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Abstract
We recently discussed several limitations of Bayesian leave-one-out cross-validation (LOO) for model selection. Our
contribution attracted three thought-provoking commentaries. In this rejoinder, we address each of the commentaries
and identify several additional limitations of LOO-based methods such as Bayesian stacking. We focus on differences
between LOO-based methods versus approaches that consistently use Bayes’ rule for both parameter estimation and model
comparison. We conclude that LOO-based methods do not align satisfactorily with the epistemic goal of mathematical
psychology.
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Bayesian leave-one-out cross-validation (LOO) is increas-
ingly popular for the comparison and selection of quantita-
tive models of cognition and behavior.1 In a recent article
for Computational Brain & Behavior, we outlined several
limitations of LOO (Gronau and Wagenmakers this issue).
Specifically, three concrete, simple examples illustrated that
when a data set of infinite size is perfectly in line with
the predictions of a simple model MS and LOO is used to
compare MS to a more complex model MC , LOO shows
bounded support for MS . As we mentioned, this model
selection inconsistency has been known for a long time
(e.g., Shao 1993). We also discussed limitations that were
unexpected (at least to us). Concretely, for data perfectly

1Throughout this article, we use the terms model comparison and
model selection interchangeably, although it may be argued that there
is a subtle difference.
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consistent with the simpler model MS , (1) the limiting
bound of evidence for MS is often surprisingly modest;
(2) the LOO preference for MS may be a nonmonotonic
function of the number of observations (meaning that addi-
tional observations perfectly consistent with MS may in
fact decrease the LOO preference forMS); and (3) contrary
to popular belief, the LOO result can depend strongly on the
parameter prior distribution, even asymptotically.

Our discussion of the limitations of LOO attracted
three commentaries. In the first commentary, Vehtari et al.
(this issue) claim that we “focus on pathologizing a known
and essentially unimportant property of the method; and
they fail to discuss the most common issues that arise when
using LOO for a real statistical analysis.” Furthermore,
Vehtari et al. state that we used a version of LOO that
is not best practice and they suggest to use LOO-based
Bayesian stacking instead (Yao et al. 2018). Vehtari et al.
also criticize us for making the assumption that one of
the models under consideration is “true” and use this as
a springboard to question the usefulness of Bayes factors
(e.g., Jeffreys 1961; Kass and Raftery 1995) and Bayesian
model averaging (BMA; e.g., Hoeting et al. 1999; Jevons
1874/1913). Finally, Vehtari et al. point out what they
believe are more serious limitations of LOO-based methods.
The second commentary is by Navarro (this issue) and
discusses how the scientific goal of explanation aligns with
traditional statistical concerns; Navarro suggests that the
model selection literature may focus too heavily on the
statistical issues of model choice and too little on the
scientific questions of interest. In the third commentary,
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Shiffrin and Chandramouli (this issue) advocate Bayesian
inference for non-overlapping model classes. Furthermore,
Shiffrin and Chandramouli advocate tests of interval-
null hypotheses instead of point-null hypotheses. Finally,
Shiffrin and Chandramouli demonstrate that comparing
non-overlapping hypotheses (where the null is an interval)
eliminates the model selection inconsistency of LOO.

We thank the contributors for a productive discussion. To
keep this rejoinder concise, we decided to address only the
key points of disagreement. First, however, we will outline
what we believe to be the primary goal of mathematical
psychology.

Mathematical Psychology: An Epistemic
Enterprise

Mathematical psychology is founded on the principle that
psychological theories about cognition and behavior ought
to be made precise by implementing them as quantitative
models. Fum et al. (2007, p. 136) write:

“Verbally expressed statements are sometimes flawed
by internal inconsistencies, logical contradictions, the-
oretical weaknesses and gaps. A running computa-
tional model, on the other hand, can be considered
as a sufficiency proof of the internal coherence and
completeness of the ideas it is based upon.”

There exist different opinions about the role of models.
As mentioned by Navarro (this issue), Bernardo and
Smith (1994, p. 238) state:

“Many authors [...] highlight a distinction between
what one might call scientific and technological
approaches to models. The essence of the dichotomy
is that scientists are assumed to seek explanatory
models, which aim at providing insight into and
understanding of the “true” mechanisms of the
phenomenon under study; whereas technologists
are content with empirical models, which are not
concerned with the “truth” but simply with providing
a reliable basis for practical action in predicting and
controlling phenomena of interest.”

Bernardo and Smith (1994, p. 238) conclude that
when models are evaluated based on their predictions,
the distinction is immaterial. In contrast, we believe
that the distinction remains crucial. To us, the purpose
of mathematical psychology is epistemic: the ultimate
goal is to understand phenomena by developing theories,
implementing these theories rigorously as quantitative
models, and testing these models on observed data. Hence,

our view of mathematical psychology aligns with what
Bernardo and Smith call the “scientific approach.” In
contrast, the main goal of the “technological approach”
is the prediction of future data. There is an important
distinction between these two approaches since, if the
goal is solely prediction, one may be satisfied with
models and methods that can be characterized as black-
box “prediction devices.” The components and parameters
of such prediction devices may not permit a substantive
interpretation.

We believe that for many mathematical psychologists
predictive adequacy is only a pragmatic means to an
epistemic end. Quantitative models of cognition and
behavior typically feature parameters that represent latent
cognitive processes; these are of interest in and of
themselves and do not serve only as tuning knobs of
prediction devices. We do not wish to suggest that prediction
is unimportant; in fact, we believe that models ought to be
compared based on the predictions they made for observed
data. However, we feel that the goal in mathematical
psychology is virtually always an epistemic one, where
models instantiate meaningful theories, and not a predictive
one, where predictions are made for their own sake without
the goal of developing and employing substantive theory.
The following sections demonstrate by example that LOO-
based methods have important limitations when the goal is
epistemic rather than purely predictive.

