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Abstract
This research work deals with tip vibration control of a Two-Link Flexible manipulator using hybrid control technique. 
This technique involves the implementation of unconstrained viscoelastic damping layer on the links in conjunction with 
active damping using piezoelectric sensors and actuators. Mathematical modelling of the complete system is done using 
the finite element approach in the inertial frame. Viscoelastic damping is modelled using Kelvin–Voigt elements for which 
a damping matrix is derived. Active damping is modelled as time-dependent uniformly distributed load applied by the 
piezoelectric actuator on the flexible link working under feedback control. The angular and linear velocities of the tips of 
flexible links are used for direct feedback. The unconstrained viscoelastic damping layer effectively reduces the vibrations 
of the system. The effectiveness of the active control depends upon the relative position of sensors and actuators on the 
links. The novelty of the work lies in control of torsional and flexural vibrations through the application of passive and 
active damping methods to the non-inertial frames represented by the manipulator links.

Keywords Flexible manipulator · Vibration control · Viscoelastic damping · Hybrid damping · Active control

1 Introduction

The vibration control of links of flexible manipulators is a 
challenging task. Theoretically, the joint torque require-
ments of flexible manipulators are very less as compared 
to rigid manipulators but with lower positional accuracy 
of the end-effector. The accuracy of flexible manipulators 
decreases due to the vibration of the links. If somehow 
these vibrations are countered then the power require-
ments by the robots will reduce apart from achieving 
positional accuracy. In this paper, the vibration control of 
flexible links of a Two-Link Flexible planar manipulator hav-
ing two revolute joints is achieved with the help of hybrid 
damping method. This method employs passive damping 
technique using a viscoelastic material (say, rubber) and 
active damping technique using piezoelectric materials 
(say, PZT). The phenomenon of viscoelasticity is modelled 
using Kelvin–Voigt elements. The viscoelastic material 
is pasted throughout the length of the links while the 

piezoelectric sensors and actuators are pasted over the 
links in segmented fashion. In the present work, firstly 
a brief literature survey is provided which includes the 
work done by various researchers in the areas of viscoe-
lastic damping and active vibration control. Mathematical 
modelling of viscoelasticity and active vibration control 
are described using the finite element approach. Simula-
tion results are discussed for different cases. A brief litera-
ture survey was conducted on active and passive damp-
ing methods used by various researchers. Firstly, review 
on viscoelastic damping is provided. Next, a brief study of 
work done by various authors on active vibration control 
using piezoelectric materials is provided.

1.1  Review on viscoelastic damping

Zhou et al. [1] have presented a review on various research 
methods and theoretical models are used to study the 
mechanics of structures made up of viscoelastic damping 
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materials. The authors give a description of conventional 
and new methods in this area and also provide informa-
tion about the advantages, disadvantages and the applica-
bility of various available methods. Grootenhuis [2] has dis-
cussed on how to damp the vibrations of structures using 
viscoelastic damping and also discusses, how to increase 
the efficacy of viscoelastic damping for both uncon-
strained and multilayer sandwich constructions. Jones 
et al. [3] have proposed a method to measure the complex 
modulus properties of viscoelastic materials attached to 
thin metal sheets. They have verified their results using 
a resonance technique. Kapur et al. [4] have analysed a 
two-layer and three-layer viscoelastically damped beams 
subjected to shock excitations. The modelling of viscoelas-
ticity is done using a four-element viscoelastic model. The 
authors have also validated their results experimentally. 
Xisheng et al. [5] have developed a new method called 
‘finite element perturbation method’ to solve the Eigen 
systems with frequency-dependent stiffness matrix. They 
have also addressed the issue of optimal design of visco-
elastically damped structures with regards to optimal 
location of constrained damping layers and optimal vis-
coelastic material selection. Barkanov [6] has studied the 
transient response of structures with viscoelastic materi-
als using finite element method. The viscoelastic material 
is represented by complex modulus model. The author 
has used fast Fourier transform to represent the input 
signals and transfer functions. The author concluded that 
the time-domain representation is a correct way to avoid 
the non-causal effect. Lei et al. [7] have done the dynamic 
analysis of Euler–Bernoulli beams and Kirchoff plates using 
non-local damping models that include time and spatial 
hysteresis effects. The equation of motion presented here 
is an integro-partial-differential equation. The approximate 
solutions for eigenvalues and modes are obtained using 
Galerkin’s method. Lepoittevin and Kress [8] have pro-
posed a method of segmentation to enhance the damp-
ing capabilities of constrained layer damping material. In 
this method, cuts were introduced at suitable locations. 
Nelder–Mead simplex method was used to find out the 
optimum position of cuts and damping efficiency was 
estimated using modal strain energy method. Dutt and 
Roy [9] have provided the equations of motion of a rotor-
shaft system with a viscoelastic rotor using finite elements 
method. The authors have represented the material consti-
tutive relationship using differential time operator, which, 
facilitates the generic representation of viscoelasticity by 
various types of models. Palmeri and Adhikari [10] have 
presented and validated numerically the state-space form 
for studying the transverse vibrations of double-beams 
joined together by viscoelastic core. The authors have 
used Galerkin’s approach and Lagrange’s equation to pre-
sent their formulation. According to them, their technique 

enables one to handle inhomogeneity, different types of 
boundary conditions and rate-dependent constitutive 
law for the inner layer for the system. Lei et al. [11] have 
studied the dynamic characteristics of damped viscoelastic 
nonlocal beams using Kelvin–Voigt and three-parameter 
standard viscoelastic models, velocity dependent exter-
nal damping and nonlocal Euler–Bernoulli beam theory. 
They developed a transfer function method to obtain the 
closed-form solution of beams. Hujare and Sahasrabudhe 
[12] determined the damping performance of different 
viscoelastic materials using constrained layer damping 
treatment. The authors have followed ASTM standards 
during the experimental test. The damping factors have 
been obtained using half power bandwidth method. Li 
et al. [13] have presented the dynamic analyses of the sys-
tem using various damping models. The damping forces 
are frequency dependent and depend upon the past his-
tory of motion. The authors suggested that the damping 
model may be derived using standard viscoelastic mod-
els. They have used both the mode superposition method 
and Fourier transform method for calculating the dynamic 
response of the system. Freundlich [14] has obtained the 
dynamic response of an Euler–Bernoulli simply supported 
beam subjected to a moving force load using Green’s 
function. The author has included viscoelastic damping 
using Kelvin–Voigt model. The governing equations of the 
system are obtained in the form of fractional derivatives. 
Ghayesh [15, 16] has studied the effect of various parame-
ters like gradient index, excitation frequency, amplitude of 
harmonic force and viscoelastic parameters on nonlinear 
frequency and force responses on materials with viscoe-
lastic properties.

