Skip to main content
Log in

A treatise on multiscale glass fiber epoxy matrix composites containing graphene nanoplatelets

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Multiscale composites of epoxy matrix containing glass fibers and graphene nanoplatelets were prepared to investigate the effect of incorporating nanoplatelets upon the microstructural evolution and mechanical properties of the composites. Ozone-functionalized nanoplatelets were uniformly mixed in epoxy before incorporating glass fabric in the composites and processed through vacuum molding. Three different loadings of nanoplatelets were used, i.e., 0.1, 0.3, and 0.5 wt%, while the fraction of glass fibers was kept constant at ~ 60 wt%. The dispersion of nanoplatelets was witnessed using scanning electron microscopy, while mechanical characterization was performed using tensile, compression, flexural, and shear tests. Homogeneous dispersion of nanoplatelets increased mechanical properties of the composites, i.e., tensile, compression, flexural, and shear strengths up to 75, 30, 23, and 36%, respectively; similar trend in moduli values was observed, i.e., 116, 126, and 38%, respectively. The increased bonding between glass fibers and epoxy matrix due to nanoplatelets was found to be the possible reason of the increase in mechanical performance of multiscale composites along with the generation of a nanocomposite of GNP-reinforced epoxy to act as the matrix.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Pedrazzoli D, Pegoretti A, Kalaitzidou K (2015) Synergistic effect of graphite nanoplatelets and glass fibers in polypropylene composites. J Appl Polym Sci 132(12):625–638

    Google Scholar 

  2. Razavi SM, Dehghanpour N, Ahmadi SJ, Rajabi Hamaneh M (2015) Thermal, mechanical, and corrosion resistance properties of vinyl ester/clay nanocomposites for the matrix of carbon fiber-reinforced composites exposed to electron beam. J Appl Polym Sci 132(33):1516–1535

    Article  Google Scholar 

  3. Sathishkumar T, Satheeshkumar S, Naveen J (2014) Glass fiber-reinforced polymer composites—a review. J Reinf Plast Compos 33(13):1258–1275

    Article  CAS  Google Scholar 

  4. Al-Saleh MH, Sundararaj U (2011) Review of the mechanical properties of carbon nanofiber/polymer composites. Compos A: Appl Sci Manuf 42(12):2126–2142

    Article  Google Scholar 

  5. Holmes G, Rice K, Snyder C (2006) Ballistic fibers: a review of the thermal, ultraviolet and hydrolytic stability of the benzoxazole ring structure. J Mater Sci 41(13):4105–4116

    Article  CAS  Google Scholar 

  6. Subhani T, Shaukat B, Ali N, Khurram AA (2017) Toward improved mechanical performance of multiscale carbon fiber and carbon nanotube epoxy composites. Polym Compos 38(8):1519–1528

    Article  CAS  Google Scholar 

  7. Gu H, Ma C, Liang C, Meng X, Gu J, Guo Z (2017) A low loading of grafted thermoplastic polystyrene strengthens and toughens transparent epoxy composites. J Mater Chem C 5(17):4275–4285

    Article  CAS  Google Scholar 

  8. Li J, Sham ML, Kim J-K, Marom G (2007) Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos Sci Technol 67(2):296–305

    Article  CAS  Google Scholar 

  9. Sham ML, Li J, Ma PC, Kim J-K (2009) Cleaning and functionalization of polymer surfaces and nanoscale carbon fillers by UV/ozone treatment: a review. J Compos Mater 43(14):1537–1564

    Article  CAS  Google Scholar 

  10. Chandrasekaran S, Seidel C, Schulte K (2013) Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: mechanical, electrical and thermal properties. Eur Polym J 49(12):3878–3888

    Article  CAS  Google Scholar 

  11. Ma H-l, Jia Z, K-t L, Leng J, Hui D (2016) Impact properties of glass fiber/epoxy composites at cryogenic environment. Compos Part B 92:210–217

    Article  CAS  Google Scholar 

  12. Petersen MR, Chen A, Roll M, Jung S, Yossef M (2015) Mechanical properties of fire-retardant glass fiber-reinforced polymer materials with alumina tri-hydrate filler. Compos Part B 78:109–121

    Article  CAS  Google Scholar 

  13. Bozkurt E, Kaya E, Tanoğlu M (2007) Mechanical and thermal behavior of non-crimp glass fiber reinforced layered clay/epoxy nanocomposites. Compos Sci Technol 67(15):3394–3403

