Skip to main content
Log in

Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction

  • Special Column on SPHERIC2017 (Guest Editors Mou-bin Liu, Can Huang, A-man Zhang)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Simulation of incompressible fluid flow-elastic structure interactions is targeted by using fully-Lagrangian mesh-free computational methods. A projection-based fluid model (moving particle semi-implicit (MPS)) is coupled with either a Newtonian or a Hamiltonian Lagrangian structure model (MPS or HMPS) in a mathematically-physically consistent manner. The fluid model is founded on the solution of Navier-Stokes and continuity equations. The structure models are configured either in the framework of Newtonian mechanics on the basis of conservation of linear and angular momenta, or Hamiltonian mechanics on the basis of variational principle for incompressible elastodynamics. A set of enhanced schemes are incorporated for projection-based fluid model (Enhanced MPS), thus, the developed coupled solvers for fluid structure interaction (FSI) are referred to as Enhanced MPS-MPS and Enhanced MPS-HMPS. Besides, two smoothed particle hydrodynamics (SPH)-based FSI solvers, being developed by the authors, are considered and their potential applicability and comparable performance are briefly discussed in comparison with MPS-based FSI solvers. The SPH-based FSI solvers are established through coupling of projection-based incompressible SPH (ISPH) fluid model and SPH-based Newtonian/Hamiltonian structure models, leading to Enhanced ISPH-SPH and Enhanced ISPH-HSPH. A comparative study is carried out on the performances of the FSI solvers through a set of benchmark tests, including hydrostatic water column on an elastic plate, high speed impact of an elastic aluminum beam, hydroelastic slamming of a marine panel and dam break with elastic gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lucy L. B. A numerical approach to the testing of fission hypothesis [J]. Astronomical Journal, 1997, 82: 1013–1024.

    Article  Google Scholar 

  2. Gingold R. A., Monaghan J. J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1977, 181: 375–389.

    Article  MATH  Google Scholar 

  3. Koshizuka S., Oka Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid [J]. Nuclear Science and Engineering, 1996, 123: 421–434.

    Article  Google Scholar 

  4. Fourey G. Développement d’une méthode de couplage fluide structure SPH Eléments Finis en vue de son application à l’hydrodynamique navale [D]. Doctoral Thesis, Nantes, France: Ecole Centralede Nantes, 2012.

    Google Scholar 

  5. Fourey G., Oger G., Le Touzé D. et al. Violent fluidstructure interaction simulations using a coupled SPH/FEM method [J]. IOP Conference Series: Materials Science and Engineering, 2010, 10(1): 012041.

    Article  Google Scholar 

  6. Li Z., Leduc J., Nunez-Ramirez J. et al. A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluidstructure interaction problems with large interface motion [J]. Computational Mechanics, 2015, 55(4): 697–718.

    Article  MathSciNet  MATH  Google Scholar 

  7. Fourey G., Hermange C., Le Touzé D. et al. An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods [J]. Computer Physics Communications, 2017, 217: 66–81.

    Article  MathSciNet  Google Scholar 

  8. Antoci C., Gallati M., Sibilla S. Numerical simulation of fluid-structure interaction by SPH [J]. Computers and Structures, 2007, 85(11-14): 879–890.

    Article  Google Scholar 

  9. Rafiee A., Thiagarajan K. P. An SPH projection method for simulating fluid-hypoelastic structure interaction [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(33-36): 2785–2795.

    Article  MATH  Google Scholar 

  10. Oger G., Brosset L., Guilcher P. M. et al. Simulations of hydro-elastic impacts using a parallel SPH model [J]. International Journal of Offshore and Polar Engineering, 2010, 20(3): 181–189.

    Google Scholar 

  11. Eghtesad A., Shafiei A. R., Mahzoon M. A new fluid–solid interface algorithm for simulating fluid structure problems in FGM plates [J]. Journal of Fluids and Structures, 2012, 30: 141–158.

    Article  Google Scholar 

  12. Hwang S. C., Khayyer A., Gotoh H. et al. Development of a fully Lagrangian MPS-based coupled method for simulation of fluid-structure interaction problems [J]. Journal of Fluids and Structures, 2014, 50: 497–511.