1.2  Review on active damping of vibrations

Benjeddou [17] reviewed the advances and trends in the 
formulations and applications of finite element modelling 
of adaptive structural elements. He has tabulated various 
types of adaptive piezoelectric finite elements used in lit-
erature. Cannon and Schmitz [18] have conducted experi-
ments on control of single-link very flexible manipulator 
with non-collocated sensor-actuator pairs. The authors 
highlighted the advantages of end-point sensing in con-
trolling such types of systems and time response of the 
controller for non-collocated arrangement. Sakawa et al. 
[19] tried to control the rotation angle as well as vibra-
tion of a flexible arm clamped on a motor by controlling 
the motor torque. The authors first derived the governing 
equations of motion of the system along with the bound-
ary conditions and then developed a feedback control 
system incorporating dynamic compensator. Experiments 
were also conducted. Goh and Caughey [20] discussed the 
theory of active vibration control of large space structures 
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using collocated feedback control. The authors proposed 
to use position feedback instead of velocity feedback in 
order to minimize the effect of instability caused by actu-
ator dynamics. Furthermore, the authors showed that 
position feedback is insensitive to uncertain damping of 
structures and can well handle unmodelled and uncon-
trolled modes. Baz and Poh [21] have presented a modified 
independent modal space control (MIMSC) method for 
selection of optimal location, control gains and excitation 
voltage of piezoelectric actuators for active vibration con-
trol of a flexible beam. In their analysis, the authors have 
included the effect of physical parameters of the actua-
tor on elastic and inertial properties of the flexible beam. 
They have shown that the inclusion of properties of bond-
ing layer reduces vibration amplitudes but at the cost of 
higher control forces. The authors also demonstrated the 
effectiveness of MIMSC method in controlling the vibra-
tions of flexible beams having large degrees of freedom 
with a very small number of actuators. Tzou and Wan [22] 
tried to maintain a precise trajectory of a flexible robot with 
the help of passive viscoelastic actuator which is directly 
attached to the robot. Flexible links are analysed with the 
help of ‘finite element’ approach. Again in the year 1991, 
Tzou [23] presented an active micro-position feedback 
control technique using piezoelectric actuators. He first 
prepared a mathematical model of active vibration con-
trol and then verified the results through experiments. He 
achieved the active position control by varying the feed-
back gains. Lesieutre and Lee [24] presented a ‘finite ele-
ment’ for planar beams with active constrained layer (ACL) 
damping treatments. This element based upon non-shear 
locking phenomenon includes frequency-dependent vis-
coelastic model and segmented constraining layers that 
facilitate multiple inputs and improved performance. The 
viscoelastic model is implemented using anelastic dis-
placement fields (ADF) method. The authors concluded 
that a segmented ACL is more robust than the continuous 
treatment. This arrangement facilitates damping of modes 
at least up to the number of independent patches by con-
trol action. Aldraihem and Wetherhold [25] have proposed 
a shear-deformable beam theory to model the coupled 
bending and twisting vibration in laminated beams. They 
have considered two types of coupling—mass coupling 
and stiffness coupling. The active control of the beam was 
studied on two different types of piezoelectric layers viz. 
lead zirconate titanate (PZT) and PZT/epoxy piezoelectric 
composite (PZT/Ep). After modal cost and controllability 
analyses, the authors concluded that PZT/Ep provided the 
best bending-twisting actuation for vibration damping. Xu 
and Koko [26] developed a general scheme of analysing/
designing actively controlled smart structures with piezo-
electric sensors and actuators. The authors used feedback 
control law in the controller. They showed that locations of 

piezoelectric sensors and actuators might have significant 
influence on the performance of the system. Sun et al. [27] 
proposed a hybrid control algorithm to control the rota-
tion of a flexible beam while suppressing the vibrations of 
the beam. The authors used PD feedback control for con-
trolling beam rotation and PZT actuator control was used 
for suppressing the vibrations of the beam. The actuator 
placement was done based upon the mode shape func-
tions and the stability of the control system was analysed 
using virtual joint model. Qiu et al. [28] carried out stud-
ies on active vibration control of a cantilever beam with 
non-collocated arrangement of acceleration sensor and 
piezoelectric patch actuator. The authors tried to reduce 
the problems of phase hysteresis and time delay by using 
proportional feedback control algorithm and sliding mode 
control algorithm. First two vibration modes are con-
trolled. The performance of the control system is checked 
through experiments. Mirzaee et al. [29] dealt with maneu-
ver control and vibration suppression of a two-link flexible 
arm with embedded piezoelectric sensors and actuators. 
The authors obtained the governing equations of motion 
of the system using extended Hamilton’s principle and 
assumed modes method. The control system is based 
upon variable structure control employed for rigid motion 
control and Lyapunov control for vibration suppression of 
the links. The application of viscoelastic and active damp-
ing methods lie in control of vibrations of flexible struc-
tures. These structures possess geometric nonlinearities 
and exhibit nonlinear dynamics. The efficacy of damping 
methods described earlier can be increased by first under-
standing the behaviour of flexible structures. Various work 
are available in the literature that describe the nonlinear 
dynamics [30, 31] of flexible beams and plates. These make 
use of Hamilton’s principle along with modified couple 
stress theory [32–34] and strain gradient elasticity theory 
[35]. Researchers have used Galerkin’s method to discretize 
the governing equations of motion. In many cases, it has 
been observed that these structures exhibit size-depend-
ent dynamic behaviour [36–40]. It is found from the lit-
erature that the dynamics of such systems is significantly 
affected by material gradient index [41, 42].

From the above literature survey, it is found that viscoe-
lastic damping is due to the phenomenon of shear strain 
within the viscoelastic materials. The physical properties 
of these materials are frequency dependent. These materi-
als can be applied on the structure either in a constrained 
or unconstrained manner. Once applied, they become 
an integral part of the structure and provide some fixed 
damping behaviour. On the other hand, in active vibration 
control methods, piezoelectric sensors and actuators are 
applied on the structure at suitable locations. From the 
survey, it is found that researchers have used either the 
position feedback or velocity feedback while designing 
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the control system using piezo ceramics. The primary steps 
in active vibration control are: modelling of the smart 
structure, accurate positioning of sensors and actuators, 
determination of optimal feedback gain and performance 
evaluation of controller design [43]. Yavuz et al. [44] have 
tried to control the residual vibrations of a single-link flex-
ible composite manipulator using trapezoidal and triangu-
lar velocity profiles for motion commands, both through 
simulation and experiment. The authors conclude that 
by proper selection of motion parameters—acceleration 
time, constant time and deceleration time, the residual 
vibrations (vibrations after stopping) of the manipulator 
can be controlled within specified limits.

