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Abstract
The overarching goal of this study is fabrication and evaluation of mesoporous carbon-polymeric hybrid electrode 
materials derived by in situ polymerization of aniline on mesoporous carbon. The mesoporous carbon (CMK-3) was 
prepared using mesoporous silica SBA-15 as a hard template. The characteristics and functional groups of synthesized 
mesoporous carbon-polyaniline composite confirmed by Fourier-transform infrared spectroscopy, Raman spectroscopy, 
Thermo gravimetric analysis, X-ray powder diffraction, and BET surface area analysis. The electrochemical performance 
of carbon-polyaniline composite was evaluated through its supercapacitor behavior in the electrolyte Potassium bicar-
bonate  (KHCO3). Synthesized carbon-polyaniline was used as the working electrode after modification with Nafion solu-
tion on glassy carbon electrode. The hybrid material reveals high current density with increased storage efficiency due 
to uniform confinement of polyaniline into the pore structure of CMK-3. The high specific capacitance of 487 F/g was 
observed on carbon-polyaniline electrode at 0.2 A/g in  KHCO3, and also reveals better stability, retained 90% efficiency 
after 1000 charge–discharge cycles. Thus, the prepared carbon-polyaniline composite exhibit as a good candidate in 
supercapacitor application.
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1 Introduction

Recent days, there exist greatest challenges in the devel-
oping energy storage system that could efficiently harness 
energy produced from various renewable energy sources 
influenced by the location and time. Thus, it is highly 
desirable to develop energy storage system with high 
efficiency, high energy storage capacity and low cost so 
that the stored energy can be used for portable electronic 
devices and hybrid electric vehicles [1, 2]. Among various 
energy storage system, batteries and supercapacitors 
are considered as excellent candidates. As far as batter-
ies are concern can accommodate large energy with poor 
cycle life [3], whereas, supercapacitors can provide large 
power density and long cycle life with better charge–dis-
charge properties [4]. The supercapacitors are performed 

based on the interaction between the active electrode 
materials [5] and electrolyte. Hence, the supercapacitor 
studies provide an opening to explore new possibilities 
of electrode materials as well as electrolyte. Previous 
reports demonstrate that the transition metal oxides and 
conducting polymers are successful electrodes materi-
als for supercapacitors due to their predominantly fast 
and reversible surface for charge storage [1, 5–9]. Also, 
conducting polymers like polypyrrole and polyaniline 
(PANi) have been well-established as electrode mate-
rial in supercapacitor applications, in terms of flexibility, 
high conductivity, and synthetic process [10–13]. Espe-
cially, polyaniline has attracted great interests in energy 
storage, sensors, and electrochromic devices because of 
the simple synthesis route [14] and doping/de-doping 
chemistry [15], low cost, high conductivity, and excellent 
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environmental stability. However, the conducting polymer 
suffers limited stability during cycling results in declined 
performance [16]. The limitations of conducting polymer 
are minimized by making it as composites with carbon 
materials like mesoporous carbons, CNTs and graphene 
[17–20], which resulted in the enhanced surface area, high 
conductivity, and excellent stability. Carbon materials have 
high capacity for charge accumulation in electrochemical 
double-layer, and the highest capacitance values can be 
correlated with surface area, total pore volume [21, 22]. 
Based on this, CMK-3 derived from mesoporous silica SBA-
15 [23] with high surface area, and pore volume which has 
wide applications in energy storage systems, adsorption, 
and catalysis [24–27] is chosen as support material for 
preparation of PANi-carbon composite. However, there 
are reports available on CMK–PANi composite materials 
as electrode materials (non-metallic) in supercapacitors. 
Still, there exists a research gap with respect to synthesis 
method, choice of electrolyte, etc., which provoked us to 
carry out studies on CMK-3/PANi composites for Superca-
pacitor application.

In this study mesoporous carbon material (CMK-3) was 
synthesized using SBA-15 and surface carboxylation was 
done by acid digestion, polyaniline was incorporated on 
carboxylated CMK through in situ polymerization of ani-
line. The CMK–PANi composite obtained was fabricated 
on glassy carbon electrode and used as a working elec-
trode to study the supercapacitor behavior in bicarbonate 
electrolyte. The synergistic effect of PANi and well-ordered 
mesoporous carbon (CMK-3) endows the composite with 
high electrochemical capacitance and excellent cycling 
stability.

