Skip to main content
Log in

Strengthened epoxy resin with hyperbranched polyamine-ester anchored graphene oxide via novel phase transfer approach

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

This work investigated the mechanical properties of epoxy resin composites embedded with graphene oxide (GO) using a novel two-phase extraction method. The graphene oxide from water phase was transferred into epoxy resin forming homogeneous suspension. Hyperbranched polyamine-ester (HBPE) anchored graphene oxide (GOHBPE) was prepared by modifying GO with HBPE using a neutralization reaction. Fourier transform-infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) showed that the HBPE was successfully grafted to the GO surface. The mechanical properties and dynamic mechanical analysis (DMA) of the composites demonstrated that GOHBPE played a critical role in mechanical reinforcement owing to the layered structure of GO, wrinkled topology, surface roughness and surface area ascending from various oxygen groups of GO itself, and the inarching of HBPE and the reaction among GO, HBPE, and epoxy resin. The transferred GOHBPE/epoxy resin composites showed 69.1% higher impact strength, 129.1% more tensile strength, 45.3% larger modulus, and 70.8% higher strain compared to that of cured neat epoxy resin. The glass transition temperature (Tg) of GOHBPE/epoxy resin composites was increased from 135 to 141 °C and their damping capacity was also improved from 0.71 to 0.91. This study provides guidelines for the fabrication of strengthened polymer composites using phase transfer approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  Google Scholar 

  2. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  3. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308

    Article  Google Scholar 

  4. Stauber T, Peres NMR, Geim AK (2008) Optical conductivity of graphene in the visible region of the spectrum. Phys Rev B 78(8):1–8

    Google Scholar 

  5. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Article  Google Scholar 

  6. Shen W, Wang Y, Yan J, Wu H, Guo S (2015) Enhanced electrochemical performance of lithium iron(II) phosphate modified cooperatively via chemically reduced graphene oxide and polyaniline. Electrochimi Acta 173:310–315

    Article  Google Scholar 

  7. Sun Y, Hu X, Luo W, Xia F, Huang Y (2013) Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater 23(19):2436–2444

    Article  Google Scholar 

  8. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science. 347(6217):1246501

  9. Wei W, Yang S, Zhou H, Lieberwirth I, Feng X, Muellen K (2013) 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater 25(21):2909–2914

    Article  Google Scholar 

  10. Li G, Xu C (2015) Hydrothermal synthesis of 3D NixCo1-xS2 particles/graphene composite hydrogels for high performance supercapacitors. Carbon 90:44–52

    Article  Google Scholar 

  11. Lee JW, Hall AS, Kim J-D, Mallouk TE (2012) A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem Mater 24(6):1158–1164

    Article  Google Scholar 

  12. Liu L, Niu Z, Zhang L, Zhou W, Chen X, Xie S (2014) Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv Mater 26(28):4855–4862

    Article  Google Scholar 

  13. Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5):3693–3700

    Article  Google Scholar 

  14. Liao K-H, Lin Y-S, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Inte 3(7):2607–2615

    Article  Google Scholar 

  15. Zhang X, Yin J, Peng C, Hu W, Zhu Z, Li W, Fan C, Huang Q (2011) Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 49(3):986–995

    Article  Google Scholar 

  16. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530

    Article  Google Scholar 

  17. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud'Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331

    Article  Google Scholar 

  18. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  Google Scholar 

  19. Novoselov KS, Fal'ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200

    Article  Google Scholar 

  20. Sun S, Cao Y, Feng J, Wu P (2010) Click chemistry as a route for the immobilization of well-defined polystyrene onto graphene sheets. J Mater Chem 20(27):5605–5607

  21. Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19(26):4632–4638

    Article  Google Scholar 

  22. Yang X, Ma L, Wang S, Li Y, Tu Y, Zhu X (2011) “Clicking” graphite oxide sheets with well-defined polystyrenes: a new strategy to control the layer thickness. Polymer 52(14):3046–3052

    Article  Google Scholar 

  23. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Edt 48(26):4785–4787

    Article  Google Scholar 

  24. Gu J, Liang C, Zhao X, Gan B, Qiu H, Guo Y, Yang X, Zhang Q, Wang DY (2017) Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities. Compos Sci Technol 139:83–89