In the present work, velocity feedback is used for active 
vibration control. Besides that, unconstrained viscoelastic 
damping treatment is also applied. Thus, hybrid damping 
approach is followed to contain the vibrations of the flex-
ible links. A host of the researchers have used the approach 
of modal sensor and modal actuator [45] for active vibra-
tion control but in this paper, the vibration control is 
achieved by using direct feedback of velocity variables. 
Modal approach is not considered here, because the eigen 
values of the manipulator are configuration-dependent 
which changes with time.

2  Mathematical modelling

Firstly, mathematical model of the Two-link Flexible 
manipulator will be described in brief. Then, modelling 
for viscoelastic damping and active vibration control will 
be shown. The governing equations of the manipulator 
are found in the inertial frame. The links of the manipulator 

represent non-inertial frames and passive and active 
damping materials are applied over these links. The effects 
of passive and active vibration controls are also studied 
with respect to the inertial frame of Ref. [46].

2.1  Mathematical model of the Two‑link Flexible 
manipulator

The governing equations of the two-link flexible planar 
manipulator are provided by [47] using Lagrangian dynam-
ics along with the assumed modes method (AMM). The 
mathematical model presented there considers only the 
flexural vibrations of the flexible links. Figure 1 shows a 
Two-Link Flexible manipulator undergoing both bending 
and torsional deformations along with rigid revolutions 
at the joints.

The detailed explanation of Fig. 1 and derivation of the 
mathematical model for Two-Link Flexible manipulator are 
explained in “Appendix” provided at the last. In the pre-
sent work, finite element method (FEM) is used to model 
the vibratory motions of the flexible links instead of AMM. 
Both the flexural and torsional vibrations are dealt with 
in the present work. This involves division of flexible links 
into some finite number of elements and finding the iner-
tia and stiffness matrices that govern the dynamics of the 
system under consideration. Figure 2 shows the discretiza-
tion of flexible links using two Space-frame elements [48]. 

A ‘space-frame element’ has two nodes with each node 
having six degrees of freedom: three translational  (Q6i-5, 
 Q6i-4 and  Q6i-3) and three rotational  (Q6i-2,  Q6i-1 and  Q6i) 
(refer to Fig. 2). The complete equation of motion of the 
flexible manipulator is given by Eq. (1a). The symbols have 
their usual meanings.

Fig. 1  Dynamic analysis of Two-Link Flexible manipulator undergoing both bending and torsional deformations
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In Eq. (1a), subscripts—r and f stand for rigid and flex-
ible respectively. N represents the rigid degrees of freedom 
present in the system and n represents the flexible degrees 
of freedom obtained from finite element formulation. In 
Eq. (1a), the first term in left hand side represents inertia 
torque; the second term represents damping and gyro-
scopic torque; the third term represents restoring torque; 
the fourth term represents centrifugal and Coriolis’ torque 
and the fifth term represents the gravity torque. The term 
on the right hand side represents the external torque. For 
the present case, since there are two flexible links, we have 
N = 2. Hence,  Mrr consists of two diagonal elements—M11 
and  M22.  Mrf and  Mfr represent the coupling between rigid 
and flexible motions. It is seen that

2.2  Mathematical modelling for hybrid vibration 
control

The hybrid vibration control used in the present work 
involves the mathematical modelling of three systems, 
viz., the smart beam, the feedback control system and the 
viscoelastic damping. The smart beam involves the appli-
cation of sensor-actuator pair on the beam at suitable 
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locations. The relative position of sensor and actuator can 
be varied. The feedback control system involves the use of 
‘proportional-derivative’ controller. The viscoelastic damp-
ing is modelled using Kelvin–Voigt models. Finite element 
method is used for modelling the smart beam and viscoe-
lastic damping matrix.

2.2.1  The smart beam

Figure 3 shows a smart beam having a pair of piezo-sensor 
and piezo-actuator applied on it. From the figure, it can 
be seen that the voltage generated by the sensor is fed 
back to the actuator. The actuator applies a time-varying 
uniformly distributed load, p(t) on the beam where it is 
pasted.

The mathematical modelling of piezo-sensors and 
actuators are provided by Preumont [45]. The piezo-sensor 
can be modelled either as a current amplifier or a charge 
amplifier. In this paper, the piezo-sensor is modelled as 
a current amplifier. The voltage generated by the piezo-
sensor is given by Eq. (2) as follows.

(2)vs(t) = −Rf Ephd31

b

∫
a

ẇ
��

bp(x)dx

Fig. 2  Dynamics modelling of 
a Two-Link Flexible manipula-
tor using Space-frame finite 
elements

Fig. 3  Schematic diagram for active vibration control of a smart 
beam/link 
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where  Rf = piezo resistance, w represents the deflection 
of any point on the beam and wʹ represents the slope at 
that point. In Eq. (2), dot (.) represents differentiation w.r.t. 
time, i.e. d

dt
 while dash (ʹ) represents differentiation w.r.t. 

space, i.e., d
dx

 . Again, in the same equation,  bp(x) = width 
of the piezo-sensor, a and b represent the initial and final 
coordinates of the points on the beam/link between which 
the piezo-sensor is located. These coordinates are meas-
ured along the beam axis, such that, ‘(b–a)’ represents the 
length  Lp of the piezo-sensor.

If  bp(x) = constant, then

If  bpʹʹ(x) = constant, then

where ẇ �

(b) = rate of change of slope at point b, 
ẇ

�

(a) = rate of change of slope w.r.t. time at point a on the 
beam, ẇ(b) = rate of change of deflection at point b and 
ẇ(a) = rate of change of deflection at point a on the beam.

The equation of motion for the beam with piezo-actu-
ator is given by Eq. (4) as follows.

In Eq.  (4), m = mass per unit length of the beam, 
EI = flexural rigidity of the beam, Ep = Young’s modulus of 
the piezo-ceramic, h = thickness of the beam, w = deflec-
tion of the beam,  va = voltage applied at the actuator and 
d31 = piezoelectric constant. Equation (4) is valid only when 
the thickness of the piezo-ceramic is negligible in com-
parison to the beam thickness. In the present case, these 

piezoelectric sensors and actuators are pasted on the links 
of the Two-link Flexible manipulator for achieving active 
vibration control of the links (Fig. 5). The beam equation—
Eq. (4) may also be written as:

(3a)vs(t) = −Rf Ephd31bp
[

ẇ
�

(b) − ẇ
�

(a)
]

(3b)
vs(t) = −Rf Ephd31.