Rejoinder to Vehtari, Simpson, Yao,
& Gelman

Vehtari et al. (this issue, henceforth, VSYG) claim that we
used a LOO version that is not in line with best practice
and conclude that “[..] the claimed “limitations of Bayesian
leave-one-out cross-validation” from GW do not apply to
the version of Bayesian leave-one-out cross-validation that
we recommend.” Specifically, (1) VSYG claim that we
fail to take into account the empirical variance of the
LOO estimate; they recommend doing so by using pseudo-
BMA+ weights (Yao et al. 2018); (2) VSYG suggest that
it would be even better to use Bayesian stacking (Yao et al.
2018). First, we agree that one should take into account the
empirical variance of the LOO estimate in case it is nonzero.
However, as VSYG mention “[...] this does not make a
difference in their very specialized examples.” Second,
since VSYG claim that the limitations, we mentioned
are well-known and suggest Bayesian stacking instead,
below we outline further limitations of LOO-based methods
such as Bayesian stacking. We start by discussing the
relevance of the assumption that one of the models under
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consideration is “true” which VSYG use to question the
usefulness of Bayes factors and Bayesian model averaging.

LOO is Motivated by an Illusory Distinction Between
M-Open Tools andM-Closed Tools

LOO-based methods have been recommended for what is
called the M-open setting (Bernardo and Smith 1994).
Consider a set of M candidate models:M1,M2, . . . ,MM .
M-open refers to a situation where the “true” model is
not included in the set of candidate models. This stands in
contrast to the M-closed setting where one of the models
in the set is “true” in the sense that it corresponds to the
data-generating process.

In theM-closed case it is valid (although not universally
recommended; see Gelman et al. 2014, chapter 7.4; Gelman
and Shalizi 2013) to employ model comparison and
prediction approaches that consistently use Bayes’ rule, not
only to update one’s knowledge about parameters within a
model, but also about the models themselves (e.g., by means
of BMA, Bayes factors, posterior model probabilities).
These approaches assign prior probabilities p(Mk), k =
1, 2, . . . , M to a set of M models.2

In the M-open case, however, the appropriateness of
these supposedly “M-closed tools” is often questioned
(Bernardo and Smith 1994, pp. 383–407; Yao et al. 2018).
Moreover, George Box’s famous adage “all models are
wrong” may then be invoked to question the use of these
“M-closed tools” in any practical application. For instance,
Li and Dunson (2016) argue that “Philosophically, in order
to interpret pr(Mj | y(n)) as a model probability, one must
rely on the (arguably always flawed) assumption that one
of the models in the list M is exactly true, known as the
M-closed case.”

Our objections to this line of reasoning are threefold.
First, if we were to accept that these “M-closed tools” are
unsuitable for practical data analysis, this would similarly
disqualify the specification of parameter priors and the
computation of posterior predictives. As explained in
the next section, individual parameter values or specific
parameter ranges can be conceptualized as individual
models.

Second, Bayes’ rule does not refer to an underly-
ing ”truth” and the prior probability that is assigned
across models (or across parameters) quantifies relative

2Note that the value of the Bayes factor is independent of the
prior model probabilities since it quantifies the change from prior to
posterior model odds. However, although it is independent of the value
of the prior model odds, it assumes that, in principle, these could be
specified.

plausibility. Feldman (2015) has emphatically argued this
point:3

“But such a strong assumption [that one of the
candidate models is true] is not really necessary in
a Bayesian framework—at least, it is not required or
implied by any of the equations. Rather, Bayesian
inference only assumes that there is some set M of
possible models under consideration, which are tied
to the data via likelihood functions p(X|M). Bayes’
rule allows these models to be compared to each other
in terms of plausibility, but says nothing whatsoever
about whether any of the models is true in a larger
or absolute sense (see Feldman, 2014). The ‘truth’ of
the models (whatever that even means–see remarks
above about semantics) never enters into it.” (Feldman
2015, p. 1524)

Third, Feldman (2013, pp. 17–18) points out, as did
Bayesian pioneers Ed Jaynes and Dennis Lindley before
him, that the assignment of prior probabilities is always
conditional on background knowledge K. Hence, when
we write p(Mk) this is really just a convenient shorthand
for the more accurate notation p(Mk | K), a renormal-
ized probability for a subset of relevant models selected
by conditioning on the current knowledge K. Background
knowledge K provides the pragmatic filter that allows us
to define, from the infinite collection of possible models, a
subset of models that pass a certain minimum threshold of
plausibility, feasibility, or substantive interest. This concep-
tualization of prior model probabilities is in line with our
epistemic view on mathematical psychology. Given a set of
competing theoretical accounts of interest, implemented as
quantitative models (i.e., given our background knowledge
K), we are interested in quantifying the relative evidence
for each of these models based on observed data. Nowhere
do we assume any of the models that represent rival theories
to be true in an absolute sense.

We do not wish to suggest that the possibility of
model-misspecification can be happily ignored; all models
necessarily make assumptions and simplifications and it
may happen that given a set of models, even the best one
fails to provide a satisfactory description of the phenomenon
of interest. In our opinion, however, this does not suggest

3Relatedly, Wasserman (2000, p. 103) argued: “Second, even when
all models are wrong, it is useful to consider the relative merits of
two models. Newtonian physics and general relativity are both wrong.
Yet, it makes sense to compare the relative evidence in favor of one
or the other. Our conclusion would be: under the tentative working
hypothesis that one of these two theories is correct, we find that the
evidence strongly favors general relativity. It is understood that the
working hypothesis that one of the models is correct is wrong. But it
is a useful, tentative hypothesis and, proceeding under that hypothesis,
it makes sense to evaluate the relative posterior probabilities of those
hypotheses.”
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that the entire approach of assigning prior probabilities
to a set of rival models is flawed from the outset or
that it does not make sense. In contrast, the presence of
model-misspecification suggests that one ought to refine
the models or develop new theories that are able to better
capture the relevant aspects of the phenomenon of interest
(i.e., expand the background knowledge baseK). These new
model versions can then be incorporated in the set of models
and can be compared to each other based on new data.