2  Experimental

2.1  Synthesis of CMK‑3 from SBA‑15

CMK-3 was derived from SBA-15 as per the reported pro-
cedure [28, 29]. The molar composition of the reaction 
mixture was 1 TEOS: 0.017 P123: 5.87 HCl: 0.0025 TMB: 
183  H2O. Briefly, 4 g Pluronic P123 polymer was dissolved 
in 150 mL 1.6 M HCl at 40 °C (pH < 2), with rapid stirring. 
After complete dissolution of the polymer, swelling agent 
(0.3 g TMB) and inorganic precursor 9.2 mL TEOS added 
into the mixture and stirred at 40 °C for 8 h. The entire 
mixture is then transferred to a Teflon bottle, sealed and 
aged at 80 °C for 24 h. Thereafter, the mixture was cooled 
then filtered by vacuum filtration and the white powder 
obtained. The white powder is allowed to dry in air under 
vacuum for 24 h. The dried as-synthesized sample was cal-
cined in air at 550 °C for 6 h with a heating rate of 1 °C/min. 
The final product denoted as SBA-15.

The synthesized SBA-15 used as a template for synthesis 
of CMK-3 [30]. Typically, 2 g of SBA-15 dispersed into aque-
ous solution of sucrose (0.017 mol), 0.01 mol  H2SO4 added 
to the mixture. Initially, the mixture was heat treated in the 
oven at 100 °C for 6 h and subsequently heated at 160 °C 
for another 6 h. The sample turned black, the procedure 
was repeated with aqueous sucrose (0.01 mol), and  H2SO4 
(0.005 mol) for complete infiltration and carbonization of 
sucrose solution into the pores of SBA-15. The carboniza-
tion was completed by pyrolysis at 900 °C with a heating 
rate of 1 °C/min under  N2 atmosphere. The carbon–silica 
composite obtained after pyrolysis was washed twice with 
5 wt% hydrofluoric acid at room temperature, to remove 
the silica template. The template-free product, CMK-3 was 
filtered, washed with ethanol, and dried.

2.2  Synthesis of CMK–PANi composite

The synthesized CMK-3 (1 g) was carboxylated by treat-
ing with nitric acid and recovered product was dispersed 
in water and ultrasonicated for 30 min. After that aniline 
(4 × 10−2 mol) was added into the above solution at 0–5 °C 
and stirred for 30 min. Then, the pre-cooled ammonium 
persulphate solution was added drop by drop under stir-
ring to initiate the reaction. The mixture was allowed to 
react for 3 h with continuous stirring in the ice bath. The 
black-green product (CMK–PANi) formed was filtered and 
repeatedly washed with de-ionized water, and ethanol 
then dried under vacuum.

2.3  Characterization techniques

Powder X-ray diffraction patterns were recorded using 
a Rigaku Miniflex diffractometer with Cu-Kα radiation 
(λ = 0.154 nm). The diffraction data were recorded in the 
2θ range of 0.5–10° at 0.02° step size and 1 s step time. 
The nitrogen adsorption–desorption isotherms were 
measured at − 196 °C on a Micromeritics ASAP 2010 volu-
metric adsorption analyzer. Before each adsorption meas-
urement, the samples were evacuated at 105 °C under 
vacuum for 4 h in the degassing port of the adsorption 
analyzer. The specific surface area  (SBET) was determined 
from the linear part of the BET equation, and the pore size 
was calculated using the Barrett–Joyner–Halenda (BJH) 
method. Fourier Transform Infrared (FTIR) spectra of the 
samples were recorded at room temperature on a Perkin 
Elmer spectrometer equipped with an ATR (attenuated 
total reflection) cell. TGA analyses were carried out in  N2 
atmosphere at a flow rate of 20 ml/min, on STA 6000 Ther-
mal Analyzer - Perkin Elmer, by heating 5 mg of materials 
from 25 to 900 °C in steps of 10 °C/min.
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2.4  Fabrication of working electrode using CMK–
PANi composite

The mixture containing 80 wt% CMK–PANi composite, 
10 wt% acetylene black, and 10 wt% polytetrafluoroeth-
ylene (PTFE) was mixed well in a vial with few drops of 
acetone and two drops of Nafion solution. The above mix-
ture was ultrasonicated for about 1 h and then coated on 
the glassy carbon electrode polished with diamond and 
alumina solution. The fabricated electrode was dried in air 
dry and used as a working electrode to study the electro-
chemical properties.