    Article  Google Scholar 

  13. Hwang S. C., Park J. C., Gotoh H. et al. Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid-structure interaction analysis method [J]. Ocean Engineering, 2016, 118: 227–241.

    Article  Google Scholar 

  14. Khayyer A., Falahaty H., Gotoh H. et al. An enhanced coupled Lagrangian solver for incompressible fluid and non-linear elastic structure interactions [J]. Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), 2016, 72(2): 1117–1122.

    Article  Google Scholar 

  15. Khayyer A., Gotoh H., Falahaty H. et al. Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D hydroelastic slamming [J]. Ocean Systems Engineering, 2017, 7(3): 299–318.

    Google Scholar 

  16. Foias C., Manley O., Rosa R. et al. Navier-Stokes equations and turbulence [M]. Cambridge, UK: Cambridge University Press, 2001, 364.

    Book  MATH  Google Scholar 

  17. Bonet J., Lok T. S. L. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations [J]. Computer Methods in Applied Mechanics and Engineering, 1999, 180(1-2): 97–115.

    Article  MathSciNet  MATH  Google Scholar 

  18. Marsden J. E., Hughes T. J. R. Mathematical foundations of elasticity [M]. New York, USA: Dover publication Inc., 1983, 556.

    Google Scholar 

  19. Kondo M., Suzuki Y., Koshizuka S. Suppressing localparticle oscillations in the Hamiltonian particle method for elasticity [J]. International Journal for Numerical Methods in Engineering, 2010, 81: 1514–1528.

    MathSciNet  MATH  Google Scholar 

  20. Kondo M., Tanaka M., Harada T. et al. Elastic objects for computer graphic field using MPS method [C]. The 34th Annual Meeting of the Association for Computing Machineryʼs Special Interest Group on Graphics, San Diego, USA, 2007.

    Google Scholar 

  21. Suzuki Y., Koshizuka S. A Hamiltonian particle method for non-linear elastodynamics [J]. International Journal for Numerical Methods in Engineering, 2008, 74(8): 1344–1373.

    Article  MathSciNet  MATH  Google Scholar 

  22. Gotoh H., Khayyer A. Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering [J]. Journal of Ocean Engineering and Marine Energy, 2016, 2(3): 251–278.

    Article  Google Scholar 

  23. Gotoh H., Okayasu A. Computational wave dynamics for innovative design of coastal structures [J]. Proceedings of the Japan Academy Ser. B, 2017, 93(9): 525–546.

    Article  Google Scholar 

  24. Khayyer A., Gotoh H., Shimizu Y. et al. On enhancement of energy conservation properties of projection-based particle methods [J]. European Journal of Mechanics-B/Fluids, 2017, 66: 20–37.

    Article  MathSciNet  Google Scholar 

  25. Khayyer A., Gotoh H., Shimizu Y. Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context [J]. Journal of Computational Physics, 2017, 332: 236–256.

    Article  MathSciNet  MATH  Google Scholar 

  26. Shao S., Lo E. Y. M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface [J]. Advances in Water Resources, 2003, 26(7): 787–800.

    Article  Google Scholar 

  27. Gotoh H., Okayasu A., Watanabe Y. Computational wave dynamics (Advanced series on ocean engineering) [M]. Singapore: World Scientific, 2013, 234.

    Book  MATH  Google Scholar 

  28. Liu G. R., Liu M. B. Smoothed particle hydrodynamics: A meshfree particle method [M]. Singapore: World Scientific, 2003, 472.

    Book  MATH  Google Scholar 

  29. Violeau D. Fluid mechanics and the SPH method, theory and applications [M]. Oxford, UK: Oxford University Press, 2012, 616.

    Book  MATH  Google Scholar 

  30. Monaghan J. J. Smoothed particle hydrodynamics [J]. Reports on Progress in Physics, 2005, 68(8): 1703–1759.

    Article  MathSciNet  Google Scholar 

  31. Liu M. B., Li S. M. On the modeling of viscous incompressible flows with smoothed particle hydrodynamics [J]. Journal of Hydrodynamics, 2016, 28(5): 731–745.