[
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{

ẇ
�

(b) − ẇ
�

(a)
}

− b
�

p
(x).{ẇ(b) − ẇ(a)}

]

(4)mẅ +
(

EIw��
)��

= −Epd31va(t)b
��

p
(x)h

(4a)mẅ +
(

EIw��
)��

= Kava(t)

(4b)
where, Ka = −Epd31b

��

p
(x)h = piezo − actuatorconstant.

From Fig. 3, we can write

Thus, Eq. (4) gets modified to:

where f(t) = time-dependent force applied by piezo-actu-
ator on the beam.

This force is converted into a time-varying uniformly 
distributed load using the following equation.

where  Lp = length of the piezo-actuator = (b–a). This uni-
formly distributed load ‘p(t)’ is used to formulate the load 
vector in Eq. (11) obtained by finite element formulation. 
The expression for ‘p(t)’ is found out as follows.

A feedback control system based upon proportional-
cum-derivative (PD) control [49] is used for tip vibration 
control. In the present work, ‘finite element approach’ is 
used for achieving the active vibration control of the links 
of the Two-link Flexible manipulator. Figure 4 shows the 
schematic diagram of the set-up of the flexible manipula-
tor with piezo-sensors and piezo-actuators pasted on the 
links. In the figure, four finite elements per link are used for 
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Fig. 4  Diagram showing the relative placements of sensors and 
actuators on the flexible links of the Two-Link Flexible manipulator. 
(In the figure, S1 Sensor on Link-1; S2 Sensor on Link-2; A1 Actuator 
on Link-1 and A2 Actuator on Link-2.)
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modelling the system. The links of the flexible manipulator 
are modelled using ‘Frame element’. A ‘frame element’ has 
two nodes: each node having three degrees of freedom. 
Therefore in Fig. 4, there are total twenty seven degrees 
of freedom which correspond to the flexible motion 
of the links. Besides that, there are two rigid degrees of 
freedom, viz., θ1 and θ2 also. The first three degrees of 
freedom at ‘node 1’ are considered to be fixed. Thus, the 
flexible manipulator shown in the figure has net twenty 
six degrees of freedom. Damping is introduced into the 
system by using Kelvin–Voigt viscoelastic damping model. 
It is assumed that the viscoelastic materials are pasted 
throughout the links.

In Fig. 4, the encircled numbers represent the number 
of ‘finite element’ while the non-circled numbers represent 
the node numbers. At any node i, there are three degrees 
of freedom and represented by—q3i-2,  q3i-1 and  q3i. First 
two degrees of freedom represent translation along X- 
and Y-axes respectively while the third degree of freedom 
represents rotation about Z-axis which is perpendicular to 
the X–Y plane. For active control of vibration of the links, 
the sensors and actuators are arranged in some specific 
fashion on the links. Table 1 gives details about the relative 
positions of sensors and actuators pasted on the flexible 
links.

From Table 1, it can be found that the sensors and actu-
ators can be arranged in two ways on the links, viz., collo-
cated and non-collocated. The sensed degrees of freedom 
and the controlled degrees of freedom will be the same in 
collocated arrangement while they will be different in non-
collocated arrangement. The equation of motion for the 
Two-link Flexible manipulator having both rigid and elastic 
motions of the links is given by Eq. (1a). For the present 
case, since there are two flexible links, we have N = 2. Hence, 
 Mrr will be a square matrix of order 2.  Crr represents joint 
damping square matrix of order 2 and  Krr represents joint 
stiffness square matrix of order 2.  Mff,  Cff and  Kff represent 
mass, damping and stiffness matrices for elastic motion 
of the links. The terms with subscripts—‘rf’ and ‘fr’ repre-
sent the coupling between rigid and elastic motions. In the 
present case,  Crr and  Krr are taken as null matrices and the 
terms—Crf,  Cfr,  Krf and  Kfr are taken as zero. The mass matrix 
 Mff is formulated by assembling the mass matrices of flex-
ible links, viscoelastic materials and piezoelectric materials. 
The piezoelectric materials are applied in segmented fash-
ion (Fig. 4). The damping matrix  Cff is due to the presence 
of viscoelastic damping. The stiffness matrix  Kff is formu-
lated by assembling the stiffness matrices of flexible links, 
viscoelastic materials and piezoelectric materials.

Table 1  Table describing the 
relative positions of sensors 
and actuators placed on the 
flexible links 

S. no. Type of arrangement Position of sensor Position of actuator

Link 1 Link 2 Link 1 Link 2

1 Collocated Element 3 Element 7 Element 3 Element 7
3 Non-collocated Element 3 Element 7 Element 1 Element 5

Fig. 5  Development of mathematical model of torsional piezo-actuator
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2.2.2  Formulation of mass, damping and stiffness matrices

Mass and stiffness matrices for a frame element are given 
as under [48]. These are provided in Eqs. (7) and (9).

Elemental mass matrix is given as:

where a =
�Aele

6
;b =

�Aele

420
 ; ρ = density of the material; 

Ae = area of cross-section of the element; le = length of the 
element

is the transformation matrix that converts the motion in 
non-inertial frame (the flexible links) to the inertial frame 
(frame X–Y). The superscript ‘T’ stands for ‘transpose’. In 
Eq. (8a),

Elemental stiffness matrix is given as:
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(7b)Global mass matrix, m
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pf
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where E = Young’s modulus of elasticity of the material; 
 Ie = area moment of inertia of the element

Mass matrix of flexible link: In Eq. (7), density (ρ) of steel 
is taken.

Mass matrix of viscoelastic material: In Eq. (7), density 
(ρ) of a viscoelastic material (rubber) is taken.

Mass matrix of piezoelectric material: For this, density 
(ρ) of piezo-ceramic is used in Eq. (7).

The stiffness matrices are also formulated in similar 
fashion. The right hand side of Eq. (1a) is represented by 
following expressions (Eqs. 10 and 11).

where τ1 and τ2 are torques applied at joint 1 and joint 2 
respectively and  Ff is formed by assembling the elemental 
load vectors which is given as follows:

p = p(t) =time-dependent distributed load (Fig. 3). 

Now, for the Kelvin–Voigt element used for modelling 
the phenomenon of viscoelasticity, the stored energy and 
rate of dissipation in differential form are given as follows 
[50]:

In Eqs. (12) and (13), σ = stress within the viscoelastic 
element of length dx and area dA, ϵ = strain within the 
viscoelastic element, η = dynamic viscosity of the viscoe-
lastic material and A = total cross-sectional area of the 
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(9b)Global stiffness matrix, ke

G
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(10)
Fr =

{
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}

and Ff = Load vector containing

loads acting on Flexible Links
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viscoelastic patch pasted on the flexible link. Using Eqs. (12) 
and (13) and the principle of minimum potential energy 
used for finite element formulation [48], the stiffness 
matrix for viscoelastic material can be formulated as given 
in Eq. (9). Damping matrix, ce for the viscoelastic material 
was derived and is as follows (Eq. 14).