2.5  Electrochemical study of fabricated CMK–PANi 
electrode

Electrochemical measurements have done on SP 240 
Bio-Logic electrochemical workstation. The experiments 
were carried out using a three-electrode cell, in which 
platinum and Ag/AgCl electrodes were used as counter 
and reference electrodes, respectively. Cyclic voltammo-
gram of CMK–PANi fabricated electrode in 1 M  KHCO3 was 
obtained at different scan rates (i.e. at 1, 2, 5, 10, 20, 50 and 
100 mV/s). Galvanostatic charge/discharge behavior was 
studied at different cycles at a different current density 
in 1 M  KHCO3. Electrochemical impedance spectroscopic 
measurement also obtained from the fabricated electrode.

3  Results and discussion

3.1  Characterization

Figure 1 shows the XRD patterns of pristine CMK-3, PANi, 
and CMK–PANi composite. The inset figure shows the low 
angles XRD patterns of SBA-15 and CMK-3, exhibited the 
characteristics peaks at 2θ = 0.8°, 1.5°, and 1.8°, and dis-
played the presence of (1 0 0), (1 1 0), and (2 0 0) planes 
due to the well-ordered hexagonal mesosphere [31], 
which indicates that the CMK-3 is a replica of the tem-
plate SBA-15. CMK-3 and CMK–PANi composites exhibited 
a broad characteristic diffraction peak at 2θ = 23° and a 
low-intensity peak at 43° attributed to the clusters carbon 
states as fragments of graphene planes and disorganized 
carbon [32, 33]. The intensity of CMK–PANi composites less 
when compared CMK-3 which is due to the confinement 
of PANi inside CMK-3. Figure 1c also shows that pure poly-
aniline exhibits a low crystallinity of PANi due to the ben-
zenoid and quinoid rings in PANi Chain and correspond 
peaks at 14.4°, 25.42°, 19.8° and 24.75°. The high capacity 
for charge accumulation in electrochemical double-layer 
and appreciable capacitance values of CMK–PANi compos-
ite reveals the uniform incorporation of PANi inside the 

crystalline CMK-3 without any destruction during in situ 
polymerization.

Figure  2 shows FT-IR spectra for CMK-3, PANi, and 
CMK–PANi composite. CMK-3 exhibits characteristics 
band around 3400 cm−1 attributed to –OH stretching and 
bending vibration of –COOH groups at 1586 cm−1. The 
bands observed at 2368 cm−1,1723 cm−1, 1578 cm−1 and 
1120 cm−1 were assigned C=C stretching, C=O stretching 
vibrations of non-aromatic carboxylic group, aromatic ring 
stretching vibrations coupled with keto group and C–C–O 
bond respectively. The characteristic peaks in PANi: The 
absorption peaks observed at 2925 cm−1 and 2845 cm−1 

Fig. 1  XRD patterns of (a) CMK–PANi composite, (b) CMK-3, and (c) 
PANi inset figure (d) SBA-15 and (e) CMK-3

Fig. 2  FT-IR spectra of (a) CMK, (b) CMK–PANi and (c) PANi compos-
ite
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are due to asymmetric C–H and symmetric C–H stretch-
ing vibrations. The peaks at 1752  cm−1 correspond to 
C=N stretching mode for imine. The peaks at 1585 cm−1 
and 1482 cm−1 are related to C=C stretching vibration 
for quinoid and benzenoid rings, respectively. The peak 
at 1038 cm−1 is attributed to C–N stretching mode for 
benzenoid ring, and the peak at 788 cm−1 is assigned to 
the plane bending vibration of C–H, which is formed dur-
ing protonation. In CMK–PANi composites, the carboxyl 
bands at around 1723 cm−1 depict the hydrogen bonding 
of PANi with the carboxyl groups on the surface of CMK-3. 

