Skip to main content
Log in

Principles and methods for stiffness modulation in soft robot design and development

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Compared to traditional rigid robots, soft robots, primarily made of deformable, or less rigid materials, have good adaptability, conformability and safety in interacting with the environment. Although soft robots have shown great potentials for extended applications and possibilities that are impossible or difficult for rigid body robots, it is of great importance for them to have the capability of controllable stiffness modulation. Stiffness modulation allows soft robots to have reversible change between the compliant, or flexible state and the rigid state. In this paper, we summarize existing principles and methods for stiffness modulation in soft robotic development and divide them into four groups based on their working principles. Acoustic-based methods have been proposed as the potential fifth group in stiffness modulation of soft robots. Initial design proposals based on the proposed acoustic method are presented, and challenges in further development are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SMP:

Shape memory polymer

SMA:

Shape memory alloy

LMPA:

Low melting point alloy

ERF:

Electro-rheological fluid

MRF:

Magneto-rheological fluid

MIS:

Minimally invasive surgery

DEA:

Dielectric elastomer actuator

PLA:

Polylactic acid

ABS:

Acrylonitrile butadiene styrene

References

  1. Siciliano B, Khatib O (eds) (2016) Springer handbook of robotics. Springer, Berlin

    MATH  Google Scholar 

  2. Laschi C, Mazzolai B, Cianchetti M (2016) Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci Robot 1(1):eaah3690

    Article  Google Scholar 

  3. Rus D, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521(7553):467

    Article  Google Scholar 

  4. Wang L, Nurzaman SG, Iida F (2017) Soft-material robotics. Found Trends Robot 5(3):191–259

    Article  Google Scholar 

  5. Majidi C (2014) Soft robotics: a perspective—current trends and prospects for the future. Soft Robot 1(1):5–11

    Article  Google Scholar 

  6. Manti M, Cacucciolo V, Cianchetti M (2016) Stiffening in soft robotics: a review of the state of the art. IEEE Robot Autom Mag 23(3):93–106

    Article  Google Scholar 

  7. Kornbluh RD, Prahlad H, Pelrine R, Stanford S, Rosenthal MA, von Guggenberg PA (2004) Rubber to rigid, clamped to undamped: toward composite materials with wide-range controllable stiffness and damping. In: Smart structures and materials international society for optics and photonics, pp 372–386

  8. Kuder IK, Arrieta AF, Raither WE, Ermanni P (2013) Variable stiffness material and structural concepts for morphing applications. Prog Aerosp Sci 63:33–55

    Article  Google Scholar 

  9. Blanc L, Delchambre A, Lambert P (2017) Flexible medical devices: review of controllable stiffness solutions. Actuators 6(3):23

    Article  Google Scholar 

  10. Van Ham R, Sugar TG, Vanderborght B, Hollander KW, Lefeber D (2009) Compliant actuator designs. IEEE Robot Autom Mag 16(3):81–94

    Article  Google Scholar 

  11. Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41(12):2034–2057

    Article  Google Scholar 

  12. Yang Y, Chen Y, Li Y, Chen MZ (2016) 3D printing of variable stiffness hyper-redundant robotic arm. In: IEEE international conference on robotics and automation (ICRA), pp 3871–3877

  13. Yang Y, Chen Y, Li Y, Chen MZ, Wei Y (2017) Bioinspired robotic fingers based on pneumatic actuator and 3d printing of smart material. Soft Robot 4(2):147–62

    Article  Google Scholar 

  14. Yang Y, Chen Y, Li Y, Wang Z, Li Y (2017) Novel variable-stiffness robotic fingers with built-in position feedback. Soft Robot 4(4):338–352

    Article  Google Scholar 

  15. Firouzeh A, Salerno M, Paik J (2017) Stiffness control with shape memory polymer in underactuated robotic origamis. IEEE Trans Robot 33(4):765–777

    Article  Google Scholar 

  16. Yuen MC, Bilodeau RA, Kramer RK (2016) Active variable stiffness fibers for multifunctional robotic fabrics. IEEE Robot Autom Lett 1(2):708–15

    Article  Google Scholar 

  17. Shaw JA, Kyriakides S (1995) Thermomechanical aspects of NiTi. J Mech Phys Solids 43(8):1243–1281

    Article  Google Scholar 

  18. Mavroidis C (2002) Development of advanced actuators using shape memory alloys and electrorheological fluids. J Res Nondestruct Eval 14(1):1–32

    Article  Google Scholar 

  19. Schubert BE, Floreano D (2013) Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly (dimethylsiloxane)(PDMS). RSC Adv 3(46):24671–24679