LOO Depends on an Arbitrary Distinction Between
Parameter Estimation andModel Comparison

We do not believe that the distinction between M-open
and M-closed is a valid argument against approaches
that consistently use Bayes’ rule for both parameters and
models. Those who disagree may feel that assigning model
probabilities p(Mk) does not make sense in the M-open
setting; these dissenters would, in our opinion, then also
need to object to assigning prior probabilities to parameters
and computing quantities such as posterior predictives. The
reason is that the distinction between parameter estimation
and model comparison can be regarded as artificial (see also
Gelman 2011, p. 76). It has long been known that estimation
can be viewed as a special case of model comparison (also
known as ‘testing’):4

“We shall not consider the philosophy of Bayesian
estimation procedures here. These procedures can be
regarded as a special case of Bayesian hypothesis
testing since every statement of the form that a
vectorial parameter belongs to a region is itself a
hypothesis [but estimates are less often formulated
before making observations].” (Good 1983, p. 126)

Discrete Parameters

The fact that labeling a problem as parameter estimation
or model comparison can be regarded as arbitrary is most
apparent for discrete parameter models. As a concrete exam-
ple, consider a scenario inspired by Hammersley (1950, p.
236) about tumor transplantability in mice (see also Choirat
and Seri 2012). For a certain type of mating, the proba-
bility of a tumor “taking” when transplanted from one of
the grandparents is (1/2)k , where k is an integer that corre-
sponds to the number of genes determining transplantability
(all of which must be present for a “take” to occur). Sup-
pose, for illustrative purposes, we know that the number
of relevant genes is between 1 and 10 and we deem each
number equally likely a priori: p(k) = 1/10, for all k ∈
{1, 2, . . . , 10}. The likelihood corresponds to a binomial

4See also bayesianspectacles.org/bayes-factors-for-those-who-hate-
bayes-factors/

Fig. 1 Parameter estimation or model comparison? Shown is the
posterior distribution for the tumor transplant example based on 1
“take” out of 6 attempts and a uniform prior for k, the number of
genes determining transplantability. Here, k may be regarded as a
parameter, such that the depicted distribution is a parameter posterior
distribution, or k may be regarded as indexing separate models, so that
the depicted distribution corresponds to posterior model probabilities.
Available at https://tinyurl.com/y94uj4h8 under CC license https://
creativecommons.org/licenses/by/2.0/

distribution with success probability θ = (1/2)k . Suppose
fictitious data show 1 “take” out of 6 attempts. The result-
ing posterior distribution for k is displayed in Fig. 1. In this
example, k could be regarded as a parameter, so that the
distribution in Fig. 1 is a parameter posterior distribution.
However, k could also be regarded as an index for a set of 10
competing models M1,M2, . . . ,M10, where Mk : θ =
(1/2)k , k = 1, 2, . . . , 10. In this case, the distribution in
Fig. 1 visualizes the posterior model probabilities.

After having obtained a posterior over the number of
genes k, one may be interested in predicting new data ynew
given the observed data y (i.e., 1 “take” out of 6 attempts).
This is achieved by marginalizing over k:

p(ynew | y) =
10∑

k=1

p(ynew | k) p(k | y), (1)

where p(k | y) corresponds to the posterior distribution
depicted in Fig. 1. When k is regarded as a parameter, Eq. 1
corresponds to the posterior predictive distribution; when k

is regarded as indexing separate models, Eq. 1 corresponds
to the BMA predictive distribution for new data. This shows
that the mathematical operation of computing a posterior
predictive is identical to that used in Bayesian model
averaging.5 Proponents of LOO-based methods who believe
there is an issue with BMAmay not appreciate that this issue
applies with equal force to posterior predictives, a concept
integral to LOO-based methods such as Bayesian stacking.

5Appendix A contains a fragment from Jevons (1874/1913) that
features another example.

https://bayesianspectacles.org/bayes-factors-for-those-who-hate-bayes-factors/
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When treating k as a parameter, one could equally ask “what
if none of the values for k is ‘true’? How can we define p(k)

in the knowledge that none of these values will perfectly
capture the data-generating process?”

As mentioned earlier, one may argue that it does make
sense to define p(k), even when it is not strictly speaking
true, because we assume that we operate within a more
narrow context, one that is obtained by conditioning on
a model MEstimation:6 p(k | MEstimation). We agree and,
crucially, this conditioning argument applies to models as
well; we should really write p(Mk | K), that is, the
probability of model Mk given background knowledge K.
Both for parameters and models, plausibility assessments
are always part of a subset of possibilities. In other words,
regardless of whether we are estimating parameters or
comparing models, we have to make assumptions and
simplifications. When these assumptions are violated this
signals a potential problem with the inference, but it does
not mean that the entire approach is flawed from the outset.
In sum, for predictions from discrete parameter models the
proponents of LOO may recommend posterior predictives
when the problem is phrased as estimation, whereas they
may recommend LOO-based Bayesian stacking when the
problem is phrased as model comparison.

Continuous Parameters

We have argued that the distinction between parameter
estimation and model comparison is purely semantic.
Bayes’ rule does not care about such labels: the same
result is obtained regardless of what is called a parameter
or a model. In contrast, LOO-based methods lack this
coherence: the distinction between parameters and models
is crucial. For instance, BMA yields the same results as
Bayesian parameter estimation when the set of models is
obtained by partitioning a continuous parameter space into
non-overlapping intervals, with prior model probabilities
set equal to the prior mass in the respective intervals (see
Appendix B for a derivation). As a concrete example,
suppose observations yi , i = 1, 2, . . . , n are assumed to
follow a Bernoulli distribution with success probability θ .
In this scenario, one could assign θ a prior distribution
p(θ)—for concreteness, we assume a uniform prior—and
then obtain a posterior for θ . Subsequently, one may obtain
predictions for a new data point ynew based on the posterior
for θ . Alternatively, one could also use BMA for the
following three models: M1 : θ ∈ [0, .25), M2 : θ ∈
[.25, .75], and M3 : θ ∈ (.75, 1]. Given a uniform
prior on θ , BMA and Bayesian parameter estimation yield
identical results when (1) the prior for θ under each model

6Note that, in contrast to M1,M2, . . . ,M10, the model MEstimation
does not fix k to a single value but allows k to vary freely.

is a (renormalized) uniform prior and (2) the prior model
probabilities are p(M1) = .25, p(M2) = .5, and
p(M3) = .25 (i.e., the probabilities that the uniform prior
for θ assigns to the three intervals).

The left column of Fig. 2 displays the BMA results
for n = 20 observations, half of which are successes.
Panel (1a) depicts the uniform prior distribution for θ that
is partitioned into three intervals to produce the models
M1,M2, andM3. The displayed prior model probabilities
correspond to the mass that the uniform prior for θ assigns
to each interval. Panel (1b) displays the BMA posterior
distribution—it is identical to the posterior obtained when
conducting Bayesian parameter estimation for the common
model that assigns θ a uniform prior from 0 to 1. The
weights that BMA uses to average the results of the different
models are given by the posterior model probabilities. M2

receives almost all posterior model probability: p(M2 |
y) = .99, as the observed data are predicted much better by
values of θ that are inside rather than outside the [.25, .75]
interval. Panel (1c) displays the BMA predictive distribution
for a single new observation ynew. This distribution is
identical to the posterior predictive distribution obtained
based on Bayesian parameter estimation. In line with the
fact that the posterior for θ is symmetric around .5, ynew is
predicted to be a success with probability .5.