Also, CMK–PANi composite, the characteristics peaks at 
1574 cm−1 correspond to the quinoid ring and the ben-
zene ring while the bands in the range 1200–1400 cm−1 
and 1144 cm−1 correspond to the C–N stretching bands of 
an aromatic amine [32, 34] and N=Q=N stretching. Thus, 
the presence of characteristics band in CMK–PANi compos-
ites confirms the confinement of PANi in CMK-3. Raman 
spectra of both CMK-3 and CMK–PANi composite shows 
broad Raman peaks at 1590 cm−1 (G-band) that indicated 
the presence of  E2g mode of graphite and is related to sp2-
bonded carbon atom vibrations (Fig. 3). The other band 
at 1350 cm−1 (D-band) demonstrated the defects within 
carbon textures that evidenced the presence of disordered 
graphite carbon [35] which is in agreement with XRD data. 
The intensity ratio of both G and D band is nearly 1.

Figure 4A, B shows the  N2 adsorption–desorption iso-
therms and pore size distribution of CMK-3 and CMK–PANi 
composite and their textural properties were summarized 
in Table 1. The functionalized CMK-3 by acid treatment 
shows type II nitrogen adsorption isotherm at relative 
pressures (P/P0) from 0.4 to 1.0. A similar type of nitro-
gen adsorption isotherm was observed for CMK–PANi 
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Fig. 3  Raman spectra of (a) CMK-3 and (b) CMK–PANi composite
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Fig. 4  A  N2 adsorption–desorption isotherms of (a) CMK-3 and (b) CMK–PANi composite. B Pore size distribution curve of (a) CMK-3 and (b) 
CMK–PANi composite

Table 1  BET surface area, pore volume and average pore diameter 
for the synthesized materials

Sample BET surface area 
 (m2/g)

Pore volume 
 (cm3/g)

Average 
pore diam-
eter (Å)

CMK-3 908 0.62 41.66
CMK–PANi 395 0.44 38.82
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composite at relative pressures from 0.4 to 1.0 with a 
decrease in BET surface area due to the confinement of 
polyaniline inside the CMK-3 and agreed with XRD results 
of CMK-3 and CMK–PANi composite.

Figure  5 shows the TG analysis of PANi, CMK-3 and 
CMK–PANi composite. TG curve of pure PANi Shows three 
weight loss at 200 °C, 450 °C and 600 °C which is attributed 
to the loss of water, degradation of PANi and destruction 
of PANi respectively. In case of CMK-3 (Fig. 5c) weight loss 
was observed above 600 °C which is due to the destruction 
of Carbon in CMK-3 [33]. However, it is worth noting that 
the CMK–PANi nanocomposite does not have a distinct 
decomposition temperature and shows a gradual weight 
loss with increasing temperature. The results depict good 
thermal stability of CMK–PANi composite because of dif-
fusion constraints in the channel system [36].

Figure 6a, b show SEM images of CMK-3 and CMK–PANi 
composite. CMK-3 exhibited rod-like particle images which 
remained unchanged after the in situ polymerization of 
aniline on CMK-3. Also, the images show the confinement 
of PANi inside the pores of CMK-3. The TEM images of 
CMK-3 and CMK–PANi composites shown in Fig. 6c, d, in 
which CMK-3 shows well-ordered rod-like structures. As 
in the case of SEM images, TEM images of CMK–PANi com-
posites also show the homogeneous incorporation of PANi 
over CMK-3. Thus, the results of XRD and BET confirmed 
the confinement of PANi inside CMK-3.
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Fig. 5  TGA of (a) PANi, (b) CMK-3 and (c) CMK–PANi composite

Fig. 6  a SEM image of CMK-3, b SEM image of CMK–PANi composite, c TEM image of CMK-3 and d TEM image of CMK–PANi composite
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3.2  Electrochemical properties