2.3  Active vibration control of torsional vibrations

In this section, mathematical models for piezo-sensor and 
piezo-actuator in torsion will be presented based upon 
the theory of piezo-actuation provided by Preumont [45]. 
Using torsion equation we can write:

In above equations, �  = shear stress, T = twisting 
torque, J = polar moment of inertia, G = modulus of rigid-
ity, � = twist, � = shear strain and r = radius (refer to Fig. 5). 
Taking the torsional piezo-sensor as current amplifier, the 
voltage, v generated by it can be expressed as:

where R = resistance of piezo-sensor, d24 = piezoelectric 
constant, Gp= modulus of rigidity of piezo-sensor and 
bp = width of piezo-sensor. If  bp(x) = bp = constant then,

For torsional piezo-actuator we can write,

(14a)c
e =

[

ce
11

ce
12

ce
21

ce
22

]

c
e

11
=

⎡

⎢

⎢

⎢

⎣

�Ae

le
0 0

0
12�Ie

l3
e

6�Ie

l2
e

0
6�Ie

l2
e

4�Ie

le

⎤

⎥

⎥

⎥

⎦

; ce
12

=

⎡

⎢

⎢

⎢

⎣

−�Ae

le
0 0

0
−12�Ie

l3
e

6�Ie

l2
e

0
−6�Ie

l2
e

2�Ie

le

⎤

⎥

⎥

⎥

⎦

;

c
e

21
=

⎡

⎢

⎢

⎢

⎣

−�Ae

le
0 0

0
−12�Ie

l3
e

−6�Ie

l2
e

0
6�Ie

l2
e

2�Ie

le

⎤

⎥

⎥

⎥

⎦

; ce
22

=

⎡

⎢

⎢

⎢

⎣

�Ae

le
0 0

0
12�Ie

l3
e

−6�Ie

l2
e

0
−6�Ie

l2
e

4�Ie

le

⎤

⎥

⎥

⎥

⎦

;

(14b)Global damping matrix, ce
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where E44 = Young’s modulus of piezo-actuator, �23 = shear 
strain in piezo-actuator and A = area of cross-section of 
piezo-actuator.

From Fig. 5 we can write,

where A = hpLp, h = beam thickness, hp = thickness of piezo-
actuator and Lp = length of piezo-actuator. Using above 
equation, we can write:

For (0.5 h + hp) ≪ bp, 
(

0.5h+hp

0.5bp

)2

≪ 1

Now, inertia torque is represented as:

Therefore we get,

where  Im = mass moment of inertia of beam. It is known 
that shear stress is always complimentary. So, in order 
to control the torsional vibrations, two piezo-actuators 
should be attached on the opposite faces of the beam at 
the same location. Thus, above equation will get modified 
as follows.

Equation (21) is used to find out torsional moments dur-
ing finite element formulation. Referring to Fig. 3, if  qaT and 
 qbT are assumed to be the torsional degrees of freedom 
at nodes 2 and 3 respectively then the load vector,  fT(t) 
during finite element formulation will be given as follows.

Equations (11) and (21c) are to be assembled together 
to formulate the load vector for Space-frame element. The 
results using Space-frame element are shown in Fig. 22.
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2.4  Validation of mathematical model of Two‑Link 
Flexible manipulator

The natural frequencies of the Two-Link Flexible manipula-
tor using FEM program is validated for different manipula-
tor configurations from the work of Karagulle [51]. Table 2 
gives the physical parameters of the flexible manipulator 
used for validation. Table 3 gives the natural frequencies 
at different manipulator configurations. 

From Table 3, it can be seen that the natural frequen-
cies obtained through simulation in the present work 
matches fairly well with the natural frequencies obtained 
by Karagulle et al. [51] through experiment. The percent-
age difference lies between ± 1.5%. Thus, mathematical 
model of the Two-Link Flexible manipulator is validated.

2.5  Validation of mathematical model of active 
damping using piezoceramics

The validation of the mathematical model used for active 
vibration control in this paper is done for single flexible link 
using the results of Sun et al. [52]. The vibration control of 
the single flexible link as well as the control of hub angle is 
achieved by using PZT actuator and ‘proportional-deriva-
tive’ controller. Table 4 shows the system parameters used 
for validation of results.

Four piezoelectric actuators are applied at two locations 
on the link: two near the hub and two at the tip. The hub 
angle and tip responses are provided in Figs. 6, 7 and 8. 

The values of PD gains are:  Kp = 100 and  Kv = 100. The flex-
ible link is initially displaced by 0.1 rad.

Figure 6 compares between the joint response of the 
hub of the Single Link Flexible manipulator for the present 
case and that obtained by Sun et al. It takes some time 
for the actual hub angle to match with the desired hub 
angle. This response matches fairly well with the response 
obtained by Sun et al. [52]. Figures 7a and 8a show the tip 
responses obtained from the present work while Figs. 7b 
and 8b show tip responses obtained by Sun et al.

Figures 7 and 8 show the time responses of the tip of 
the Single Link Flexible manipulator. These responses 
match fairly well with the time responses obtained by Sun 
et al. [52]. From above figures, it can be concluded that the 

Table 2  Physical parameters of Two-Link Flexible manipulator used for validation [51]

S. no. Physical parameter Value

1. Length of Link-1 463.5 mm
2. Length of Link-2 575 mm
3. Area of cross-section of Link-1 80 mm wide × 6 mm thick
4. Area of cross-section of Link-2 60 mm wide × 6 mm thick
5. Mass of motor at Joint-2 3.26 kg
6. Inertia of motor at Joint-2 0.0134 kg m2

7. Mass of payload (at tip of Link-2) 0.40 kg
8. Inertia of payload (at tip of Link-2) 0.9 × 10−4 kg m2

9. Young’s modulus of elasticity of each Link 71 GPa

Table 3  First mode natural frequencies of Two-Link Flexible manipulator at different configurations

S. no. Configuration (Fig. 4) First mode frequency (Hz) % Difference 
(

=
(a−b)

b
× 100

)

Present work (Simu-
lation), a

Karagulle et al. [51] 
(Experiment), b

Karagulle et al. 
(Simulation) [51]

1. θ1 = 0°; θ2 = 0° 2.75 2.71 2.71 1.46
2. θ1 = 45°; θ2 = 90° 3.27 3.31 3.21 − 1.21
3. θ1 = 90°; θ2 = 170° 4.23 s 4.22 4.17 0.24

Table 4  System parameters for validation for single flexible link [52]

Flexible link Piezoelectric actuators

Material: Aluminium Material: PZT
Young’s modulus of elastic-

ity = 76 × 109 N/m2
Young’s modulus of elastic-

ity = 6.3 × 1010 N/m2

Length = 1 m Length = 0.1 m
Thickness = 4 mm Thickness = 0.75 mm
Width = 0.05 m Width = 0.05 m
Density = 2840 kg/m3 Density = 7600 kg/m3

Piezoelectric constant, 
 d31 = 110 × 10−12 m/V
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Fig. 6  Variation of desired hub 
angle and actual hub angle 
with time for Single Link Flex-
ible manipulator
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mathematical model used in this paper works fairly well 
for the tip vibration control of flexible manipulator system.