  25. Li Y, Zhu J, Wei S, Ryu J, Sun L, Guo Z (2011) Poly(propylene)/graphene nanoplatelet nanocomposites: melt rheological behavior and thermal, electrical, and electronic properties. Macromol Chem and Phys 212(18):1951–1959

    Article  Google Scholar 

  26. Zhu J, Wei S, Haldolaarachchige N, He J, Young DP, Guo Z (2012) Very large magnetoresistive graphene disk with negative permittivity. Nanoscale 4(1):152–156

  27. Zhu J, Wei S, Gu H, Rapole SB, Wang Q, Luo Z, Haldolaarachchige N, Young DP, Guo Z (2012) One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ Sci Technol 46(2):977–985

    Article  Google Scholar 

  28. Zhu J, Sadu R, Wei S, Chen DH, Haldolaarachchige N, Luo Z, Gomes JA, Young DP, Guo Z (2012) Magnetic graphene nanoplatelet composites toward arsenic removal. ECS J Solid State SC 1(1):M1–M5

  29. Zhu J, Chen M, Qu H, Zhang X, Wei H, Luo Z, Colorado HA, Wei S, Guo Z (2012) Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energy storage. Polymer 53(25):5953–5964

    Article  Google Scholar 

  30. Liu H, Li Y, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z (2016) Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J Mater Chem C 4(1):157–166

    Article  Google Scholar 

  31. Liu H, Huang W, Yang X, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z (2016) Organic vapor sensing behaviors of conductive thermoplastic polyurethane-graphene nanocomposites. J Mater Chem C 4(20):4459–4469

    Article  Google Scholar 

  32. Gu H, Ma C, Gu J, Guo J, Yan X, Huang J, Zhang Q, Guo Z (2016) An overview of multifunctional epoxy nanocomposites. J Mater Chem C 4(48):5890–5906

    Article  Google Scholar 

  33. Cao Y, Lai Z, Feng J, Wu P (2011) Graphene oxide sheets covalently functionalized with block copolymers via click chemistry as reinforcing fillers. J Mater Chem 21(25):9271–9278

  34. Jiang B, Zhao LW, Guo J, Yan XR, Ding DW, Zhu CC, Huang YD, Guo ZH (2016) Improved thermal stability of methylsilicone resins by compositing with N-doped graphene oxide/Co3O4 nanoparticles. J Nanopart Res 18(6):1–11

    Article  Google Scholar 

  35. Li P, Zheng Y, Yang R, Fan W, Wang N, Zhang A (2015) Flexible nanoscale thread of MnSn(OH)6 crystallite with liquid-like behavior and its application in nanocomposites. ChemPhysChem 16:2524–2529

    Article  Google Scholar 

  36. Lan L, Zheng YP, Zhang AB, Zhang JX, Wang N (2012) Study of ionic solvent-free carbon nanotube nanofluids and its composites with epoxy matrix. J Nanopart Res 14(3):1–10

    Article  Google Scholar 

  37. Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA, de Saja JA, Lopez-Manchado MA (2008) Functionalized graphene sheet filled silicone foam nanocomposites. J Mater Chem 18:2221–2226

    Article  Google Scholar 

  38. Tang J, Zhou H, Liang Y, Shi X, Yang X, Zhang J (2014) Properties of graphene oxide/epoxy resin composites. J Nanomater 696859

  39. Shen XJ, Pei XQ, Fu SY, Friedrich K (2013) Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content. Polymer 54(3):1234–1242

    Article  Google Scholar 

  40. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  Google Scholar 

  41. Yang L, Wang ZQ, Ji YC, Wang JN, Xue G (2014) Highly ordered 3D graphene-based polymer composite materials fabricated by “particle-constructing” method and their outstanding conductivity. Macromolecules 47(5):1749–1756

    Article  Google Scholar 

  42. Yang H, Shan C, Li F, Zhang Q, Han D, Niu L (2009) Convenient preparation of tunably loaded chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction. J Mater Chem 19(46):8856–8860