The synthesized CMK–PANi composite used as electrode 
material for construction of hybrid capacitors and the 
electrochemical behaviors were tested in the potential 
range of − 0.3 to 0.6 V. The cyclic voltammogram (CV) and 
impedance studies reveal that the electrochemical capaci-
tance of CMK–PANi composite is due to the formation of 
an electrical double layer. Figure 7 shows the cyclic vol-
tammogram of CMK-3, PANi, and CMK–PANi in 1 M  KHCO3 
at 100 mV/s scan rate. The CV shapes of the CMK-3 are 
almost rectangular without redox peaks, which indicate 
the electric double-layer property of CMK-3. Whereas the 
CMK–PANi composite shows leaf-like CV graph, which 
reflects different charge storage capacity. Furthermore, 
the current response of the CMK–PANi composite was 
more significant than the CMK-3 and PANi, implying 
that it has the highest specific capacitance value due to 
pseudo capacitance and the electric double layer capaci-
tor. Further, redox peaks in the CV curves for the CMK–PANi 
composite was attributed to the redox transition of PANi 
between a semiconducting state (leucoemeraldine form) 
and a conducting state (polaronic emeraldine) [37], that 
results in the redox capacitance.

Figure  8 shows cyclic voltammogram of CMK–PANi 
modified electrodes in 1 M  KHCO3 at different scan rates 
1 to 100 mV/s in the potential range of − 0.3 to 0.6 V. The 
CMK–PANi material reveals the leaf-like CV curves at dif-
ferent scan rates, and increasing potential with scan rates 
from 1 to 100 mV/s the current also increases from 0.2 to 
2 mA indicates a good rate ability for CMK–PANi [38]. A 
maximum current of 2 mA was obtained with CMK–PANi 
electrode, whereas pristine CMK-3 gave about 1  mA, 
the increase in current indicates the high capacitance 
of CMK–PANi due to the presence of conducting PANi. 

Hence, the PANi facilitates fast ions transport to the sur-
face of electrode materials which enhanced the charge 
storage capacity. Thus, the uniform confined of PANi on 
CMK allows high current density with increased storage 
efficiency.

Figure 9 shows the GCD curve of (a) PANi, (b) CMK-3, 
(c) CMK–PANi composite at current density 0.2 A/g. The 
CMK-3 possess an ideal electric double-layer (EDL) capaci-
tor, hence the shape of GCD curve is almost symmetric 
and small ohmic IR potential drop was observed which 
indicates that the potential of Helmholtz layer was smaller 
than the diffuse layer with diluted electrolyte solutions. 
Also, CMK–PANi composites display no sharp IR drops in 
 KHCO3 that indicates the ideal electrochemical reversibility 
and low equivalent series resistance [39]. The capacitance 
was calculated from GCD measurements using the follow-
ing equation.

where C is specific capacitance (F/g), I is the charge–dis-
charge current (A), m is the mass of active material (g), 
t is the discharge time (s), and V is the working voltage 
(V). From the GCD measurements, CMK–PANi exhibits a 
higher specific capacitance of 487 F/g at 0.2 A/g, than 
other reports of PANI/CMK-3 at various current densities 
[38], this might be due to the influence of bicarbonate ions 
in the electrolyte.

Figure 10 shows the GCD curve of CMK–PANi composite 
at different current densities 0.2, 0.4, 0.8, 1.0, and 2 A/g 
and correspond specific capacitance was 487, 376, 280, 
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238, and 158 F/g, respectively. The long-term stability of 
CMK–PANi composites shows better charge–discharge 
behavior at 0.2 A/g and indicates that CMK–PANi compos-
ites are best electrode materials which are in agreement 
with the CV data. The presence of conducting PANi on high 
surface mesoporous CMK-3 and the role of  HCO3

− have 
resulted in the high charge–discharge capacity of the 
CMK–PANi composites.

Figure 11a shows the cyclic performance of CMK–PANi 
composite, the stability of CMK-3 and CMK–PANi elec-
trodes was measured by repeated charge–discharge at 
0.8 A/g. The specific capacitance of pure CMK-3 retains 
almost 81% after 5000 charge–discharge cycles due 
to its electrical double layer capacitance. However, the 

CMK–PANi electrode shows a slight decrease during first 
150 cycles and subsequently keeps stable; this might be 
attributed due to the structural changes that occur in 
PANi at a constant current which causes change in the 
conducting properties of PANi. Figure 11b showed the 
effect of current density on the specific capacitance of 
CMK–PANi composite and observed that specific capaci-
tance decreased from 487 to 158 F/g when current density 
increased from 0.2 to 2 A/g. The decrease in specific capac-
itance on increasing current densities is due to the higher 
electrolyte diffuse hindrance that reduces the active site 
utilization ratio at high current density [40]. However, 
the CMK–PANi composite shows somewhat appreciable 
specific capacitance in  KHCO3 system, when compared to 
reported composites (Table 2) [38, 42–51].

