Skip to main content
Log in

SPH modeling of fluid-structure interaction

  • Special Column on SPHERIC2017 (Guest Editors Mou-bin Liu, Can Huang, A-man Zhang)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

This work concerns numerical modeling of fluid-structure interaction (FSI) problems in a uniform smoothed particle hydrodynamics (SPH) framework. It combines a transport-velocity SPH scheme, advancing fluid motions, with a total Lagrangian SPH formulation dealing with the structure deformations. Since both fluid and solid governing equations are solved in SPH framework, while coupling becomes straightforward, the momentum conservation of the FSI system is satisfied strictly. A well-known FSI benchmark test case has been performed to validate the modeling and to demonstrate its potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bungartz H. J., Schäfer M. Fluid-structure interaction. Modelling, simulation, optimisation [M]. Berlin, Heidelberg, Germany: Springer Science and Business Media, 2006.

    MATH  Google Scholar 

  2. Sigrist J. F. Fluid-structure interaction: An introduction to finite element coupling [J]. Comptuters and Mathematics with Applications, 2015, 69(10): 1167–1188.

    Article  Google Scholar 

  3. Tezduyar T. E., Sathe S., Keedy R. Space–time finite element techniques for computation of fluid–structure interactions [J]. Computer methods in Applied Mechanics and Engineering, 2006,195(17): 2002–2027.

    Google Scholar 

  4. Ahn H. T., Kallinderis Y. Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes [J]. Journal of Computational Physics, 2006, 219(2): 671–696.

    Article  MathSciNet  MATH  Google Scholar 

  5. Tian F. B., Dai H., Luo H. Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems [J]. Journal of computational physics, 2014, 258(2): 451–469.

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu K., Yang D., Wright N. A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure [J]. Computers and Structures, 2016, 177: 141–161.

    Article  Google Scholar 

  7. Han K., Feng Y.T., Owen D.R. J. Numerical simulations of irregular particle transport in turbulent flows using coupled LBM-DEM [J]. Computer Modeling in Engineering and Sciences, 2007, 18(2):87–100.

    MathSciNet  MATH  Google Scholar 

  8. Liu G. R., Liu M. B. Smoothed particle hydrodynamics: A meshfree particle method [M]. Singopare: World Scientific, 2003.

    Book  MATH  Google Scholar 

  9. Lucy L. B. A numerical approach to the testing of the fission hypothesis [J]. Astronomical Journal, 1977, 82: 1013–1024.

    Article  Google Scholar 

  10. Gingold R. A., Monaghan J. J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375–389.

    Article  MATH  Google Scholar 

  11. Antoci C., Gallati M., Sibilla S. Numerical simulation of fluid–structure interaction by SPH [J]. Computers and Structures, 2007, 85(11-14): 879–890.

    Article  Google Scholar 

  12. Gray J. P., Monaghan J. J., Swift R. P. SPH elastic dynamics [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49): 6641–6662.

    Article  MATH  Google Scholar 

  13. Zhang C., Hu Y., Adams N. A. A generalized transportvelocity formulation for smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2017, 337: 216–232.

    Article  MathSciNet  Google Scholar 

  14. Libersky L. D., Petschek A. G., Carney T. C. et al. High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response [J]. Journal of computational physics, 1993, 109(1): 67–75.

    Article  MATH  Google Scholar 

  15. Vignjevic R., Reveles J. R., Campbell J. SPH in a total Lagrangian formalism [J]. Computer Modeling in Engineering and Sciences, 2006, 14(3): 181–198.

    MathSciNet  MATH  Google Scholar 

  16. Monaghan J. J. SPH without a tensile instability [J]. Journal of Computational Physics, 2000, 159(2): 290–311.

    Article  MATH  Google Scholar 

  17. Adami S., Hu X. Y., Adams N. A. A transport-velocity formulation for smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2013, 241(5): 292–307.

    Article  MathSciNet  MATH  Google Scholar 

  18. Monaghan J. J. Simulating free surface flows with SPH [J]. Journal of computational physics, 1994, 110(2): 399–406.

    Article  MATH  Google Scholar 

  19. Hu X. Y., Adams N. A. A multi-phase SPH method for macroscopic and mesoscopic flows [J]. Journal of Computational Physics, 2006, 213(2): 844–861.

    Article  MathSciNet  MATH  Google Scholar 

  20. Turek S., Hron J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow (Bungartz H. J., Schäfer M. Fluid-structure interaction: Modeling, simulation, optimisation) [M]. Berlin, Heidelberg, Germany: Springer, 2006, 371–385.

    MATH  Google Scholar 

  21. Adami S., Hu X. Y., Adams N. A. A generalized wall boundary condition for smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2012, 231(21): 7057–7075.

    Article  MathSciNet  Google Scholar 

  22. Bonet J., Kulasegaram S. A simplified approach to enhance the performance of smooth particle hydrodynamics methods [J]. Applied Mathematics and Computation, 2002, 126(2): 133–155.

    Article  MathSciNet  MATH  Google Scholar 

  23. Bhardwaj R., Mittal R. Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flowinduced deformation [J]. AIAA Journal, 2012, 50(7): 1638–1642.

    Article  Google Scholar 

  24. Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree [J]. Advances in computational Mathematics, 1995, 4(1): 389–396.

    Article  MathSciNet  MATH  Google Scholar 

  25. Gaster M. Vortex shedding from circular cylinders at low Reynolds numbers [J]. Journal of Fluid Mechanics, 1971, 46: 749–756.

    Article  Google Scholar 

  26. Roshko A. On the development of turbulent wakes from vortex streets[R]. Technical Report Archive and Image Library, 1954.

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support by Deutsche Forschungsgemeinschaft (Grant No. DFG HU1527/6-1) for the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Hu, X. SPH modeling of fluid-structure interaction. J Hydrodyn 30, 62–69 (2018). https://doi.org/10.1007/s42241-018-0006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-018-0006-9

Keywords

Navigation