = 1, 2,… ,m .

7 � Numerical applications and discussion

In this section, the computer package MATLAB is used 
to write code based on the DQE method to solved the 
obtained equations of motion, and analyze the problem 
of the rotating non-uniform Timoshenko nanocantilever 
beam with multiple cracks. The results are presented in 
non-dimensional forms, and the effects of the small-scale, 
angular velocity, hub radius parameters as well as cross-
section and cracks conditions on the natural frequencies 
and mode shapes are investigated, and the related graphs 
are plotted.

First of all, in order to validate the reliability of the pro-
posed solution, some illustrative examples are solved and 
the results are compared with the related ones presented 
in the literature. Table 1 reports the resulted data of the 
present study, Kaya [43] and Banerjee [56] for vibration 
analysis of a rotating Timoshenko beam. In this problem 
a local (h = 0) uniform beam without any cracks (ɛ = 0) are 
considered when r = 1∕30 , E∕ksG = 3.059 and � = 0 . As 
depicted, the results of the present work are in agreement 
with those obtained by Kaya [43] and Banerjee [56] almost 
up to fourth digit.

Also, the results given by Weaver et al. [57], for the prob-
lem of an uniform Timoshenko beam with a single crack in 
the middle of its length are compared to the data obtained 
by the presented approach. The local theory (h = 0) is used 
for a Timoshenko beam with the length, height and width 

Table 1   Variation of the fundamental frequency parameters of a rotating intact cantilever Timoshenko beam with the angular velocity 
parameters, when h = 0, ɛ = 0, δ = 0, r = 1∕30 , E∕ksG = 3.059 [43] and [56]

γ2 0 1 2 3 4 5 10

λ1
2

 Present study 3.4798 3.6445 4.0971 4.7516 5.5314 6.3858 11.0639
 Kaya [43] 3.4798 3.6445 4.0971 4.7516 5.5314 6.3858 11.0643
 Banerjee [56] 3.4798 3.6445 4.0971 4.7516 5.5314 6.3858 –

Table 2   Variation of the natural frequencies (Hz) of a nonrotating local cantilever Timoshenko beam with a crack in the middle of its length 
for two different crack depths, when L = 100 mm, b = 25 mm, t = 12.5 mm, E = 210 Gpa, υ = 0.3, ρ = 7860 kg/m3 and ks = 5/6 [57]

ɛ Present approach Exact solution (Weaver [30])

f1 f2 f3 f4 f1 f2 f3 f4

0.2 1949.6 9411.4 22986.0 35925.6 1948.2 9393.7 22962.3 35888.7
0.3 1863.2 8400.9 22962.7 34337.0 1856.8 8350.7 22803.8 34219.7

ɛ Absolute difference (%)

f1 f2 f3 f4

0.2 0.07 0.19 0.1 0.1
0.3 0.3 0.6 0.7 0.3
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of 100 mm, 25 mm and 12.5 mm. The other properties 
are: E = 210 Gpa , � = 0.3 , � = 7860 kg∕m3 and ks = 5∕6 . 
Table 2 shows the satisfactory agreement between the 
results of the proposed method and the exact solution for 
the values of the first four frequencies (Hz) for two differ-
ent non-dimensional crack extensions, ɛ = 0.2 and ɛ = 0.35.

The last comparison is made between our results and 
the data obtained by Wang et al. [58], for nonlocal can-
tilever beams. In this case, Wang considers vibration of 
(5,5) armchair single-walled carbon nanotubes (SWCNTs) 
with diameter d = 0.678 nm , length L = 10d , thickness 
t = 0.066 nm , and also the following mechanical param-
eters: E = 5.5 TPa , � = 0.19 , and ks = 0.563 . Table 3 con-
firms the accuracy (especially for lower frequencies) of the 
proposed approach in this study in comparison with the 
closed form vibration results given Wang, for the first four 
frequency parameters of cantilever Timoshenko beams 
with the aforementioned properties and three different 
nonlocal parameters ( h = 0, 0.1 and 0.3).