Figure 11c shows Nyquist plots of CMK–PANi compos-
ite from electrochemical impedance spectroscopy (EIS) 
employed at DC bias of monitor. Nyquist plot, a plot of 
a frequency response for CMK–PANi composite was 
obtained with a frequency loop from 1 MHz to 10 kHz. 
Each impedance curve shows a part of single semicircle 
in the high-frequency region and a straight line in the low-
frequency region. The diameter of semicircle presents the 
charge-transfer resistance in the electrochemical system. 
The semicircle diameter of CMK–PANi composite is smaller 
than that of pure PANi, which indicates that the compos-
ite has the lowest electrochemical charge-transfer resist-
ance [41]. Rs is the estimated for CMK–PANi is to be about 
0.25 Ω. The lowest electrochemical charge-transfer resist-
ance in CMK–PANi is due to the resistance of electrolyte 
solution and also the due to the intrinsic resistance of the 
active material. Further, CMK–PANi composite displays the 
internal resistance, which was slightly higher in  KHCO3 
electrolyte, this might be due to the larger diameter of 
 HCO3

− ions compared to  OH− or  SO4
2− ions. Table 2 shows 

few reports on the combination of the porous carbon and 
polyaniline, still, no report on the effect of bicarbonate 
electrolyte with CMK–PANi composite electrode. Thus, 
 KHCO3 can be demonstrated as a suitable electrolyte for 
CMK–PANi composite for this supercapacitor behavior.

4  Conclusions

CMK–PANi composite was successfully synthesized using 
SBA-15 as template and aniline by in situ polymerization 
technique. XRD and BET analysis revealed the formation 
of mesoporous materials with the high surface area. The 
BET data supported porous nature of CMK–PANi after 
PANi incorporation. IR and Raman spectroscopy revealed 
confinement of PANi inside the CMK matrix and the for-
mation of disordered graphite carbon. The synthesized 
CMK–PANi composite was used as an electrode material 
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to study the supercapacitor behavior in  KHCO3 as elec-
trolyte. CMK–PANi composite exhibited a leaf-like CV 
graph with large current response that corresponds to 

the double layer capacitance, which is also supported by 
impedance studies. The specific capacitance for CMK–PANi 
composite at 0.2 A/g in  KHCO3 was 487 F/g. It also retains 

Fig. 11  (a) Cyclic performance at 0.8 A/g, (b) Effect of current density on specific capacitance and (c) Nyquist plots of CMK–PANi composite

Table 2  Comparisons of the 
specific capacitance with the 
various mesoporous carbon–
PANi composite

Materials Specific capaci-
tance (F/g)

Scan rate or current 
density (A/g)

Electrolyte References

PANI-NWs/CMK-3 470 1 1 M  H2SO4 [38]
PANI/NOMC 276.1 0.2 2 M KOH [42]
PANI/CMK-3 87.4 5 mA/cm2 1 M  H2SO4 [43]
CMK-5–PANi 803 0.25 2 M  H2SO4 [44]
PANI-F/LMC 473 0.1 6 M KOH [45]
OMC/PANI 747 0.1 30 wt% KOH [46]
PANI/MPC 400 1 1 M  H2SO4 [47]
PANI/MC 470 2 mV s−1 1 M  H2SO4 [48]
HPC/PANI 1080 1 1 M  H2SO4 [49]
MC/PANI 1500 1 1 M  H2SO4 [50]
PANI/OBMC 517 0.1 1 M  H2SO4 [51]
CMK–PANi 487 0.2 1 M  KHCO3 This work
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90% of capacitance after 1000 charge–discharge cycles. 
EIS data revealed that CMK–PANi composite also exhibits 
lowest electrochemical charge-transfer resistance  KHCO3 
electrolyte.
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