    Article  Google Scholar 

  20. Shintake J, Schubert B, Rosset S, Shea H, Floreano D (2015) Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1097–1102

  21. Hao Y, Wang T, Wen L (2017) A programmable mechanical freedom and variable stiffness soft actuator with low melting point alloy. In: International conference on intelligent robotics and applications, pp 151–161

  22. Nakai H, Kuniyoshi Y, Inaba M, Inoue H (2002) Metamorphic robot made of low melting point alloy. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), vol 2, pp 2025–2030

  23. Cheng NG, Gopinath A, Wang L, Iagnemma K, Hosoi AE (2014) Thermally tunable, self-healing composites for soft robotic applications. Macromol Mater Eng 299(11):1279–1284

    Article  Google Scholar 

  24. de Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011) Magnetorheological fluids: a review. Soft Matter 7(8):3701–3710

    Article  Google Scholar 

  25. Halsey TC (1992) Electrorheological fluids. Science 258(5083):761–766

    Article  Google Scholar 

  26. Bell RC, Karli JO, Vavreck AN, Zimmerman DT, Ngatu GT, Wereley NM (2008) Magnetorheology of submicron diameter iron microwires dispersed in silicone oil. Smart Mater Struct 17(1):015028

    Article  Google Scholar 

  27. Sadeghi A, Beccai L, Mazzolai B (2012) Innovative soft robots based on electro-rheological fluids. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 4237–4242

  28. Pettersson A, Davis S, Gray JO, Dodd TJ, Ohlsson T (2010) Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes. J Food Eng 98(3):332–338

    Article  Google Scholar 

  29. Majidi C, Wood RJ (2010) Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field. Appl Phys Lett 97(16):164104

    Article  Google Scholar 

  30. Tonazzini A, Sadeghi A, Mazzolai B (2016) Electrorheological valves for flexible fluidic actuators. Soft Robot 3(1):34–41

    Article  Google Scholar 

  31. Cates ME, Wittmer JP, Bouchaud JP, Claudin P (1998) Jamming, force chains, and fragile matter. Phys Rev Lett 81(9):1841

    Article  Google Scholar 

  32. Trappe VE, Prasad V, Cipelletti L, Segre PN, Weitz DA (2001) Jamming phase diagram for attractive particles. Nature 411(6839):772–775

    Article  Google Scholar 

  33. Brown E, Rodenberg N, Amend J, Mozeika A, Steltz E, Zakin MR, Lipson H, Jaeger HM (2010) Universal robotic gripper based on the jamming of granular material. Proc Natl Acad Sci 107(44):18809–18814

    Article  Google Scholar 

  34. Wei Y (2016) Investigations of variable stiffness principles for compliant robotics. Ph.D. thesis, The University of Hong Kong, Hong Kong

  35. Wei Y, Chen Y, Ren T, Chen Q, Yan C, Yang Y, Li Y (2016) A novel, variable stiffness robotic gripper based on integrated soft actuating and particle jamming. Soft Robot 3(3):134–43

    Article  Google Scholar 

  36. Robertson MA, Paik J (2017) New soft robots really suck: vacuum-powered systems empower diverse capabilities. Sci Robot 2(9):eaan6357

    Article  Google Scholar 

  37. Steltz E, Mozeika A, Rodenberg N, Brown E, Jaeger HM (2009) Jsel: jamming skin enabled locomotion. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 5672–5677

  38. Li Y, Chen Y, Yang Y, Wei Y (2017) Passive particle jamming and its stiffening of soft robotic grippers. IEEE Trans Robot 33(2):446–455

    Article  Google Scholar 

  39. Kim YJ, Cheng S, Kim S, Iagnemma K (2013) A novel layer jamming mechanism with tunable stiffness capability for minimally invasive surgery. IEEE Trans Robot 29(4):1031–1042

    Article  Google Scholar 

  40. Wall V, Deimel R, Brock O (2015) Selective stiffening of soft actuators based on jamming. In: IEEE international conference on robotics and automation (ICRA), pp 252–257

  41. Shiva A, Stilli A, Noh Y, Faragasso A, De Falco I, Gerboni G, Cianchetti M, Menciassi A, Althoefer K, Wurdemann HA (2016) Tendon-based stiffening for a pneumatically actuated soft manipulator. IEEE Robot Autom Lett 1(2):632–637

    Article  Google Scholar 

  42. Suzumori K, Wakimoto S, Miyoshi K, Iwata K (2013) Long bending rubber mechanism combined contracting and extending fluidic actuators. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 4454–4459