    Article  CAS  Google Scholar 

  14. Moriche R, Sánchez M, Jiménez-Suárez A, Prolongo S, Ureña A (2016) Electrically conductive functionalized-GNP/epoxy based composites: from nanocomposite to multiscale glass fibre composite material. Compos Part B 98:49–55

    Article  CAS  Google Scholar 

  15. Li J, Wu Z, Huang C, Li L (2014) Multiscale carbon nanotube-woven glass fiber reinforced cyanate ester/epoxy composites for enhanced mechanical and thermal properties. Compos Sci Technol 104:81–88

    Article  CAS  Google Scholar 

  16. Gu J, Liang C, Zhao X, Gan B, Qiu H, Guo Y, Yang X, Zhang Q, Wang D-Y (2017) Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities. Compos Sci Technol 139:83–89

    Article  CAS  Google Scholar 

  17. Yang X, Guo Y, Luo X, Zheng N, Ma T, Tan J, Li C, Zhang Q, Gu J (2018) Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos Sci Technol 164:59–64

    Article  CAS  Google Scholar 

  18. Rahmanian S, Suraya A, Roshanravan B, Othman R, Nasser A, Zahari R, Zainudin E (2015) The influence of multiscale fillers on the rheological and mechanical properties of carbon-nanotube–silica-reinforced epoxy composite. Mater Des 88:227–235

    Article  CAS  Google Scholar 

  19. Peng K, Wan Y-J, Ren D-Y, Zeng Q-W, Tang L-C (2014) Scalable preparation of multiscale carbon nanotube/glass fiber reinforcements and their application in polymer composites. Fibers and Polymers 15(6):1242–1250

    Article  CAS  Google Scholar 

  20. Subhani T, Latif M, Ahmad I, Rakha SA, Ali N, Khurram AA (2015) Mechanical performance of epoxy matrix hybrid nanocomposites containing carbon nanotubes and nanodiamonds. Mater Des 87:436–444

    Article  CAS  Google Scholar 

  21. Boostani AF, Tahamtan S, Jiang Z, Wei D, Yazdani S, Khosroshahi RA, Mousavian RT, Xu J, Zhang X, Gong D (2015) Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos A: Appl Sci Manuf 68:155–163

    Article  Google Scholar 

  22. Li W, Dichiara A, Zha J, Su Z, Bai J (2014) On improvement of mechanical and thermo-mechanical properties of glass fabric/epoxy composites by incorporating CNT–Al2O3 hybrids. Compos Sci Technol 103:36–43

    Article  CAS  Google Scholar 

  23. Pathak AK, Borah M, Gupta A, Yokozeki T, Dhakate SR (2016) Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites. Compos Sci Technol 135:28–38

    Article  CAS  Google Scholar 

  24. Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39(11):1934–1972

    Article  CAS  Google Scholar 

  25. Van Thanh D, Van Thien N, Thang BH, Van Chuc N, Hong NM, Trang BT, Dai Lam T, Huyen DTT, Hong PN, Minh PN (2016) A highly efficient and facile approach for fabricating graphite nanoplatelets. J Electron Mater 45(5):2522–2528

    Article  Google Scholar 

  26. Kamar NT, Hossain MM, Khomenko A, Haq M, Drzal LT, Loos A (2015) Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Compos A: Appl Sci Manuf 70:82–92

    Article  CAS  Google Scholar 

  27. Mohamed M, Taheri F (2017) Influence of graphene nanoplatelets (GNPs) on mode I fracture toughness of an epoxy adhesive under thermal fatigue. J Adhes Sci Technol 31(19–20):2105–2123

    Article  CAS  Google Scholar 

  28. Shen M-Y, Chang T-Y, Hsieh T-H, Li Y-L, Chiang C-L, Yang H, Yip M-C (2013) Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites. J Nanomater 2013:1

    Google Scholar 

  29. Jeyranpour F, Alahyarizadeh G, Minuchehr A (2016) The thermo-mechanical properties estimation of fullerene-reinforced resin epoxy composites by molecular dynamics simulation—a comparative study. Polymer 88:9–18