For the present study, we consider a tapered nanobeam 
with linearly varying height t = t0(1 + ��) , where t0 is the 
height (width) of the beam at the clamped section ( � = 0 ), 
and β is a parameter representing the cross-section varia-
tion. From now on, a nanobeam of length L = 20 nm with 
t0 = 4 nm is used. Also, the adopted mechanical prop-
erties of the beam have the following values: E = 1 TPa , 
� = 0.25 , ks = 2∕3 and � = 2300 kg∕m3 (Yoon et al. [59]). 
The nonlocal parameter, h, will be in the range of 0–0.3, 
the non-dimensional rotational velocity parameter �2 is 
assumed in the range of 0 to 5. Also, here we consider the 
non-dimensional hub radius � from 0 up to 1.

Figure  3 depicts the variation of the first four non-
dimensional modal frequency parameters of a rotat-
ing cracked non-uniform nanocantilever versus the 

non-dimensional angular velocity parameter for different 
values of the non-dimensional hub radius parameters. 
In this case, h = 0.1 and � = −0.2 , and the considered 
nanobeam has an open crack located in the middle of its 
length ( � = 0.5 ) with non-dimensional extension param-
eter � = 0.1 . It is obvious that the frequency increases with 
the angular velocity, and this increase is intensified for the 
higher hub radii. This phenomenon is attributed to the 
stiffening effect of the centrifugal force, which is directly 
proportional to the rotational velocity, and hub radius.

In order to show the effect of the number of grid points 
on the final results, a convergence study is presented in 
Table 4. The resulted values of the first fourth non-dimen-
sional frequency parameters � are provided for a random 
case from the previous problem (Fig. 3). For this case, �2 = 1 
and � = 0.1 , and the rest of conditions and properties are 
the exact same as those used in Fig. 3. It is seen that the 
results become closer to each other as the number of the 
grid points or N increase. For the grid points numbers of 
N = 7 and N = 8, all the resulted non-dimensional frequency 
parameters satisfy the condition stated in Eq. (39); there-
fore, for this example the final number will be N = 7.

The effects of the crack position and crack severity on 
the vibration behavior of a cracked nanoblade are con-
sidered in Fig. 4. In this case, the nonlocal and hub radius 
parameters are chosen as h = 0.1 and δ = 0.5, respectively, 
and the nanocantilever is non-uniform, β = − 0.2, and rotat-
ing with a constant angular velocity, γ2 = 1. Figure 4 plots 
the variation of the first non-dimensional modal frequen-
cies with the position of the single crack along the beam 
for the various non-dimensional crack depth parameters. 
As the figures reveal, whenever the crack is located at 
points which have higher values of curvature in the cor-
responding mode, the natural frequency is affected more. 

Table 3   First four frequency parameters of nanocantilever 
Timoshenko beams based on the closed form method [58] and the 
proposed approach for various nonlocal parameters h = 0,  0.3 and 

0.5, when d = 0.678  nm, L = 10 d, t = 0.066  nm, E = 5.5 TPa, υ = 0.19, 
and ks = 0.563(Wang et al. [58])

h Present approach Closed form solution (Wang et al. [58])

�2
1

�2
2

�2
3

�2
4

�2
1

�2
2

�2
3

�2
4

0 1.8612 4.4751 7.1126 9.3913 1.8610 4.4733 7.1972 9.3813
0.1 1.8648 4.3325 6.4643 7.8969 1.8650 4.3506 6.6091 8.3151
0.3 1.8971 3.5885 4.7599 5.2447 1.8999 3.6594 5.0762 5.7875

h Absolute difference (%)

�2
1

�2
2

�2
3

�2
4

0 0.01 0.04 1.2 0.1
0.1 0.01 0.4 2.2 5.3
0.3 0.1 1.98 6.6 10.3
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Therefore, there are some points depending on the mode 
under consideration, that the effects of the presence of 
a crack becomes almost disappear. The number of these 
spots that are located at the inflection points, is directly 

related to the number of the corresponding mode. Also, 
since the case of ɛ = 0 considers an intact beam, It is seen 
that the existence of damage decreases the magnitude 
of the natural frequency, and as the crack becomes more 
severe the final frequencies become even lower. In gen-
eral, the presence of cracks makes a beam more flexible 
and, as a result, the magnitudes of obtained frequencies 
of a cracked beam are lower than those of an intact beam. 
This decrease can be even intensified as the number of the 
cracks or the severity of them increases.