The right column of Fig. 2 displays the results obtained
when using Bayesian stacking (Yao et al. 2018). Panel
(2a) displays again the uniform prior distribution for θ that
is partitioned into three intervals to produce the models
M1, M2, and M3. In contrast to BMA, Bayesian stacking
does not assign prior probabilities to the different models.
Panel (2b) displays a model-averaged posterior distribution
and panel (2c) displays the Bayesian stacking predictive
distribution; both of these are obtained by combining the
different models according to the stacking weights.7 The
stacking-based predictions are indistinguishable from those
of BMA and appear very reasonable: it is predicted that
the next observation will be a success with probability
.5. However, the stacking weights themselves are highly
undesirable indicators of the plausibility of the different
models in light of the observed data. M2, the model that
clearly outpredicts the other two, is in fact decisively ruled
out, as its stacking weight is equal to 0. To understand
this result, first note that the stacking weights wk , k =
1, 2, . . . ,M are obtained by maximizing the following
objective function (subject to the constraint that wk ≥ 0 and∑M

k=1 wk = 1):

1

n

n∑

i=1

log

(
M∑

k=1

wk p(yi | y−i ,Mk)

)
. (2)

7The stacking weights were obtained using the loo package (Vehtari
et al. 2018).
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Fig. 2 BMA (left column) and
Bayesian stacking (right
column) results for the Bernoulli
example based on 10 successes
out of n = 20 observations.
Panels (1a) and (2a) show the
uniform prior distribution for θ

which is partitioned into three
non-overlapping intervals to
yield modelsM1,M2, and
M3. Panel (1a) also displays the
prior model probabilities (not
used in stacking). Panel (1b)
displays the BMA posterior
based on using the posterior
model probabilities as averaging
weights, and panel (2b) displays
a model-averaged posterior
obtained using the stacking
weights. Panel (1c) displays the
BMA predictions for a single
new observation ynew and panel
(2c) displays the corresponding
predictions from stacking.
Available at https://tinyurl.com/
yaql2vt4 under CC license
https://creativecommons.org/
licenses/by/2.0/

Table 1 displays the LOO predictive density values for yi =
0 and yi = 1 for the three models under consideration.
M1 and M3 make mirrored predictions, whereas the LOO
predictive density for M2 is identical for yi = 0 and
yi = 1. Combining the models’ LOO predictive densities
according to the stacking weights w1 = .5, w2 = 0, and
w3 = .5 yields

∑M
k=1 wk p(yi | y−i ,Mk) ≈ .4982, for all

i = 1, 2, . . . , n. The objective function thus attains a larger
value than when using, for instance, w1 = 0, w2 = 1, and
w3 = 0 (

∑M
k=1 wk p(yi | y−i ,Mk) ≈ .4786), or when

using w1 = 1/3, w2 = 1/3, and w3 = 1/3 (
∑M

k=1 wk p(yi |
y−i ,Mk) ≈ .4917).

We need to emphasize that Yao et al. do not suggest to use
the stacking weights to obtain a model-averaged posterior as
in panel (2b); instead, Yao et al. focus purely on predictions.
Nevertheless, this distribution highlights the undesirable
nature of the stacking weights when used as indicators for
the plausibility of different models and parameters. The

Table 1 LOO predictive densities

Observation p(yi | y−i ,M1) p(yi | y−i ,M2) p(yi | y−i ,M3)

yi = 0 .7758 .4786 .2206

yi = 1 .2206 .4786 .7758

plot also shows how Bayesian stacking achieves predictions
that are indistinguishable from the BMA predictions by
combining two models with low plausibility that make
mirrored predictions.

Bayesian stacking was designed to make good predic-
tions in the presence of model-misspecification and may be
a valuable tool in case prediction is the main goal. However,
we believe that mathematical psychology has an epistemic
purpose: researchers are typically interested in quantifying
the evidence for different models which represent com-
peting theories of cognition and behavior. Our example
illustrates that the stacking weights do not appear to align
satisfactorily with this goal. This is also highlighted by the
fact that, as VSYGmention, the stacking weight for a simple
general law model (i.e., example 1 of Gronau and Wagen-
makers this issue) is equal to 1 when all observations are
in line with the general law, independent of the number of
observations n. VSYG state: “The lack of dependence on n

may look suspicious.” Indeed, suppose one is asked whether
all swans are white and two white swans are observed. Is
it warranted to conclude that the general law is now firmly
established? Should predictions about the future disregard
the possibility that the general law might fail? Even though
VSYG provide an explanation why they believe suspicion is
not warranted, we remain doubtful.

https://tinyurl.com/yaql2vt4
https://tinyurl.com/yaql2vt4
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
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In sum, we are skeptical about the usefulness of Bayesian
stacking in mathematical psychology where the goal is of
an epistemic and not a purely predictive nature.

LOO Depends on an Arbitrary Distinction Between
Data that Arrive Sequentially or “Simultaneously”

LOO is based on repeatedly leaving out one of the
observations and evaluating the prediction for this held-out
data point based on the remaining observations. Concretely,
given data y = (y1, y2, . . . , yn), LOO evaluates the
predictive density p(yi | y−i ) for all i = 1, 2, . . . , n,
where y−i denotes all data points except the ith one. It is
well-known that LOO is theoretically unsatisfactory when
applied to time series data since, in this case, LOO uses
the future to predict the past, for all i �= n (e.g., Bürkner
et al. 2018). As VSYG point out, there exist alternative
cross-validation schemes that do not have this property
and may be applied in this context (e.g., Bürkner et al.
2018). Therefore, time series data are treated differently
from data that do not exhibit a temporal structure. However,
we argue that all data form a time series. When conducting
an experiment, participants come in over time; the data
have a temporal order. Consequently, the use of LOO
implies that one uses the future to predict the past. It seems
unsatisfactory to apply a method that is not recommended
for time series to data that have a temporal order, even if
that temporal order is disregarded in the analysis because
the observations are judged to be exchangeable.

