Skip to main content
Log in

Atomic layer deposited TiO2 ultrathin layer on Ag_ZnO nanorods for stable and efficient photocatalytic degradation of RhB

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Highly stable and active TiO2-coated Ag-modified ZnO nanorods supported on stainless steel mesh (xTi@Ag_ZnO-SS) were successfully synthesized in this work. A low-temperature one-pot hydrothermal method was used to grow Ag_ZnO on stainless steel mesh, and subsequently, an atomic layer deposition (ALD) technique was applied to deposit a TiO2 layer on the surface of Ag_ZnO-SS. The addition of Ag-enhanced photoactivity via favored charge carrier transfer and the TiO2 layer improved stability through suppressed corrosion under UV irradiation, which was demonstrated by cycling performance for RhB photodegradation in two aspects: morphology and photoactivity. After 10 cycles (2 h/cycle) RhB degradation tests under UV irradiation, all the TiO2-protected ZnO materials maintained more intact nanorods structure and more than 80% of the initial photoactivity in the 1st cycle, whereas the ZnO materials without TiO2 coating were drastically deconstructed and only had 56% of initial photodegradation ability. Comprehensive study indicated that thicker TiO2 layers resulted in higher stability but lower photoactivity due to the inhibited charge transfer. The developed TiO2@Ag_ZnO nanorods immobilized on stainless steel mesh demonstrated a promising strategy for the design of highly stable and active photocatalysts endowed with great industrial scalability and practicality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang L, Zhang Q, Xie H, Guo J, Lyu H, Li Y, Sun Z, Wang H, Guo Z (2017) Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Appl Catal B Environ 201:470–478

    Article  Google Scholar 

  2. Wan L, Wang X, Yan S, Yu H, Li Z, Zou Z (2012) ZnO plates synthesized from the ammonium zinc nitrate hydroxide precursor. CrystEngComm 14(1):154–159

    Article  Google Scholar 

  3. Subrahmanyam M, Kaneco S, Alonso-Vante N (1999) A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C–C selectivity. Appl Catal B 23(2):169–174

    Article  Google Scholar 

  4. Gokon N, Hasegawa N, Kaneko H, Aoki H, Tamaura Y, Kitamura M (2003) Photocatalytic effect of ZnO on carbon gasification with CO for high temperature solar thermochemistry. Sol Energy Mater Sol Cells 80(3):335–341

    Article  Google Scholar 

  5. Yu J, Yu X (2008) Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ Sci Technol 42(13):4902–4907

    Article  Google Scholar 

  6. Lizama C, Freer J, Baeza J, Mansilla HD (2002) Optimized photodegradation of Reactive Blue 19 on TiO and ZnO suspensions. Catal Today 76(2):235–246

    Article  Google Scholar 

  7. Sakthivel S, Neppolian B, Shankar M, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO. Sol Energy Mater Sol Cells 77(1):65–82

    Article  Google Scholar 

  8. Mijin D, Savić M, Snežana P, Smiljanić A, Glavaški O, Jovanović M, Petrović S (2009) A study of the photocatalytic degradation of metamitron in ZnO water suspensions. Desalination 249(1):286–292

    Article  Google Scholar 

  9. Quintana M, Edvinsson T, Hagfeldt A, Boschloo G (2007) Comparison of dye-sensitized ZnO and TiO solar cells: studies of charge transport and carrier lifetime. J Phys Chem C 111(2):1035–1041

    Article  Google Scholar 

  10. Hong R, Pan T, Qian J, Li H (2006) Synthesis and surface modification of ZnO nanoparticles. Chem Eng J 119(2):71–81

    Article  Google Scholar 

  11. Xia Y, Wang J, Xu J, Li X, Xie D, Xiang L, Komarneni S (2016) Confined formation of ultrathin ZnO nanorods/reduced graphene oxide mesoporous nanocomposites for high-performance room-temperature NO sensors. ACS Appl Mater Interfaces 8(51):35454–35463

    Article  Google Scholar 

  12. Portillo-Vélez NS, Hernández-Gordillo A, Bizarro M (2016) Morphological effect of ZnO nanoflakes and nanobars on the photocatalytic dye degradation. Catal Today 287:106–112

    Article  Google Scholar 

  13. Jaisutti R, Lee M, Kim J, Choi S, Ha T, Kim J, Kim H, Park S, Kim Y (2017) Ultra-Sensitive Room-Temperature Operable Gas Sensors using p-Type Na: ZnO Nanoflowers for Diabetes Detection. ACS Appl Mater Interfaces 9(10):8796–8804