3  Results using viscoelastic, active 
and hybrid damping

In this section, simulation results obtained from the 
mathematical model described in previous section are 
shown. Firstly, the results are obtained for viscoelastic and 
active damping cases separately. After that, both types 
of damping are combined, i.e., hybrid damping is used. 
The results are discussed for all these three cases. Table 5 
enlists the physical and simulation parameters used dur-
ing simulation.

3.1  Results using viscoelastic damping

Kelvin–Voigt elements are taken to model the viscoelas-
tic material (rubber). One finite element per link is used 
in this case. Hence, total number of ‘finite elements’ used 
is 2. Figures 9, 10, 11 and 12 show the comparison of tip 
responses of the second flexible link between viscoelas-
tically damped and undamped cases. The viscoelastic 
damping is achieved by using 1000 Kelvin–Voigt (K–V) 
elements.

Figure 9 shows the rate of change of slope, i.e., slope 
rate of end point (tip) of second flexible link both in the 
presence and absence of viscoelastic damping. The 
response shown here corresponds to the time rate of 
change of degree of freedom—q3i shown in Fig. 4. The 
undamped case exhibits high amplitude of vibration. For 
the damped case, the response exhibits higher harmon-
ics initially which get reduced with time. Besides that, an 
overall reduction can be seen in the amplitude of damped 
response with time. At t = 0.05 s, there is sudden change 

in the value of excitation torque (Table 5), so there is an 
increase in the amplitude of vibrations in both undamped 
and damped cases at that moment. The FFT of undamped 
and damped responses are provided in Fig. 10a, b below 
respectively.

From Fig. 10a, b, it can be observed that in undamped 
case, the higher harmonic is predominant. The vibration 
response of the tip can be explained by the dominant 
higher mode. On the other hand, in damped case mul-
tiple numbers of modes are present. Contribution of all 
these modes is to be taken care of for interpreting the 
vibration response of the tip. But, remarkable fact is that 
in undamped case the magnitude of vibration is very 
high when compared to the magnitude of vibration in 
damped case. Thus, it can be said that viscoelastic damp-
ing decreases the magnitude of tip vibration of two-link 
flexible manipulator significantly but at the same time it 
increases the contribution of higher modes in the vibra-
tion response. Furthermore, it can also be observed from 
the FFT curves that viscoelastically damped structures 
vibrate at frequencies different from the original frequen-
cies of the structure. Following figures compare between 
the tip slope and tip velocity of the flexible manipulator for 
undamped and damped cases.

Figure 11 shows comparison between the damped and 
undamped responses of slope of tip of second flexible link. 
This corresponds to the degree of freedom—q3i shown in 
Fig. 4. The undamped response shows high amplitude of 
vibration while the damped case exhibits lower amplitude.

In Fig. 10, the velocity of tip of second flexible link for 
damped and undamped cases are compared. The tip 
velocity is represented by degree of freedom:  q3i-1 in Fig. 4. 
From Fig. 12, it is clear that due to the presence of vis-
coelastic damping, the amplitude of vibration decreases. 
Above results show that use of unconstrained viscoelastic 
layer decreases the amplitude of vibrations of the tip of the 
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flexible manipulator effectively. It can also be seen that due 
to the presence of unconstrained viscoelastic layer, the fre-
quencies of the actual undamped system gets changed.

3.2  Results using active damping (using piezo 
patches)

In this section, simulation results obtained for active 
damping using piezoelectric sensors and actuators are 

presented. Firstly, results are obtained by varying the rela-
tive position of sensors and actuators, and thereafter the 
effect of proportional and derivative gains is studied.

3.2.1  Results based upon relative placements 
of piezo‑sensors and piezo‑actuators on links

Four finite elements per link are used. Hence, total number 
of finite elements used is eight. The relative placements 
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tip of Single Link Flexible manipulator along X-direction  (px) as obtained by Sun et al. [52]
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of piezo-sensors and piezo-actuators can be understood 
using Table 1. Figures 13 and 14 show the comparison of 
tip responses of Link-2 of Two-Link Flexible manipulator 
for undamped and actively damped cases for the collo-
cated arrangement of piezo-sensors and piezo-actuators.

Figure 13 shows comparison of rate of change of slope 
(angular velocity) of tip of second flexible link between 
undamped and actively damped cases for collocated 
arrangement. From the figure, it is clear that there is 

considerable reduction in amplitude of vibration due to 
the active control.

In Fig. 14, the velocities of tip of second flexible link 
for undamped case and actively damped case are com-
pared with each other. Collocated arrangement of sensor-
actuator pair is taken. There is a decrease in the higher 
harmonics and amplitude of vibrations is also less due 
to the presence of active damping. From Figs. 13 and 14 
both, it can be seen that the natural frequencies of the 
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original system get altered due to the presence of sensors 
and actuators on the flexible links. Figures 15 and 16 show 
the comparison of the tip responses of second flexible link 
between collocated and non-collocated arrangement of 
sensors and actuators.

In Fig. 15, slope rates of tip of second flexible link are 
compared together. It can be seen that the collocated 
arrangement gives better response than the non-collo-
cated arrangement.