Another consequence of the fact that LOO does not
respect the temporal nature of the data is that LOO
is inconsistent with what Dawid (1984, p. 278) termed
the prequential approach which “[...] is founded on the
premiss that the purpose of statistical inference is to make
sequential probability forecasts for future observations.” In
contrast, Bayes factors are consistent with the prequential
approach (e.g., Wagenmakers et al. 2006). The reason is
that the Bayes factor compares two models based on the
ratio of their marginal likelihoods. The marginal likelihood
corresponds to the joint probability of the data given a
model. Consequently, it is easy to show that the marginal
likelihood of model Mk can be conceptualized as an
accumulation of one-step-ahead predictions:

p(y |Mk) = p(y1 |Mk)p(y2 |y1,Mk)

p(y3 |y1:2,Mk) . . . p(yn |y1:(n−1),Mk), (3)

where y1:i = (y1, y2, . . . , yi) denotes the first i observa-
tions. Each term in Eq. 3 is obtained by integrating over
the model parameters θ . For the first observation, p(y1 |
Mk) = ∫

�
p(y1 | θ,Mk) p(θ | Mk) dθ , and for i > 1,

p(yi | y1:(i−1),Mk) = ∫
�

p(yi | θ, y1:(i−1),Mk) p(θ |
y1:(i−1),Mk) dθ . Thus, Bayes factors—but not LOO—

produce the same result, regardless of whether the data are
analyzed one at a time or all at once.

A common criticism of the Bayes factor is its dependence
on the parameter prior distribution since one starts by
making predictions based on the prior distribution. There
are a number of replies to this concern. First, it may
be regarded as desirable that the result depends on the
prior information, as this allows one to incorporate existing
prior knowledge. In mathematical psychology, parameters
typically correspond to psychological variables about which
theories exist; the parameter prior can be used to encode
these existing psychological theories (e.g., Vanpaemel
2010; Lee and Vanpaemel 2018). Second, proponents of
LOO who criticize Bayes factors for being prior dependent
do not object to generating predictions based on posterior
distributions, as this is an integral part of the LOO
procedure. However, the prior that one entertains at a certain
time may be the posterior based on past observations. Third,
as is good practice in parameter inference, concerns about
prior sensitivity of the Bayes factor may be alleviated by
conducting sensitivity analyses across a range of plausible
prior distributions. In many cases, the sensitivity analysis
may show that the qualitative conclusions are robust
to the exact prior choice. However, when the results
change drastically, this is also valuable information since it
highlights that researchers with different, reasonable prior
beliefs may draw quite different conclusions.

In sum, we argue that LOO uses the future to
predict the past: all data have a temporal structure, even
though the analyst may not have access to it or may
choose to ignore it. LOO is therefore inconsistent with
Dawid’s prequential approach. In contrast, Bayes factors
can be naturally conceptualized as assessing the models’
sequential, probabilistic one-step-ahead predictions, and are
thus consistent with the prequential approach.

Rejoinder to Navarro

The commentary by Navarro (this issue) discusses how
the scientific goal of explanation aligns with traditional
statistical concerns and suggests that the model selection
literature may focus too much on the statistical issues of
model choice and too little on the scientific questions of
interest.8 In line with our epistemic view on mathematical
psychology, we agree that the starting point should
always be meaningful theories that are made precise by
implementing them as quantitative models. The models’
plausibilities may then be evaluated based on observed
data. In case the data pass what Berkson termed the

8One key aspect that is being discussed is the M-open versus M-
closed distinction that we have already addressed in a previous section.
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interocular traumatic test—the data are so compelling that
the conclusion “hits you straight between the eyes”—no
statistical analysis may be required. However, as Edwards et
al. (1963, p. 217) remark: “[...] the enthusiast’s interocular
trauma may be the skeptic’s random error. A little arithmetic
to verify the extent of the trauma can yield great peace of
mind for little cost.” Furthermore, often the data may not
yield a clear result at first sight; consequently, we believe
it is useful to more formally quantify the evidence for the
models, just as it is useful to make verbal theories precise
by implementing them as quantitative models. Of course,
researchers should be aware of the assumptions not only
of their models but also of their model evaluation metrics.
We agree with Lewandowsky and Farrell (2010, p.10):
“Model comparison rests on both quantitative evaluation
and intellectual and scholarly judgment.”

Navarro writes, “I am of the view that the behaviour
of a selection procedure applied to toy problems is a poor
proxy for the inferential problems facing scientists.” First,
although the examples we used are simple, we do not
regard them as “toy problems.” Our first example dealt with
quantifying evidence for a general law of the form “all
X’s have property Y ”; this is perhaps the world’s oldest
inference problem and has been discussed by a plethora
of philosophers, mathematicians, and statisticians (e.g.,
Laplace 1829/1902; Polya 1954a, b; Wrinch and Jeffreys
1919). Even Aristotle was already concerned with making
inference about a general law (Whewell 1840, p. 294):9

“We find that several animals which are deficient in
bile are longlived, as man, the horse, and the mule;
hence we infer that all animals which are deficient in
bile are longlived.” (Analytica Priora, ii, 23)

Second, although we agree with Navarro that scientists
should also consider more complex problems, we still
believe that considering simple problems is invaluable
for investigating how model evaluation metrics behave.
Suppose one considers a simple example and finds that
a model evaluation metric of interest exhibits highly
undesirable properties. One could proceed to more complex
problems in the hope that these undesirable properties will
not be manifest; however, to us, it seems questionable
whether this hope is warranted and it may be considerably
harder to verify this in the more complex case.

Navarro uses an example to showcase how Bayes factors
can “misbehave.” A general law model M1 that asserts
that a Bernoulli probability θ equals 1 is compared to an
“unknown quantity” model M2 that assigns θ a uniform
prior. For any data set of size n that consists of only
successes with the exception of a single failure, the Bayes

9The authors would like to state that they disagree with the conclusion
in this particular example.

factor will decisively rule out the general law model M1

in favor of M2.10 Navarro concludes that the Bayes factor
misbehaves since “In real life none of us would choose
M2 over M1 in this situation, because from our point of
view the general law model is actually “closer” to the truth
than the uninformed model.” Navarro furthermore states:
“While there are many people who assert that “a single
failure is enough to falsify a theory,” I confess I have not yet
encountered anyone willing to truly follow this principle in
real life.” Indeed, we believe that a single failure is enough
to falsify a general law and so did, for instance, Wrinch and
Jeffreys (1919, p. 729):

“[...] if for instance we consider that either Einstein’s
or Silberstein’s form of the principle of general
relativity is true, a single fact contradictory to one
would amount to a proof of the other in every case.”

