Skip to main content

Advertisement

Log in

Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Although high-thermal conductivity fillers can enhance the thermal conductivity of organic phase change materials (PCMs), it is still difficult to simultaneously prevent the loss in latent heat. The realization of enhanced thermal conductivity without adversely affecting the latent heat of polymeric PCMs remains challenging. We report experimental results demonstrating that polyethylene glycol (PEG)-based PCM composites exhibit large latent heats beyond the expected values and significantly improved thermal conductivities. Latent heat and thermal conductivity enhancements are achieved by optimizing the interaction between the filler and PCM in the PEG/graphene oxide (GO) composites. PEG-grafted GO (PEG-g-GO) is synthesized and introduced into the PEG to regulate the interaction between the PEG base and GO. The result can be largely attributed to the enhanced GO dispersion and heightened mobility of the PEG chains. The grafted PEG in the PEG-g-GO acts as a plasticizer, leading to a considerable effect on the crystallization kinetics of the PEG in the composite PCMs, and thus the improved crystallizability.

Latent heat and thermal conductivity enhancements are achieved by optimizing the interaction between the filler and PCM in the PEG/GO composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li Y, Xu G, Guo Y, Ma T, Zhong X, Zhang Q, Gu J (2018) Fabrication, proposed model and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers. Compos Part A-Appl S 107:570–578

    Article  Google Scholar 

  2. Feng CP, Bai L, Bao RY, Liu ZY, Yang MB, Chen J, Yang W (2018) Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression. Adv Compos Hybrid Mater 1:160–167

    Article  Google Scholar 

  3. Sharma SD, Sagara K (2005) Latent heat storage materials and systems: a review. Int J Green Energy 2:1–56

    Article  Google Scholar 

  4. Tian Y, Zhao CY (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energ 104:538–553

    Article  Google Scholar 

  5. Ruan K, Guo Y, Tang Y, Zhang Y, Zhang J, He M, Kong J, Gu J (2018) Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Compos Commun 10:68–72

    Article  Google Scholar 

  6. Sarier N, Onder E, Ozay S, Ozkilic Y (2011) Preparation of phase change material-montmorillonite composites suitable for thermal energy storage. Thermochim Acta 524:39–46

    Article  Google Scholar 

  7. Wang Y, Xia TD, Zheng H, Feng HX (2011) Stearic acid/silica fume composite as form-stable phase change material for thermal energy storage. Energ Buildings 43:2365–2370

    Article  Google Scholar 

  8. Fu X, Liu Z, Wu B, Wang J, Lei J (2016) Preparation and thermal properties of stearic acid/diatomite composites as form-stable phase change materials for thermal energy storage via direct impregnation method. J Therm Anal Calorim 123:1173–1181

    Article  Google Scholar 

  9. Feng L, Zheng J, Yang H, Guo Y, Li W, Li X (2011) Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials. Sol Energ Mat Sol Cells 95:644–650

    Article  Google Scholar 

  10. Karaipekli A, Biçer A, Sarıcd A, Tyagi VV (2017) Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energ Convers Manage 134:373–381

    Article  Google Scholar 

  11. Yuan K, Zhou Y, Sun W, Fang X, Zhang Z (2018) A polymer-coated calcium chloride hexahydrate/expanded graphite composite phase change material with enhanced thermal reliability and good applicability. Compos Sci Technol 156:78–86

    Article  Google Scholar 

  12. Zhang Z, Zhang N, Peng J, Fang X, Gao X, Fang Y (2012) Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energ 91:426–431

    Article  Google Scholar 

  13. Cao R, Liu H, Chen S, Pei D, Miao J, Zhang X (2017) Fabrication and properties of graphene oxide-grafted-poly(hexadecyl acrylate) as a solid-solid phase change material. Compos Sci Technol 149:262–268

    Article  Google Scholar 

  14. Yang J, Qi G, Liu Y, Bao R, Liu Z, Yang W, Xie B, Yang M (2016) Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon 100:693–702

    Article  Google Scholar 

  15. Li H, Jiang M, Li Q, Li D, Chen Z, Hu W, Huang J, Xu X, Dong L, Xie H, Xiong C (2013) Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance. Energ Convers Manage 75:482–487