  43. Hassan T, Cianchetti M, Mazzolai B, Laschi C, Dario P (2017) Active-braid, a bioinspired continuum manipulator. IEEE Robot Autom Lett 2(4):2104–2110

    Article  Google Scholar 

  44. Sturges RH Jr, Laowattana S (1993) A flexible, tendon-controlled device for endoscopy. Int J Robot Res 12(2):121–131

    Article  Google Scholar 

  45. Kim YJ, Cheng S, Kim S, Iagnemma K (2014) A stiffness-adjustable hyperredundant manipulator using a variable neutral-line mechanism for minimally invasive surgery. IEEE Trans Robot 30(2):382–395

    Article  Google Scholar 

  46. Yagi A, Matsumiya K, Masamune K, Liao H, Dohi T (2006) Rigid-flexible outer sheath model using slider linkage locking mechanism and air pressure for endoscopic surgery. International conference on medical image computing and computer-assisted intervention (MICCAI). Springer, Berlin, Heidelberg, pp 503–510

    Google Scholar 

  47. Shan W, Lu T, Majidi C (2013) Soft-matter composites with electrically tunable elastic rigidity. Smart Mater Struct 22(8):085005

    Article  Google Scholar 

  48. Takashima K, Sugitani K, Morimoto N, Sakaguchi S, Noritsugu T, Mukai T (2014) Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire. Smart Mater Struct 23(12):125005

    Article  Google Scholar 

  49. Athanassiadis AG, Miskin MZ, Kaplan P, Rodenberg N, Lee SH, Merritt J, Brown E, Amend J, Lipson H, Jaeger HM (2014) Particle shape effects on the stress response of granular packings. Soft Matter 10(1):48–59

    Article  Google Scholar 

  50. Pan G, Wang L (2011) Swallowable wireless capsule endoscopy: progress and technical challenges. Gastroenterol Res Pract 2012(1):841691

    Google Scholar 

  51. Ho JS, Yeh AJ, Neofytou E, Kim S, Tanabe Y, Patlolla B, Beygui RE, Poon AS (2014) Wireless power transfer to deep-tissue microimplants. Proc Natl Acad Sci 111(22):7974–7979

    Article  Google Scholar 

  52. Boyvat M, Koh JS, Wood RJ (2017) Addressable wireless actuation for multijoint folding robots and devices. Sci Robot 2(8):eaan1544

    Article  Google Scholar 

  53. Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36(3):492–506

    Article  Google Scholar 

  54. Foresti D, Nabavi M, Klingauf M, Ferrari A, Poulikakos D (2013) Acoustophoretic contactless transport and handling of matter in air. Proc Natl Acad Sci 110(31):12549–12554

    Article  Google Scholar 

  55. Ding X, Lin SC, Kiraly B, Yue H, Li S, Chiang IK, Shi J, Benkovic SJ, Huang TJ (2012) On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc Natl Acad Sci 109(28):11105–11109

    Article  Google Scholar 

  56. Whymark RR (1975) Acoustic field positioning for containerless processing. Ultrasonics 13(6):251–261

    Article  Google Scholar 

  57. Ochiai Y, Hoshi T, Rekimoto J (2014) Pixie dust: graphics generated by levitated and animated objects in computational acoustic-potential field. ACM Trans Graph (TOG) 33(4):85

    Article  Google Scholar 

  58. Ochiai Y, Hoshi T, Rekimoto J (2014) Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays. PloS One 9(5):e97590

    Article  Google Scholar 

  59. Otsuka T, Nakane T (2002) Ultrasonic levitation for liquid droplet. Jpn J Appl Phys 41(5S):3259

    Article  Google Scholar 

  60. Haake A, Dual J (2005) Contactless micromanipulation of small particles by an ultrasound field excited by a vibrating body. J Acoust Soc Am 117(5):2752–2760

    Article  Google Scholar 

  61. Nyborg WL (1958) Acoustic streaming near a boundary. J Acoust Soc Am 30(4):329–339

    Article  MathSciNet  Google Scholar 

  62. Lighthill J (1978) Acoustic streaming. J Sound Vib 61(3):391–418

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YY, YTL and YHC designed the overall study. YY and YHC wrote the manuscript. YTL performed the experiment of acoustic liquids actuation. YY and YTL analyzed the data. YHC supervised the study. All authors commented on the paper.

Corresponding author

Correspondence to Yonghua Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, Y. & Chen, Y. Principles and methods for stiffness modulation in soft robot design and development. Bio-des. Manuf. 1, 14–25 (2018). https://doi.org/10.1007/s42242-018-0001-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-018-0001-6

Keywords

Navigation