    Article  Google Scholar 

  14. Acharyya D, Huang K, Chattopadhyay P, Ho M, Fecht H-J, Bhattacharyya P (2016) Hybrid 3D structures of ZnO nanoflowers and PdO nanoparticles as a highly selective methanol sensor. Analyst 141(10):2977–2989

    Article  Google Scholar 

  15. Ambade SB, Ambade RB, Eom SH, Baek M-J, Bagde SS, Mane RS, Lee S-H (2016) Cofunctionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells. Nanoscale 8(9):5024–5036

    Article  Google Scholar 

  16. Hsu MH, Chang CJ (2014a) Ag-doped ZnO nanorods coated metal wire meshes as hierarchical photocatalysts with high visible-light driven photoactivity and photostability. J Hazard Mater 278:444–453

    Article  Google Scholar 

  17. Vu TT, del Río L, Valdés-Solís T, Marbán G (2013a) Fabrication of wire mesh-supported ZnO photocatalysts protected against photocorrosion. Appl Catal B 140-141:189–198

    Article  Google Scholar 

  18. Hsu M-H, Chang C-J (2014b) S-doped ZnO nanorods on stainless-steel wire mesh as immobilized hierarchical photocatalysts for photocatalytic H production. Int J Hydrog Energy 39(29):16524–16533

    Article  Google Scholar 

  19. Vu TT, del Río L, Valdés-Solís T, Marbán G (2012) Tailoring the synthesis of stainless steel wire meshsupported ZnO. Mater Res Bull 47(6):1577–1586

    Article  Google Scholar 

  20. Ko F-H, Lo W-J, Chang Y-C, Guo J-Y, Chen C-M (2016) ZnO nanowires coated stainless steel meshes as hierarchical photocatalysts for catalytic photodegradation of four kinds of organic pollutants. J Alloys Compd 678:137–146

    Article  Google Scholar 

  21. Mahmodi G, Sharifnia S, Rahimpour F, Hosseini SN (2013) Photocatalytic conversion of CO and CH using ZnO coated mesh: Effect of operational parameters and optimization. Sol Energy Mater Sol Cells 111:31–40

    Article  Google Scholar 

  22. Jung S, Yong K (2011) Fabrication of CuO-ZnO nanowires on a stainless steel mesh for highly efficient photocatalytic applications. Chem Commun 47(9):2643–2645

    Article  Google Scholar 

  23. Zhao C, Krall A, Zhao H, Zhang Q, Li Y (2012) Ultrasonic spray pyrolysis synthesis of Ag/TiO nanocomposite photocatalysts for simultaneous H production and CO reduction. Int J Hydrog Energy 37(13):9967–9976

    Article  Google Scholar 

  24. Liu L, Pitts DT, Zhao H, Zhao C, Li Y (2013) Silver-incorporated bicrystalline (anatase/brookite) TiO microspheres for CO photoreduction with water in the presence of methanol. Appl Catal A 467:474–482

    Article  Google Scholar 

  25. Height MJ, Pratsinis SE, Mekasuwandumrong O, Praserthdam P (2006) Ag-ZnO catalysts for Uvphotodegradation of methylene blue\. Appl Catal B 63(3):305–312

    Article  Google Scholar 

  26. Pacholski C, Kornowski A, Weller H (2004) Site-Specific Photodeposition of Silver on ZnO Nanorods. Angew Chem 116(36):4878–4881

    Article  Google Scholar 

  27. Fu H, Xu T, Zhu S, Zhu Y (2008) Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C. Environ Sci Technol 42(21):8064–8069

    Article  Google Scholar 

  28. Zhang L, Cheng H, Zong R, Zhu Y (2009a) Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity. J Phys Chem C 113(6):2368–2374

    Article  Google Scholar 

  29. Zhang H, Zong R, Zhu Y (2009b) Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline. J Phys Chem C 113(11):4605–4611

    Article  Google Scholar 

  30. Dasgupta NP, Lee H-B-R, Bent SF, Weiss PS (2016) Recent Advances in Atomic Layer Deposition. Chem Mater 28(7):1943–1947

    Article  Google Scholar 

  31. Zhao H, Chen J, Rao G, Deng W, Li Y (2017) Enhancing photocatalytic CO reduction by coating an ultrathin Al O layer on oxygen deficient TiO nanorods through atomic layer deposition. Appl Surf Sci 404:49–56