Figure 16 shows comparison between the tip velocities 
of second flexible link for collocated and non-collocated 
arrangements of sensors and actuators. The results are 
similar as obtained in Fig. 15. In collocated arrangement, 
the actuator is applied at the same position where sensor 
is applied. Thus, the correct vibration sensed by sensor can 
be used to provide the exact damping force by the actua-
tor. On the other hand, in non-collocated arrangement, the 
sensor and actuator are at different locations. As a result, 

Table 5  Parameters table for simulation of Two-link Flexible manipulator

Link parameters Value

Length of links L1 = L2 = 0.5 m
Width of links b1 = 4 cm;  b2 = 5.17 cm
Thickness of links t1 = 4 mm;  t2 = 1.5 mm
Flexural rigidity of links EI1 = 14.93  Nm2;  EI2 = 1.017  Nm2

Density of links 7850 kg/m3

Joint 1 torque, tau1 A square wave of amplitude 0.05 Nm and frequency 10 Hz
Joint 2 torque, tau2 tau1 + A square wave of amplitude 0.01 Nm and frequency 10 Hz
Simulation time 0.1 s
Step size 10−6 s
Solver ode45
Type of finite element used Two-node Frame element
Dynamic viscosity of viscoelastic material (rubber) 1.8 Ns/m2

Density of viscoelastic material (rubber) 1200 kg/m3

Physical parameters of piezoceramic (PZT) Ep = 6.3 × 1010 N/m2;  Rf = 1
d31 = 110 × 10−12 m/V; Density = 7600 kg/m3

Area of cross-section of piezo-ceramic 4 cm wide × 0.75 mm thick
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there will always be an error between the sensed variable 
and the controlled variable. Thus, collocated arrangement 
is the best from the point of view of vibration control. 
Preumont [45] has described that it is always better to use 
collocated arrangement whenever possible because this 
arrangement achieves robust control. On the other hand, 
the non-collocated arrangement makes the system—non-
minimum phase, i.e., the system has zeros in right half of 
the s-plane. As a result, instability of the system increases. 
This property of being non-minimum phase does not 
cause any problem when the right half plane zeros lie well 

outside the bandwidth of the closed-loop control system. 
This can be done by using high damping along with non-
collocated arrangement.

3.2.2  Results based upon different values of PD gains used 
during active control of vibrations

Following results (Figs. 17, 18) are obtained for active 
vibration control using piezo-actuators after selecting 
different values of proportional and derivative gains  (Kp 
and  Kv respectively).
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Fig. 10  a FFT of slope rate of tip-2 of Two Link Flexible manipulator (undamped case), b FFT of slope rate of tip-2 of Two Link Flexible manip-
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Figures 13 and 17 are to be looked upon together. From 
Fig. 13 it can be interpreted that by using PD gains, there is 
a decrease in the vibration of the tip of the flexible manip-
ulator. But from Fig. 17, it is found that the vibration of tip 
is lower at fewer values of PD gains than that at high val-
ues of PD gains. This can be understood from the classical 
control theory where, on increasing the derivative gain, 

overshoot increases. In Fig. 17,  Kp1 and  Kp2 are the propor-
tional gains used for Flexible Link-1 while  Kv1 and  Kv2 are 
the derivative gains used for Flexible Link-2.

In Fig. 18, the linear velocities of tip of second flexible 
link are compared with each other at different values of PD 
gains. The results are similar as in Fig. 17. From Figs. 13, 17 
and 18 it can be interpreted that PD gains help in reducing 
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Fig. 13  Comparison of slope 
rates (rate of change of slopes) 
of tip of second flexible link of 
Two-Link Flexible manipula-
tor between undamped and 
actively damped cases for 
collocated arrangement
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Fig. 14  Comparison of veloci-
ties of tip of second flexible link 
of Two-Link Flexible manipula-
tor between undamped and 
actively damped cases for 
collocated arrangement
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Fig. 15  Comparison of slope 
rates (rate of change of slopes) 
of tip of second flexible link of 
Two-Link Flexible manipulator 
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cated sensor-actuator pairs
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Fig. 16  Comparison of linear 
velocities of tip of second 
flexible link of Two-Link Flexible 
manipulator for collocated 
and non-collocated sensor-
actuator pairs
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Fig. 17  Comparison of slope 
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Two-Link Flexible manipulator 
at different values of PD gains
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the tip vibrations of the flexible manipulator but these 
gains must be selected properly. For the present case, the 
low values of gains give better results.

3.3  Results using hybrid damping

Here, in this case, both active damping and viscoelastic 
damping are used. The PD gains used are:  Kp = 4 and  Kv = 4 

for both the links while Kelvin–Voigt elements are taken 
to incorporate viscoelastic damping. Figures 19, 20 and 
21 show the tip responses of second flexible link under the 
influence of hybrid damping.

From above results, it can be concluded that hybrid 
damping is better than the active damping. While using 
high values of PD gains during active control, it becomes 
necessary to use passive damping so that the amplitude 
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of vibration remains within permissible limits. The results 
on torsional deformation of tip of second flexible link are 
shown in Fig. 22. The physical parameters provided in 
Table 5 are used for simulation. The torsional deforma-
tion of tip corresponds to the degree of freedom:  Q6i-2 
shown in Fig.  2. Space-frame elements are used for 

obtaining the following results. Due to the presence 
of torsional vibrations, the Two-link Flexible manipula-
tor does not remain planar. Figure 22a, b compare the 
torsional deformations of tip between undamped and 
damped cases.
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From Fig. 22, it can be observed that, the response 
of ‘actively damped case’ is better than the response of 
‘undamped case’. The values of PD gains used are:  Kp = 2 
and  Kv = 2.8. The torsional vibrations are reduced by using 
active control.

3.4  Comments on eigen values

During simulation, it is found that the natural frequen-
cies of the original flexible manipulator change due to the 
application of viscoelastic and piezoelectric materials for 
the purpose of vibration control. Table 6 shows the change 
in natural frequencies of the Two-Link Flexible manipulator 
due to the presence of viscoelastic and piezoelectric layers 
on the flexible links. The physical parameters are the same 
as provided in Table 5.

The frequencies in Table 6 are found out at the manipu-
lator configuration: θ1 = 0° and θ2 = 0°. The viscoelastic lay-
ers are applied throughout the length of the links. Only 
one Kelvin–Voigt element is considered here. The piezo-
electric layers are applied in collocated fashion (Table 1 
and Fig. 4). While using active control (using piezoelectric 
layers), the values of PD gains used are:  Kp = 2 and  Kv = 2.8. 
Change in the value of  Kp changes the natural frequen-
cies of the system. Eight finite elements are used to find 
out these frequencies except in the second column. The 
columns under the heading—‘Undamped System’ form 
the basis of convergence study. By using more number 
of finite elements, accurate frequencies of the system are 
captured but at the cost of high simulation time.