Consider an uniform (β = 0) nanoblade which is rotating 
at a constant angular velocity with multiple cracks. Fig-
ure 5 plots the variation of the first four non-dimensional 
modal frequency parameters versus the non-dimensional 
crack extension parameter. For this case, It is assumed that 
cracks are similar and equally spaced along the beam. The 

Fig. 3   Variation of the first four non-dimensional modal frequency parameters with the non-dimensional angular velocity parameter of a 
non-uniform nanocantilever with a crack in the middle of its length, for different non-dimensional hub radius parameters

Table 4   Convergence study for the first four non-dimensional fre-
quency parameters � of a rotating nanocantilever Timoshenko 
beam with a crack in the middle of its length

N is the number of grid points in each segment of the beam

N = 5 N = 6 N = 7 N = 8

λ1 1.8950 1.8983 1.8987 1.8990
λ2 4.0476 4.0986 4.0986 4.0980
λ3 5.8504 5.9056 5.9213 5.9189
λ4 6.9427 6.9678 7.0258 7.0205
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values of used non-dimensional parameter here are as fol-
lows: h = 0.1, δ = 0.5 and γ2 = 1. As the plots show, generally 
speaking, as the number of the cracks is increasing, we 
have to expect lower natural frequencies for the blade. 
This expectation is correct unless some cracks are located 
near the inflation points at which the effects of cracks 
are almost vanished. For example, as it is obvious, the 
obtained natural frequencies of a beam with two equally 
spaced cracks are more than a beam with a single crack in 
the middle of its length for the fourth mode (see Fig. 5d). 
Another interesting point on this figure is the rate of 
change of the frequency parameters based on the number 
and severity of cracks.

Finally, Fig. 6 presents the 3-D plots of the variation of 
the first four normalized mode shapes of a non-uniform 
cracked nanoblade versus the nanlocal parameter. The 
nanoblade is not uniform β = − 0.2, and rotating at a con-
stant angular velocity, γ2 = 1 while δ = 0.5. There is a single 
open crack at ξ = 0.5 with ɛ = 0.1. Also, as the presented 

figures show, the assumed range for the nonlocal param-
eter is 0–0.3. As the plots show the results for the different 
nonlocal parameters h, size effects play an important role 
in the mechanical characteristics of nanosclae structures. 
Note that the mode shapes associated with h = 0 corre-
spond to the mode shapes of a rotating local Timoshenko 
beam and have the smallest values for each mode number.

8 � Conclusions

The vibration analysis of a rotating non-uniform nanocan-
tilever Timoshenko beam with multiple cracks was pre-
sented in this study. The differential quadrature method 
was employed to solve the resulted equations and analyze 
the problem for different numbers, positions and severi-
ties of the cracks under various nonlocal, geometric and 
dynamic conditions.

Fig. 4   First four non-dimensional frequency parameters of an non-uniform cracked nanoblade under rotation versus the non-dimensional 
crack position, for different non-dimensional crack extension parameters
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It was observed that because of the centrifugal force 
effects, the non-dimensional frequencies grow with 
increasing the rotational angular velocity and hub radius 
for both the local and nonlocal elastic models. Also, the 
existence of the cracks makes the beam more flexible, 
therefore, as the number of cracks and severity of them 
increase the natural frequency values decrease more. It 
was seen that the position of the cracks may affect the 
vibration behavior of the beam too. Depending on the 
vibration mode, there are some spots along the beam at 
which that the presence of the cracks can have the maxi-
mum or minimum effects on the final frequencies. Finally, 
it was shown that the influences of the nonlocal parameter 

lead to increase the deflection of the beam for every mode 
of vibration, in comparison to the local beam modeling. 
The proposed procedure could help scholars and engi-
neers who are working on rotation and damage detection 
in micro- or nanoelectromechanical devices, and provide 
them with a vibration solution that needs less computa-
tional effort and is more versatile.

Compliance with ethical standards 
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Fig. 5   Variation of the first four non-dimensional modal frequency parameters of a cracked uniform nanoblade with the non-dimensional 
crack extension parameter, for various number of the cracks
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Appendix

The appendix presents the elements of the matrices 
appeared in the DQ formulation. The components of [Kab] 
and [Mab] , a, b = 1, 2 , in Eqs. (30) and (31) are evaluated as:

(40)

[
K11

]
= diag

[
[k11]

(1)
[
k11

](2)
⋯ [k11]

(n+1)
]
,

[
K12

]
= diag

[[
k12

](1) [
k12

](2)
⋯

[
k12

](n+1)]
,

[
K21

]
= diag

[
[k21]