    Article  Google Scholar 

  32. McDowell MT, Lichterman MF, Carim AI, Liu R, Hu S, Brunschwig BS, Lewis NS (2015) The influence of structure and processing on the behavior of TiO protective layers for stabilization of n-Si/TiO2/Ni photoanodes for water oxidation. ACS Appl Mater Interfaces 7(28):15189–15199

    Article  Google Scholar 

  33. Sridharan K, Jang E, Park YM, Park TJ (2015) Superior Photostability and Photocatalytic Activity of ZnO Nanoparticles Coated with Ultrathin TiO Layers through Atomic-Layer Deposition. Chem Eur J 21(52):19136–19141

    Article  Google Scholar 

  34. Li T, Karwal S, Aoun B, Zhao H, Ren Y, Canlas CP, Elam JW, Winans RE (2016) Exploring Pore Formation of Atomic Layer-Deposited Overlayers by in Situ Small-and Wide-Angle X-ray Scattering. Chem Mater 28(19):7082–7087

    Article  Google Scholar 

  35. Su T, Tian H, Qin Z, Ji H (2017) Preparation and characterization of Cu modified BiYO for carbon dioxide reduction to formic acid. Appl Catal B Environ 202:364–373

    Article  Google Scholar 

  36. Qin Z, Tian H, Su T, Ji H, Guo Z (2016) Soft template inducted hydrothermal BiYO catalysts for enhanced formic acid formation from the photocatalytic reduction of carbon dioxide. RSC Adv 6(58):52665–52673

    Article  Google Scholar 

  37. Vu TT, del Rio L, Valdes-Solis T, Marban G (2013b) Stainless steel wire mesh-supported ZnO for the catalytic photodegradation of methylene blue under ultraviolet irradiation. J Hazard Mater 246-247:126–134

    Article  Google Scholar 

  38. Zhang L, Li Y, Zhang Q, Wang H (2013) Hierarchical nanostructure of WO nanorods on TiO nanofibers and the enhanced visible light photocatalytic activity for degradation of organic pollutants. CrystEngComm 15(30):5986–5993

    Article  Google Scholar 

  39. Chamjangali MA, Boroumand S (2013) Synthesis of flower-like Ag-ZnO nanostructure and its application in the photodegradation of methyl orange. J Braz Chem Soc 24(8):1329–1338

    Google Scholar 

  40. Hasnat M, Uddin M, Samed A, Alam S, Hossain S (2007) Adsorption and photocatalytic decolorization of a synthetic dye erythrosine on anatase TiO and ZnO surfaces. J Hazard Mater 147(1):471–477

    Article  Google Scholar 

  41. Xue Y, Luan Q, Yang D, Yao X, Zhou K (2011) Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J Phys Chem C 115(11):4433–4438

    Article  Google Scholar 

  42. Dadashi-Silab S, Asiri AM, Khan SB, Alamry KA, Yagci Y (2014) Semiconductor nanoparticles for photoinitiation of Free radical polymerization in aqueous and organic media. J Polym Sci A Polym Chem 52(10):1500–1507

    Article  Google Scholar 

  43. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution. J Phys Chem Ref Data 17(2):513–886

    Article  Google Scholar 

  44. Yang X, Cui H, Li Y, Qin J, Zhang R, Tang H (2013) Fabrication of Ag PO -graphene composites with highly efficient and stable visible light photocatalytic performance. ACS Catal 3(3):363–369

    Article  Google Scholar 

  45. Galińska A, Walendziewski J (2005) Photocatalytic water splitting over Pt− TiO in the presence of sacrificial reagents. Energy Fuel 19(3):1143–1147

    Article  Google Scholar 

  46. Yu C, Li G, Kumar S, Yang K, Jin R (2014) Phase transformation synthesis of novel Ag O/Ag CO heterostructures with high visible light efficiency in photocatalytic degradation of pollutants. Adv Mater 26(6):892–898

    Article  Google Scholar 

Download references

Funding

This work is partially funded by the Interdisciplinary Seed Grant for Energy Research, Texas A&M Engineering Experiment Station and Dwight Look College of Engineering of Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Deng, W. & Li, Y. Atomic layer deposited TiO2 ultrathin layer on Ag_ZnO nanorods for stable and efficient photocatalytic degradation of RhB. Adv Compos Hybrid Mater 1, 404–413 (2018). https://doi.org/10.1007/s42114-017-0015-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-017-0015-0

Keywords

Navigation