    Article  Google Scholar 

  16. Yavari F, Fard HR, Pashayi K, Rafiee MA, Zamiri A, Yu ZZ, Ozisik R, Borca-Tasciuc T, Koratkar N (2011) Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives. J Phys Chem C 115:8753–8758

    Article  Google Scholar 

  17. Silakhori M, Fauzi H, Mahmoudian MR, Metselaar HSC, Mahlia TMI, Khanlou HM (2015) Preparation and thermal properties of form-stable phase change materials composed of palmitic acid/polypyrrole/graphene nanoplatelets. Energ Buildings 99:189–195

    Article  Google Scholar 

  18. Mehrali M, Latibari ST, Mehrali M, Metselaar H, Silakhori M (2013) Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energ Convers Manage 67:275–282

    Article  Google Scholar 

  19. Rufuss DDW, Suganthi L, Iniyan S, Davies PA (2018) Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. J Clean Prod 192:9–29

    Article  Google Scholar 

  20. Yang J, Zhang E, Li X, Zhang Y, Qu J, Yu Z (2016) Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98:50–57

    Article  Google Scholar 

  21. Amin M, Putra N, Kosasih EA, Prawiro E, Luanto RA, Mahlia TMI (2017) Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl Therm Eng 112:273–280

    Article  Google Scholar 

  22. Kim S, Drzal LT (2009) High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energ Mat Sol Cells 93:136–142

    Article  Google Scholar 

  23. Li H, Jiang M, Li Q, Li D, Huang J, Hu W, Dong L, Xie H, Xiong C (2014) Facile preparation and thermal performances of hexadecanol/crosslinked polystyrene core/shell nanocapsules as phase change material. Polym Compos 35:2154–2158

    Article  Google Scholar 

  24. Zhang J, Li H, Tu J, Shi R, Luo Z, Xiong C, Jiang M (2018) Shape stability of polyethylene glycol/acetylene black phase change composites for latent heat storage. Adv Mater Sci Eng 2018:3954163

    Google Scholar 

  25. Xu C, Wu X, Zhu J, Wang X (2008) Synthesis of amphiphilic graphite oxide. Carbon 46(2):386–389

  26. Lee S, Hong J, Jang J (2013) The effect of graphene nanofiller on the crystallization behavior and mechanical properties of poly(vinyl alcohol). Polym Int 62:901–908

    Article  Google Scholar 

  27. Xu J, Zhang Z, Xu H, Chen J, Ran R, Li Z (2015) Highly enhanced crystallization kinetics of poly(L-lactic acid) by poly(ethylene glycol) grafted graphene oxide simultaneously as heterogeneous nucleation agent and chain mobility promoter. Macromolecules 48:4891–4900

    Article  Google Scholar 

  28. Li H, Chen Z, Liu L, Chen J, Jiang M, Xiong C (2015) Poly(vinyl pyrrolidone)-coated graphene/poly(vinylidene fluoride) composite films with high dielectric permittivity and low loss. Compos Sci Technol 121:49–55

    Article  Google Scholar 

  29. Yang X, Liang C, Ma T, Guo Y, Kong J, Gu J, Chen M, Zhu J (2018) A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater 1:207–230

    Article  Google Scholar 

  30. Liu Z, Shen D, Yu J, Dai W, Li C, Du S, Jiang N, Li H, Lin C (2016) Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites. RSC Adv 6:22364–22369

    Article  Google Scholar 

  31. Qin M, Xu Y, Cao R, Feng W, Chen L (2018) Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv Funct Mater 28:1805053

    Article  Google Scholar 

  32. Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J (2018) Thermal transport in polymeric materials and across composite interfaces. Appl Mater Today 12:92–130

    Article  Google Scholar 

Download references

Funding

We gratefully acknowledge the support by the National Natural Science Foundation of China (Nos. 51503158, 51803155).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanxi Xiong or Ming Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, J., Li, H., Zhang, J. et al. Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites. Adv Compos Hybrid Mater 2, 471–480 (2019). https://doi.org/10.1007/s42114-019-00083-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00083-x

Keywords

Navigation