(1)
[
k21

](2)
⋯ [k21]

(n+1)
]
,

[
K22

]
= diag

[[
k22

](1) [
k22

](2)
⋯

[
k22

](n+1)]
,

[
M1

]
= diag

[
[m1]

(1)
[
m1

](2)
⋯ [m1]

(n+1)
]
,

[
M2

]
= diag

[[
m2

](1) [
m2

](2)
⋯

[
m2

](n+1)]
,

Fig. 6   First four normalized mode shapes versus the non-dimensional nonlocal parameter for a non-uniform cracked nanoblade under rota-
tion

where “diag” operator is used to create the needed diago-
nal matrices. Also for the ith sub-beam the following rela-
tions are obtained:

(41)

[
k11

](i)
= −�4s2h2[a](i)[D](i) + 3�4s2h2

[
b
](i)

[C](i)

+
{
�4s2

[
3h2

([
b
](i)[

d
](i)

+ I
)
+ [a](i)

]
+ I

}
[B](i)

+
{
�4s2

[
h2
([
b
](i)[

d
](i)

+ [c](i)
)
−
[
b
](i)]

+ [c](i)
}
[A](i),

[
k12

](i)
= −[A](i) − [c](i),

[
k21

](i)
=
[
g
](i)

[A](i),
[
k22

](i)
= s2

(
1 − �4r2h2

)
[B](i) + s2

(
1 − 2�4r2h2

)
[e](i)[A](i)

+
[
�4s2r2

(
I − h2

[
f
](i))

−
[
g
](i)]

,
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in which [kab](i) and [mab]
(i) , a, b = 1, 2, i = 1,… , n + 1 have 

the dimension of N × N , and IN×N is the identity matrix. 
Also, the diagonal matrices are defined as:

[
m

1

](i)
= s2

{
h2[B](i) + 2h2[c](i)[A](i) +

(
h2
[
d
](i)

− I
)}

,

[
m

2

](i)
= s2r2

{
h2[B](i) + 2h2[e](i)[A](i) +

(
h2
[
f
](i)

− I
)}

,

(42)

a
(i)

jj
=

∫ 1

�m
A∗(�)(�+�)d�

A∗(�m)
, o

(i)

jj
=

∫ 1

�m
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I∗(�m)
,

c
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jj
=

(
1

A∗(�)

dA∗(�)

d�

)||||�=�m
, d

(i)

jj
=

(
1

A∗(�)

d2A∗(�)

d�2

)||||�=�m
,

e
(i)

jj
=

(
1

I∗(�)

dI∗(�)

d�

)||||�=�m
, f

(i)

jj
=

(
1

I∗(�)

d2 I∗(�)

d�2

)||||�=�m
,

g
(i)

jj
=

A∗(�m)

I∗(�m)
, b

(i)

jj
= � + �m,

for

i = 1, 2,… , n + 1

j = 1, 2,… ,N

m = (i − 1)N + j = 1, 2,… , (n + 1)N

.

It is worth repeating that in the case of a beam with 
n cracks, we have to consider n + 1 sub-beams, in which 
there are N grid points.

Regarding the compatibility conditions equations, It 
is required to consider the relevant equations for each 
crack position, and then compose the obtained equations 

in order to reach an expression in matrix form as Eq. (35). 
Therefore the final matrices are comprised of smaller ele-
ments as:

where the components for the mentioned matrices are 
obtained as:

(43)

Pab =

{
[p](i) 4i − 3 ≤ a ≤ 4i N(i − 1) + 1 ≤ b ≤ N(i + 1)

0 else
i = 1, 2,… , n,

Qab =

{
[q](i) 4i − 3 ≤ a ≤ 4i N(i − 1) + 1 ≤ b ≤ N(i + 1)

0 else
i = 1, 2,… , n,

Rab =

{
[r](i) 4i − 3 ≤ a ≤ 4i N(i − 1) + 1 ≤ b ≤ N(i + 1)

0 else
i = 1, 2,… , n,

Sab =

{
[s](i) 4i − 3 ≤ a ≤ 4i N(i − 1) + 1 ≤ b ≤ N(i + 1)

0 else
i = 1, 2,… , n,
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Also the elements of the used matrices in Eq. (34) are 
given as:

(44)

p
(i)

jk
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
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Note that in the above equations, δij is the Kronecker 
delta which is defined by
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