Other examples are provided by Polya (1954a) who
discussed how mathematical conjectures are “irrevocably
exploded” by a single failure. For instance, the famous
Goldbach conjecture holds that every even integer greater
than two can be expressed as the sum of two prime numbers.
The conjecture has been confirmed for all integers up to
4 × 1018.11 Yet, the occurrence of a single failure would
refute the Goldbach conjecture decisively. Polya (1954a,
p. 6) notes how the search for a suitable decomposition of
60 has ended in success (60 = 7 + 53) and explains:

“The conjecture has been verified in one more case.
The contrary outcome would have settled the fate
of Goldbach’s conjecture once and for all. If, trying
all primes under a given even number, such as 60,
you never arrive at a decomposition into a sum
of two primes, you thereby explode the conjecture
irrevocably [italics ours].”

Finally, suppose the general law of interest states that “all
swans are white.” In case one traveled to Australia and
observed a single black swan, to us, the only reasonable
conclusion to draw would be that the general law does not
hold. We speculate that researchers who believe that in this
situation M1 should be favored do not truly entertain a
general law model, but an alternative model M∗

1 that states
“almost all X’s have property Y .” Under M∗

1, θ is assigned
a prior that is concentrated near 1 but does not completely
rule out values very close to 1 (e.g., θ ∼ Beta(a, 1),
with a large). This showcases that what has been termed a
“misbehavior” of the Bayes factor may be due to the implicit
invocation of a third model M∗

1 as a replacement of the
general law model M1.

10Note that n may be infinity.
11http://sweet.ua.pt/tos/goldbach.html

http://sweet.ua.pt/tos/goldbach.html
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Rejoinder to Shiffrin & Chandramouli

Shiffrin and Chandramouli (this issue, henceforth SC) argue
in favor of comparing non-overlapping model classes using
Bayesian inference. Furthermore, SC advocate focusing on
interval-null hypotheses instead of point-null hypotheses.
Finally, SC demonstrate that comparing non-overlapping
hypotheses (where the null is an interval) eliminates the
model selection inconsistency of LOO. We believe it is
interesting to see that LOO can be made consistent when
the models are defined so that the parameter spaces do not
overlap, although—as SC state themselves—the result is not
completely unexpected.

SC remark that when testing a point-null versus a
hypothesis that assigns a continuous prior distribution to the
parameter of interest, the “standard” approach of calculating
Bayes factors is identical to SCs proposal to consider non-
overlapping models (since a single point has measure zero).
Therefore, SCs approach only differs in case one does not
consider point-null hypotheses. We believe that it may be of
interest to consider interval-hypotheses in certain scenarios;
in these cases, we agree that defining the models such that
the parameter spaces do not overlap can be beneficial (see
also Morey and Rouder 2011). However, we also believe
that there are situations where it is useful to test point-null
hypotheses.12

First, we believe that there are situations in which the
point-null is exactly true. SC mention an example of testing
ESP with coin flipping and argue that the “chance” point-
null hypothesis is never exactly true since coins are never
perfect and, consequently, will not produce “heads” with
probability exactly .5. However, consider the following
alternative experiment for testing ESP: Participants are
presented with pictures either on the right or left side of
the screen and are asked to indicate on which side the next
picture will appear. Suppose that exactly half of the pictures
are presented on the right, the other half on the left (and the
order is randomly permuted). In this scenario, given that we
do not believe in ESP, we believe that the point-null—which
states that the probability of a correct response is .5—is
exactly true.

Second, we believe that testing point-null hypotheses is
crucial in all stages of cognitive model development, val-
idation, and application. When developing and validating
a model, it is important to show that certain experimen-
tal manipulations selectively influence only a subset of
the model parameters, whereas the remaining parameters
are unaffected. In applications, cognitive models may be
used, for instance, to investigate which subprocesses differ

12We have detailed our arguments for why we believe it can be useful
to test point-null hypotheses in the following blog posts: https://tinyurl.
com/y8org8bt and https://tinyurl.com/ya7cl3cq.

or do not differ in clinical subpopulations (cognitive psy-
chometrics, e.g., Riefer et al. 2002). In these applications,
researchers are interested in quantifying evidence for a
difference (“there is evidence that cognitive process X is
affected”), but, crucially, also for an invariance or, equiva-
lently, point-null hypothesis (“there is evidence that cogni-
tive process Y is not affected”).13

Third, even in case one does not believe that the point-
null hypothesis can be true exactly, it appears that it is
still useful to be able to reject at least this “unreasonable”
hypothesis. For instance, if one wants to convince a skeptic
that a new research finding works, it seems difficult to do
so if one cannot even reject a point-null hypothesis which
some people argue is never true exactly.

To use SCs proposal in practice, it appears crucial to
be able to detect shared model instances (i.e., parameter
settings that predict the same outcome distribution). This
may not always be straightforward, especially when the two
models are defined on different parameter spaces. Consider
the comparison between M1 with parameter θ ∈ � and
M2 with parameter ξ ∈ �. Suppose one is told that θ

corresponds to a Bernoulli success probability and ξ =
log (θ/(1 − θ)) denotes the log odds with the restriction
that ξ > 0. In this case, it is straightforward to see that
the models share instances (i.e., the restriction ξ > 0
corresponds to θ > .5). Consequently, it appears to us
that SC would recommend to eliminate the shared instances
and would consider the comparison between M∗

1 : θ ≤
.5 and M2 : ξ > 0. However, in case the models
under consideration are more complex cognitive models that
feature many parameters, it may not be trivial to detect
whether the models share instances.

SC write that their commentary is motivated by “the
desire to have statistics serve science, not science serve
statistics.” However, to us, it seems that their approach
imposes certain constraints on how researchers can act
which appears to go against the dictum advanced by SC.
Suppose there are two researchers, A and B, who have
different hypotheses, HA and HB , about a phenomenon of
interest. These hypotheses happen to overlap. In line with
the fact that “statistics should serve science,” we believe that
these two researchers should be allowed to compare their
hypotheses in their original versions without first altering
the hypotheses to the non-overlappingH∗

A andH∗
B to fit SCs

Procrustean bed of model comparison with non-overlapping
model classes. Moreover, it appears that researcher A and B
would need to change their hypotheses again in case a third
hypothesisHC is introduced that partially overlaps with the
first two hypotheses.