    Article  CAS  Google Scholar 

  30. Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22(22):2392–2415

    Article  CAS  Google Scholar 

  31. Chen W, Yan L, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4):1146–1152

    Article  CAS  Google Scholar 

  32. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271

    Article  CAS  Google Scholar 

  33. Yakovenko O, Matzui L, Perets Y, Ovsiienko I, Brusylovets O, Vovchenko L, Szroeder P (2016) Effects of dispersion and ultraviolet/ozonolysis functionalization of graphite nanoplatelets on the electrical properties of epoxy nanocomposites. Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer, Cham 20(35):477–491

  34. Chandrasekaran S, Sato N, Tölle F, Mülhaupt R, Fiedler B, Schulte K (2014) Fracture toughness and failure mechanism of graphene based epoxy composites. Compos Sci Technol 97:90–99

    Article  CAS  Google Scholar 

  35. Tang L-C, Wan Y-J, Yan D, Pei Y-B, Zhao L, Li Y-B, Wu L-B, Jiang J-X, Lai G-Q (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27

    Article  CAS  Google Scholar 

  36. Wang F, Drzal LT, Qin Y, Huang Z (2016) Size effect of graphene nanoplatelets on the morphology and mechanical behavior of glass fiber/epoxy composites. J Mater Sci 51(7):3337–3348

    Article  CAS  Google Scholar 

  37. Gantayat S, Prusty G, Rout DR, Swain SK (2015) Expanded graphite as a filler for epoxy matrix composites to improve their thermal, mechanical and electrical properties. New Carbon Mater 30(5):432–437

    Article  Google Scholar 

  38. Ashori A, Rahmani H, Bahrami R (2015) Preparation and characterization of functionalized graphene oxide/carbon fiber/epoxy nanocomposites. Polym Test 48:82–88

    Article  CAS  Google Scholar 

  39. Ahmadi-Moghadam B, Sharafimasooleh M, Shadlou S, Taheri F (2015) Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater Des 66:142–149

    Article  CAS  Google Scholar 

  40. Eksik O, Maiorana A, Spinella S, Krishnamurthy A, Weiss S, Gross RA, Koratkar N (2016) Nanocomposites of a cashew nut shell derived epoxy resin and graphene platelets: from flexible to tough. ACS Sustain Chem Eng 4(3):1715–1721

    Article  CAS  Google Scholar 

  41. Ni Y, Chen L, Teng K, Shi J, Qian X, Xu Z, Tian X, Hu C, Ma M (2015) Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Appl Mater Interfaces 7(21):11583–11591

    Article  CAS  Google Scholar 

  42. Mannov E, Schmutzler H, Chandrasekaran S, Viets C, Buschhorn S, Tölle F, Mülhaupt R, Schulte K (2013) Improvement of compressive strength after impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide. Compos Sci Technol 87:36–41

    Article  CAS  Google Scholar 

  43. Shen X-J, Meng L-X, Yan Z-Y, Sun C-J, Ji Y-H, Xiao H-M, Fu S-Y (2015) Improved cryogenic interlaminar shear strength of glass fabric/epoxy composites by graphene oxide. Compos Part B 73:126–131

    Article  CAS  Google Scholar 

  44. Mohanty A, Srivastava V (2015) Effect of alumina nanoparticles on the enhancement of impact and flexural properties of the short glass/carbon fiber reinforced epoxy based composites. Fibers and Polymers 16(1):188–195

    Article  CAS  Google Scholar 

  45. Chen J, Zhao D, Jin X, Wang C, Wang D, Ge H (2014) Modifying glass fibers with graphene oxide: towards high-performance polymer composites. Compos Sci Technol 97:41–45

    Article  CAS  Google Scholar 

  46. Qin W, Vautard F, Drzal LT, Yu J (2015) Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber–matrix interphase. Compos Part B 69:335–341

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors highly acknowledge Mr. Tahir Khan for his support to complete microstructural analysis in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usama Zaheer.

Ethics declarations

Conflict of interest

Authors of the present manuscript certify that they do not have any affiliations with any organization with any financial or non-financial interests. Authors report no conflict of interest for material explained in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaheer, U., Khurram, A.A. & Subhani, T. A treatise on multiscale glass fiber epoxy matrix composites containing graphene nanoplatelets. Adv Compos Hybrid Mater 1, 705–721 (2018). https://doi.org/10.1007/s42114-018-0057-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0057-y

Keywords

Navigation