    Article  Google Scholar 

  32. Koshizuka S. Current achievements and future perspectives on particle simulation technologies for fluid dynamics and heat transfer [J]. Journal of Nuclear Science and Technology, 2011, 48(2): 155–168.

    Article  MathSciNet  Google Scholar 

  33. Zhang A. M., Sun P. N., Ming F. R. et al. Smoothed particle hydrodynamics and its applications in fluidstructure interactions [J]. Journal of Hydrodynamics, 2017, 29(2): 187–216.

    Article  Google Scholar 

  34. Gray J. P., Monaghan J. J., Swift R. P. SPH elastic dynamics [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49-50): 6641–6662.

    Article  MATH  Google Scholar 

  35. Scolan Y. M. Hydroelastic behavior of a conical shell impacting on a quiescent-free surface of an incompressible liquid [J]. Journal of Sound and Vibration, 2004, 277(1-2): 163–203.

    Article  Google Scholar 

  36. Allen T. Mechanics of flexible composite hull panels subjected to water impacts [D]. Doctoral Thesis, Auckland,New Zealand: University of Auckland, 2013.

    Google Scholar 

  37. Stenius I., Rosén A., Battley M. et al. Experimental hydroelastic characterization of slamming loaded marine panels [J]. Ocean Engineering, 2013, 74: 1–15.

    Article  Google Scholar 

  38. Battley M., Allen T., Pehrson P. et al. Effects of panel stiffness on slamming responses of composite hull panels [C]. 17th International Conference Composite Materials, Edinburgh International Convention Centre (EICC), Edinburgh, UK, 2009.

    Google Scholar 

  39. Koshizuka S. Ryushiho (Particle method) [M]. Tokyo, Japan: Maruzen, 2005(in Japanese).

    Google Scholar 

  40. Belytschko T., Guo Y., Liu W. K. et al. A unified stability analysis of meshless particle methods [J]. International Journal for Numerical Methods in Engineering, 2000, 48(9): 1359–1400.

    Article  MathSciNet  MATH  Google Scholar 

  41. Belytschko T., Xiao S. P. Stability analysis of particle methods with corrected derivatives [J]. Computers and Mathematics with Applications, 2002, 43(3-5): 329–350.

    Article  MathSciNet  MATH  Google Scholar 

  42. Vignjevic R., Campbell J., Libersky L. D. A treatment of zero-energy modes in the smoothed particle hydrodynamics method [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 184(1): 67–85.

    Article  MathSciNet  MATH  Google Scholar 

  43. Randles P. W., Libersky L. D. Normalized SPH with stress points [J]. International Journal for Numerical Methods in Engineering, 2000, 48(10): 1445–1462.

    Article  MATH  Google Scholar 

  44. Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells [M]. Second Edition, New York, USA: McGraw-Hill, 1959.

    MATH  Google Scholar 

  45. Long T., Hu D., Wan D. et al. An arbitrary boundary with ghost particles incorporated incoupled FEM-SPH model for FSI problems [J]. Journal of Computational Physics, 2017, 350: 166–183.

    Article  MathSciNet  MATH  Google Scholar 

  46. Liang D., He X., Zhang J. X. An ISPH model for flow-like landslides and interaction with structures [J]. Journal of Hydrodynamics, 2017, 29(5): 894–897.

    Article  Google Scholar 

  47. Cercos-Pita J. L., Antuono M., Colagrossi A. et al. SPH energy conservation for fluid-solid interactions [J]. Computer Methods in Applied Mechanics and Engineering, 2017, 317: 771–791.

    Article  MathSciNet  Google Scholar 

  48. Gotoh H., Shibahara T., Sakai T. Sub-particle-scale turbulence model for the MPS method-Lagrangian flow model for hydraulic engineering [J]. Computational Fluid Dynamics Journal, 2001, 9(4): 339–347.

    Google Scholar 

  49. Khayyer A., Gotoh H. Enhancement of performance and stability of MPS meshfree particle method for multiphase flows characterized by high density ratios [J]. Journal of Computational Physics, 2013, 242: 211–233.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Khayyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khayyer, A., Gotoh, H., Falahaty, H. et al. Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction. J Hydrodyn 30, 49–61 (2018). https://doi.org/10.1007/s42241-018-0005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-018-0005-x

Keywords

Navigation