13Proponents of interval-null hypotheses might argue that the same can
be achieved using interval-null hypotheses. However, one would then
need to adjust the statement to read “there is evidence that cognitive
process Y is almost not affected.”

https://tinyurl.com/y8org8bt
https://tinyurl.com/y8org8bt
https://tinyurl.com/ya7cl3cq
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Concluding Remarks

In this rejoinder to Vehtari et al. (this issue), Navarro
(this issue), and Shiffrin and Chandramouli (this issue), we
have pointed out further limitations of Bayesian leave-one-
out cross-validation. In particular, (1) LOO-based methods
such as Bayesian stacking do not align satisfactorily
with the epistemic goal of mathematical psychology; (2)
LOO-based methods depend on an arbitrary distinction
between parameter estimation and model comparison; and
(3) LOO-based methods depend on an arbitrary distinction
between data that arrive sequentially or “simultaneously.”
In line with Lewandowsky and Farrell (2010), we believe
that careful model comparison requires both quantitative
evaluation and intellectual and scholarly judgment. We
personally prefer quantitative evaluation of models based
on consistently using Bayes’ rule for both parameters and
models (e.g., via the Bayes factor). This approach has
the advantage that, in line with the epistemic purpose
of mathematical psychology, it enables the quantification
of evidence for a set of competing theories that are
implemented as quantitative models. Researchers may
criticize the specification of an ingredient of Bayes’ rule
such as the prior distribution for a particular application.
However, once the ingredients have been specified, there
is only one optimal way of updating one’s knowledge
in light of observed data: the one that is dictated
by Bayes’ rule. Alternative methods may be useful in
specific circumstances and for specific purposes but—as we
illustrated with the case of LOO—they will break down
in other settings yielding results that can be surprising,
misleading, and incoherent.
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creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
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Appendix A: Jevons (1874) on Bayesian
Model Averaging

Jevons’ 1874 masterpiece The Principles of Science
contains the section “Simple Illustration of the Inverse
Problem” that showcases how BMA (for prediction) and
posterior prediction are identical operations. For historical
interest, and out of respect for the clarity of Jevons’ writing,
we present the section in full:

“Suppose it to be known that a ballot-box contains
only four black or white balls, the ratio of black and
white balls being unknown. Four drawings having

been made with replacement, and a white ball having
appeared on each occasion but one, it is required to
determine the probability that a white ball will appear
next time. Now the hypotheses which can be made as
to the contents of the urn are very limited in number,
and are at most the following five:—

4 white and 0 black balls
3 ,, ,, 1 ,, ,,
2 ,, ,, 2 ,, ,,
1 ,, ,, 3 ,, ,,
0 ,, ,, 4 ,, ,,

The actual occurrence of black and white balls in
the drawings renders the first and last hypotheses out
of the question, so that we have only three left to
consider.
If the box contains three white and one black, the

probability of drawing a white each time is 3
4 , and

a black 1
4 ; so that the compound event observed,

namely, three white and one black, has the probability
3
4 × 3

4 × 3
4 × 1

4 , by the rule already given (p. 233).14

But as it is indifferent to us in what order the balls are
drawn, and the black ball might come first, second,
third, or fourth, we must multiply by four, to obtain the
probability of three white and one black in any order,
thus getting 27

64 .
Taking the next hypothesis of two white and two

black balls in the urn, we obtain for the same
probability the quantity 1

2 × 1
2 × 1

2 × 1
2 × 4, or 16

64 , and
from the third hypothesis of one white and three black,
we deduce likewise 1

4× 1
4× 1

4× 3
4×4, or 3

64 . According,
then, as we adopt the first, second, or third hypothesis,
the probability that the result actually noticed would
follow is 27

64 ,
16
64 , and 3

64 . Now, it is certain that
one or other of these hypotheses must be the true
one, and their absolute probabilities are proportional
to the probabilities that the observed events would
follow from them (see p. 279).15 All we have to
do, then, in order to obtain the absolute probability
of each hypothesis, is to alter these fractions in a
uniform ratio, so that their sum shall be unity, the
expression of certainty. Now since 27 + 16 + 3 = 46,
this will be effected by dividing each fraction by 46

14The relevant text on p. 233 reads: “When the component events
are independent, a simple rule can be given for calculating the
probability of the compound event, thus—Multiply together the
fractions expressing the probabilities of the independent component
events.” [italics in original]
15Note from the authors: this assumes that the hypotheses are equally
likely a priori. The relevant text on p. 279 reads: “If an event can
be produced by any one of a certain number of different causes, the
probabilities of the existence of these causes as inferred from the event,
are proportional to the probabilities of the event as derived from these
causes.” [italics in original]

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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and multiplying by 64. Thus, the probability of the
first, second, and third hypotheses are respectively—

27

46
,

16

46
,

3

46
.

The inductive part of the problem is now completed,
since we have found that the urn most likely contains
three white and one black ball, and have assigned the
exact probability of each possible supposition. But we
are now in a position to resume deductive reasoning,
and infer the probability that the next drawing will
yield, say a white ball. For if the box contains three
white and one black ball, the probability of drawing
a white one is certainly 3

4 ; and as the probability of
the box being so constituted is 27

46 , the compound
probability that the box will be so filled and will give
a white ball at the next trial, is

27

46
× 3

4
or

81

184
.

Again, the probability is 16
46 that the box contains

two white and two black, and under those conditions
the probability is 1

2 that a white ball will appear;
hence, the probability that a white ball will appear in
consequence of that condition, is

16

46
× 1

2
or

32

184
.

From the third supposition, we get in like manner
the probability

3

46
× 1

4
or

3

184
.

Now since one and not more than one hypothesis
can be true, we may add together these separate
probabilities, and we find that

81

184
+ 32

184
+ 3

184
or

116

184

is the complete probability that a white ball will be
next drawn under the conditions and data supposed.”
(Jevons 1874/1913, pp. 292–294)

In the next section, General Solution of the Inverse
Problem, Jevons points out that in order for the procedure
to be applied to natural phenomena, an infinite number of
hypotheses need to be considered:

“When we take the step of supposing the balls
within the urn to be infinite in number, the possible
proportions of white and black balls also become
infinite, and the probability of any one proportion
actually existing is infinitely small. Hence the final
result that the next ball drawn will be white is really
the sum of an infinite number of infinitely small
quantities. It might seem, indeed, utterly impossible

to calculate out a problem having an infinite number
of hypotheses, but the wonderful resources of the
integral calculus enable this to be done with far greater
facility than if we supposed any large finite number
of balls, and then actually computed the results. I
will not attempt to describe the processes by which
Laplace finally accomplished the complete solution
of the problem. They are to be found described
in several English works, especially De Morgan’s
‘Treatise on Probabilities,’ in the ‘Encyclopædia
Metropolitana,’ and Mr. Todhunter’s ‘History of the
Theory of Probability.’ The abbreviating power of
mathematical analysis was never more strikingly
shown. But I may add that though the integral
calculus is employed as a means of summing infinitely
numerous results, we in no way abandon the principles
of combinations already treated.[italics ours]” (Jevons
1874/1913, p. 296).