    Article  Google Scholar 

  43. Zheng YP, Zhang JX, Yang YD, Lan L (2013) The synthesis of hyperbranched poly (amine-ester) and study on the properties of its UV-curing film. J Adhes Sci Technol 27(24):2666–2775

    Article  Google Scholar 

  44. Bao C, Song L, Xing W, Yuan B, Wilkie CA, Huang J, Guo Y, Hu Y (2012) Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. J Mater Chem 22:6088–6096

  45. Gu H, Zhang H, Ma C, Lyu S, Yao F, Liang C, Yang X, Guo J, Guo Z, Gu J (2017) Polyaniline assisted uniform dispersion for magnetic ultrafine barium ferrite nanorods reinforced epoxy metacomposites with tailorable negative permittivity. J Phys Chem C 121(24):13265–13273

  46. Zhang X, Alloul O, He Q, Zhu J, Verde MJ, Li Y, Wei S, Guo Z (2013) Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets. Polymer 54(14):3594–3604

    Article  Google Scholar 

  47. Lee Y (2017) Mechanical properties of epoxy composites reinforced with ammonia-treated graphene oxides. Carbon Lett 21:1–7

    Article  Google Scholar 

  48. Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52(18):4001–4010

  49. Gu H, Ma C, Liang C, Meng X, Gu J, Guo Z (2017) Low loading of grafted thermoplastic polystyrene strengthened and toughened transparent epoxy composites. J Mater Chem C 5(17):4275–4285

    Article  Google Scholar 

  50. Jiang D, Xing L, Liu L, Sun S, Zhang Q, Wu Z, Yan X, Guo J, Huang Y, Guo Z (2015) Enhanced mechanical properties and anti-hydrothermal ageing behaviors of unsaturated polyester composites by carbon fibers interfaced with POSS. Compos Sci Technol 117:168–175

    Article  Google Scholar 

  51. Jiang D, Xing L, Liu L, Yan X, Guo J, Zhang X, Zhang Q, Wu Z, Zhao F, Huang Y, Wei S, Guo Z (2014) Interfacially reinforced unsaturated polyester composites by chemically grafting different functional POSS onto carbon fibers. J Mater Chem A 2(43):18293–18303

    Article  Google Scholar 

  52. Guo ZH, Pereira T, Choi O, Wang Y, Hahn HT (2006) Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J Mater Chem 16(27):2800–2808

    Article  Google Scholar 

  53. Chen X, Wei S, Yadav A, Patil R, Zhu J, Ximenes R, Sun L, Guo Z (2011) Poly(propylene)/carbon nanofiber nanocomposites: ex situ solvent-assisted preparation and analysis of electrical and electronic properties. Macromol Mater Eng 296(5):434–443

    Article  Google Scholar 

  54. Bafana AP, Yan X, Wei X, Patel M, Guo Z, Wei S, Wujcik EK (2017) Polypropylene nanocomposites reinforced with low weight percent graphene nanoplatelets. Compos Part B-Eng 109:101–107

    Article  Google Scholar 

  55. Lu N, Oza S (2015) A comparative study of the mechanical properties of hemp fiber with virgin and recycled high denisty polyethylene matrix. Composites Part B- Eng 45(1):1651–1656

    Article  Google Scholar 

  56. Lu N, Oza S, Ferguson I (2012) Effect of alkali and silane treatment on the therma stability of hemp fiber as reinforcement in composite structures. Adv Mater Res 415:666–670

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the supports from the Priority Academic Program Development of Jiangsu Higher Education Institution; the Key Laboratory Funded by Jiangsu advanced welding technology, National Natural Science Foundation of China (No. 51402132), Jiangsu Provincial Natural Science Foundation of China (Grant No. BK2012279 and No. BK20140505), and US National Science Foundation under grants of CMMI-1560834 and IIP-1700628.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Jun Zhou, Qiang Wang or Zhanhu Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JX., Liang, YX., Wang, X. et al. Strengthened epoxy resin with hyperbranched polyamine-ester anchored graphene oxide via novel phase transfer approach. Adv Compos Hybrid Mater 1, 300–309 (2018). https://doi.org/10.1007/s42114-017-0007-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-017-0007-0

Keywords

Navigation