4  Conclusions

The present work describes the tip vibration control of 
a Two-Link Flexible manipulator using passive viscoelas-
tic damping, active damping and hybrid damping tech-
niques. The passive damping is achieved by pasting an 

unconstrained viscoelastic layer on the flexible links. With 
the help of finite element modelling, the damping matrix 
for viscoelastic material is derived. Active damping is 
achieved using piezoceramic patches. The piezo-sensors 
and piezo-actuators are pasted at specific locations on the 
links. But in this paper, this concept of modal controller 
cannot be directly used because the manipulator system 
is an inertia-variant system due to which its Eigen values 
change with time. The piezoelectric sensor senses the 
vibration of the flexible link on which it is pasted and sends 
velocity feedback (angular velocity and linear velocity) and 
position feedback to the piezo-actuator. Based upon this 
feedback, the piezo-actuator applies a time-dependant 
turning moments on the portion of flexible link where it is 
pasted. A proportional-derivative based feedback control-
ler is designed for obtaining the positional accuracy of the 
flexible manipulator. The results show that the presence of 
viscoelastic damping effectively reduces the amplitude of 
vibration of flexible links but at the same time it increases 
the presence of higher modes of vibration.

During active vibration control, the relative placement 
of sensors and actuators play a significant role. It is found 
that collocated control is more effective than non-collo-
cated control in curbing the vibrations.

When both viscoelastic damping and active damping 
are used together, better results are obtained. Thus, it is 
advisable to use hybrid damping for vibration control of 
the flexible manipulator where lower values of controller 
gains can be used to produce the same effect. Also, the 
passive viscoelastic material is very effective for higher 
frequency components of vibration.

The mathematical model described in this paper is vali-
dated both for a single flexible link manipulator and two-
link flexible manipulator. Another novelty of the present 
work lies in control of both torsional and flexural vibra-
tions through the application of passive and active damp-
ing methods to the non-inertial frames represented by the 
manipulator links.

The key findings of this paper can be highlighted as 
follows:

1. The presence of viscoelastic damping material alters 
the original frequencies of vibration of the system. 
This is true for actively damped case also. The damped 
response is composed of multiple frequencies but 
with very less magnitude. On the other hand, the 
undamped response consists of one dominant fre-
quency. This may be either the lower mode or any of 
the higher modes.

Table 6  Change in natural frequencies of the Two-Link Flexible 
manipulator due to the presence of viscoelastic and piezoelectric 
layers

S. no. Undamped system With vis-
coelastic 
layer

With 
piezo-
electric 
layers

With both 
viscoe-
lastic and 
piezoelec-
tric layers

4 Finite 
elements

8 Finite 
elements

1. 2.08 2.1 3.22 2.34 3.24
2. 7.26 7.04 13.84 7.17 13.85
3. 27 20 34 20.36 34
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2. The control forces applied by the piezo-actuators are 
modeled as distributed load p(t) on the flexible links. 
This load is expressed in matrix form so that it can be 
used during finite element formulation.

3. A hypothesis for control of torsional vibrations using 
piezo-actuators is presented.
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Appendix

In Fig. 1, plane X–Y is the plane of bending while plane 
Y–Z is the plane of torsion. X–Y-Z is the reference/ground 
frame while  X1–Y1–Z1 and  X2–Y2–Z2 are the local frames 
attached to Link-1 and Link-2 respectively. Axis  X1 is 
aligned along the un-deformed neutral axis (N.A.) of 
Link-1 while axis  X2 is aligned along the un-deformed 
neutral axis of Link-2. The origins of these local frames 
are located at Joint-1 and Joint-2 respectively. Joint-1 is 
given a rigid rotation of θ1 and Joint-2 is given a rigid 
rotation of θ2. The position of any point on Link-1 with 
respect to ground is given by:

Similarly, the position of any point on Link-2 with 
respect to ground is given by:

In above expressions,
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L1 and  L2 = lengths of Link-1and Link-2 respectively,
θ1 and θ2 = joint rotations (rigid) of Joint-1and Joint-2 
respectively,
x1 and  x2 = distances measured along un-deformed 
Link-1 and Link-2 axes, i.e.  X1 and  X2 respectively,
w1(x1, t) and  w2(x2, t) = elastic displacements of Link-1 
and Link-2 respectively undergoing bending vibrations
w∗�

1
 = bending angle at end point of Link-1 = 

dw∗
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dx1

{r1} = position coordinates of any point on Link-1 w.r.t to 
un-deformed Link-1axis i.e.,  X1 in plane  X1-Y1
{r2} = position coordinates of any point on Link-2 w.r.t to 
un-deformed Link-2 axis i.e.,  X2 in plane  X2–Y2
{r1

*} = position coordinates of end point of Link-1 w.r.t. 
un-deformed beam-1 axis  X1 in plane  X1–Y1
{riT} = position coordinates of any point on Link-i in 
plane  Yi–Zi
ϕi = ϕi(xi, t) = torsional deformation of any point on Link-i
ϕi

* = ϕi(Li, t) = torsional displacement of end point of 
Link-i; i represents the link number (i = 1 and 2)
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given by:
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Table 7  Physical and 
simulation parameters for Two-
Link Flexible manipulator [53]

Link parameters Value

Length of links L1 = L2 = 0.5 m
Width of links b1 = 4 cm;  b2 = 5.17 cm
Thickness of the links t1 = 4 mm;  t2 = 1.5 mm
Flexural rigidity of links EI1 = 14.93  Nm2;  EI2 = 1.017 Nm2

Mass per unit length of links μ1 = 0.504 kg/m; μ2 = 0.2442 kg/m
Joint 1 torque (Fig. 23) Square wave of amplitude 0.5 Nm and time-period 1 s
Joint 2 torque (Fig. 24) Square wave of amplitude 0.1 Nm and time-period 1 s
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In Eq. (26),  J1 and  J2 are the polar moment of inertias 
of Link-1 and Link-2 respectively. The joint torques can be 
obtained using Lagrangian dynamics as follows:

In above expression, L represents Lagrangian of the 
system and is obtained by taking the difference of total 
kinetic energy and total potential energy of the system; q 
represents generalized coordinates and F represents gen-
eralized torque/force.

where �1 and �2 are the external torques applied at joint-1 
and joint-2 respectively. Some typical simulation results 
based on the mathematical model described above is pre-
sented below. Table 7 describes the physical and simula-
tion parameters used for a Two-Link Flexible manipulator 
used by Habib and Korayem [53].

The simulation results are shown in Figs. 23, 24, 25, 26, 
27 and 28. The natural frequencies and the general nature 
of response level matches with the predictions by Habib 
and Korayem [53].

From above results, it can be concluded that the joint 
responses (Figs.  25, 26) for the present work and that 
found in the literature match fairly well. Furthermore, the 
tip responses in both the cases exhibit same frequency of 
44 Hz (Figs. 27, 28). Thus, the mathematical model of Two-
Link Flexible manipulator described in the present work 
gets validated.
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