Appendix B: Coherence of BMA
and Bayesian Parameter Inference

Here, we show why BMA yields the same results as
Bayesian parameter inference when the set of models is
obtained by partitioning a continuous parameter space into
non-overlapping intervals, with prior model probabilities set
equal to the prior mass in the respective intervals. Given
observed data y, a parameter of interest θ ,16 a corresponding
prior distribution p(θ), and likelihood p(y | θ), the
posterior distribution for θ is given by

p(θ | y) = p(y | θ) p(θ)∫
�

p(y | θ) p(θ) dθ
, (4)

where � denotes the parameter space. The posterior
predictive distribution for new data ynew is given by

p(ynew | y) =
∫

�

p(ynew | θ, y) p(θ | y) dθ, (5)

where it is often the case that p(ynew | θ, y) = p(ynew | θ).
BMA is based on combining the results of different

models based on the models’ plausibilities in light of the
observed data. We consider the modelsM1,M2, . . . ,MM

that are obtained by partitioning the parameter space �

into M non-overlapping intervals. We denote these non-
overlapping intervals by A1, A2, . . . , AM . For instance,
when θ corresponds to a success probability, we could
partition � = [0, 1] into two intervals A1 = [0, .5)
and A2 = [.5, 1]. The prior distribution for θ under each
model Mk , k = 1, 2, . . . ,M is obtained by considering the
part of p(θ) that corresponds to the interval Ak and then

16Here, we focus on the case of a single parameter; however, the results
naturally generalize to the case where θ is a parameter vector.
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renormalizing the prior density by the prior mass in that
subinterval:

p(θ | Mk) = p(θ)

Ck

I (θ ∈ Ak) , (6)

where Ck = ∫
Ak

p(θ) dθ and I denotes the indicator
function. Note that the M models differ only in the prior
distribution for θ but not in the likelihood, consequently
p(y | θ,Mk) = p(y | θ). Each model’s prior probability
p(Mk) is set equal to the prior mass that p(θ) assigns to the
interval Ak:

p(Mk) =
∫

Ak

p(θ) dθ = Ck . (7)

Given this set-up, the posterior probability for model
Mk corresponds to the posterior mass that the “regular”
parameter posterior for θ assigns to the interval Ak:

p(Mk | y) = p(y | Mk) Ck∑M
j=1 p(y | Mj ) Cj

=
∫
Ak

p(y | θ)
p(θ)
Ck

dθ Ck

∑M
j=1

∫
Aj

p(y | θ)
p(θ)
Cj

dθ Cj

=
∫
Ak

p(y | θ) p(θ) dθ
∫
�

p(y | θ) p(θ) dθ

=
∫

Ak

p(θ | y) dθ, (8)

where we used—in reverse order—the fact that for b2 ∈
(b1, b3),

∫ b3
b1

f (x) dx = ∫ b2
b1

f (x) dx + ∫ b3
b2

f (x) dx.
The model-averaged posterior distribution for θ is

obtained as follows:

pBMA(θ | y) =
M∑

k=1

p(θ | y,Mk) p(Mk | y)

=
M∑

k=1

p(y|θ)
p(θ)
Ck

I(θ∈Ak)

p(y|Mk)︸ ︷︷ ︸
p(θ |y,Mk)

p(y|Mk) Ck∑M
j=1 p(y|Mj ) Cj︸ ︷︷ ︸

p(Mk |y)

= p(y | θ) p(θ)
∑M

j=1 p(y | Mj ) Cj

M∑

k=1

I (θ ∈ Ak)

= p(y | θ) p(θ)
∑M

j=1

∫
Aj

p(y | θ)
p(θ)
Cj

dθ Cj

= p(y | θ) p(θ)∫
�

p(y | θ) p(θ) dθ
, (9)

where we used the fact that any given value for θ

will only fall in one of Ak , k = 1, 2, . . . , M , hence,∑M
k=1 I (θ ∈ Ak) = 1. This shows that the model-averaged

posterior pBMA(θ | y) is identical to the “regular” parameter
posterior (i.e., Eq. 4).

To obtain the model-averaged predictive distribution for
new data ynew, we first note that the predictive distribution
for model Mk is given by

p(ynew | y,Mk) =
∫

p(ynew | θ, y) p(θ | y,Mk) dθ

=
∫

p(ynew | θ, y)
p(y|θ)

p(θ)
Ck

I(θ∈Ak)

p(y|Mk)︸ ︷︷ ︸
p(θ |y,Mk)

dθ

=
∫
Ak

p(ynew |θ, y) p(y |θ) p(θ) dθ

Ck p(y |Mk)
. (10)

The model-averaged predictive distribution is

pBMA(ynew | y) =
M∑

k=1

p(ynew | y,Mk) p(Mk | y)

=
M∑

k=1

∫
Ak

p(ynew|θ,y) p(y|θ) p(θ) dθ

Ck p(y|Mk)︸ ︷︷ ︸
p(ynew|y,Mk)

p(y|Mk) Ck∑M
j=1 p(y|Mj ) Cj︸ ︷︷ ︸

p(Mk |y)

=
∑M

k=1
∫
Ak

p(ynew|θ,y) p(y|θ) p(θ) dθ
∑M

j=1
∫
Aj

p(y|θ)
p(θ)
Cj

dθ Cj

=
∫
�

p(ynew | θ, y) p(y | θ) p(θ) dθ∫
�

p(y | θ) p(θ) dθ

=
∫

�

p(ynew | θ, y) p(θ | y) dθ . (11)

This shows that the model-averaged predictive distribution
pBMA(ynew | y) is identical to the “regular” predictive
distribution (i.e., Eq. 5).
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