Skip to main content

Advertisement

Log in

Older HIV-infected adults: complex patients—comorbidity (I)

  • Review
  • Published:
European Geriatric Medicine Aims and scope Submit manuscript

Abstract

Life expectancy in people living with HIV has increased in the past decades, since the introduction of highly active antiretroviral treatment. Increased survival comes along with new challenges for the HIV physician, as these patients will present comorbidities inherent to ageing that can appear more frequently and at younger age than the general population. The older HIV patient poses a unique challenge, as management should take into account different factors, some related to global ageing such as geriatric syndromes, traditional risk factors, social vulnerability, and age-related diseases, and others related to HIV infection like ART toxicity, drug–drug interactions, immune dysregulation and chronic inflammation. All the above can amount to great polypharmacy and multimorbidity that physician have to be aware of. Little is known about the best screening, management and treatment strategies to improve long-term health outcomes in this ageing population. The following article briefly reviews the main comorbidities that can affect the ageing HIV patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lohse N, Hansen A-BE, Pedersen G, Kronborg G, Gerstoft J, Sørensen HT, Vaeth M, Obel N (2007) Survival of persons with and without HIV infection in Denmark, 1995–2005. Ann Intern Med 146:87–95

    Article  PubMed  Google Scholar 

  2. May MT, Gompels M, Delpech V et al (2014) Impact on life expectancy of HIV-1 positive individuals of CD4+ cell count and viral load response to antiretroviral therapy. AIDS 28:1193–1202

    Article  PubMed  Google Scholar 

  3. Smit M, Brinkman K, Geerlings S, Smit C, Thyagarajan K, Sighem AV, de Wolf F, Hallett TB, ATHENA observational cohort (2015) Future challenges for clinical care of an ageing population infected with HIV: a modelling study. Lancet Infect Dis 15:810–818

    Article  PubMed  PubMed Central  Google Scholar 

  4. HIV/AIDS surveillance in Europe 2017–2016 data (2017) pp 1–124. https://ecdc.europa.eu/en/publications-data/presentation-hivaids-surveillance-europe-2017-2016-data. Accessed 3 Nov 2018

  5. Sobrino-Vegas P, Moreno S, Rubio R et al (2016) Impact of late presentation of HIV infection on short-, mid- and long-term mortality and causes of death in a multicenter national cohort: 2004–2013. J Infect 72:587–596

    Article  PubMed  Google Scholar 

  6. Collaboration of Observational HIV Epidemiological Research Europe (COHERE) Study Group, Sabin CA, Smith CJ et al (2008) Response to combination antiretroviral therapy: variation by age. AIDS 22:1463–1473

    Article  CAS  Google Scholar 

  7. Deeks SG, Lewin SR, Havlir DV (2013) The end of AIDS: HIV infection as a chronic disease. Lancet 382:1525–1533

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schouten J, Wit FW, Stolte IG, Kootstra NA, van der Valk M, Geerlings SE, Prins M, Reiss P, AGEhIV Cohort Study Group (2014) Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-infected and uninfected individuals: the AGEhIV cohort study. Clin Infect Dis 59:1787–1797

    Article  CAS  PubMed  Google Scholar 

  9. Hasse B, Ledergerber B, Furrer H, Battegay M, Hirschel B, Cavassini M, Bertisch B, Bernasconi E, Weber R, Swiss HIV Cohort Study (2011) Morbidity and aging in HIV-infected persons: the Swiss HIV cohort study. Clinical Infectious Diseases 53:1130–1139

    Article  PubMed  Google Scholar 

  10. Wong C, Gange SJ, Moore RD et al (2018) Multimorbidity among persons living with human immunodeficiency virus in the United States. Clin Infect Dis 66:1230–1238

    Article  PubMed  Google Scholar 

  11. Pelchen-Matthews A, Ryom L, Borges ÁH et al (2018) Aging and the evolution of comorbidities among HIV-positive individuals in a European cohort. AIDS 32:2405–2416

    PubMed  Google Scholar 

  12. Grund B, Baker JV, Deeks SG et al (2016) Relevance of interleukin-6 and d-dimer for serious non-AIDS morbidity and death among HIV-positive adults on suppressive antiretroviral therapy. PLoS One 11:e0155100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tenorio AR, Zheng Y, Bosch RJ et al (2014) Soluble markers of inflammation and coagulation but not T-cell activation predict non-AIDS-defining morbid events during suppressive antiretroviral treatment. J Infect Dis 210:1248–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wikby A, Nilsson B-O, Forsey R, Thompson J, Strindhall J, Löfgren S, Ernerudh J, Pawelec G, Ferguson F, Johansson B (2006) The immune risk phenotype is associated with IL-6 in the terminal decline stage: findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech Ageing Dev 127:695–704

    Article  CAS  PubMed  Google Scholar 

  15. Gross AM, Jaeger PA, Kreisberg JF et al (2016) Methylome-wide analysis of chronic HIV infection reveals five-year increase in biological age and epigenetic targeting of HLA. Mol Cell 62:157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rickabaugh TM, Baxter RM, Sehl M et al (2015) Acceleration of age-associated methylation patterns in HIV-1-infected adults. PLoS One 10:e0119201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Monge S, Alejos B, Dronda F et al (2013) Inequalities in HIV disease management and progression in migrants from Latin America and sub-Saharan Africa living in Spain. HIV Medicine 14:273–283

    Article  CAS  PubMed  Google Scholar 

  18. Triant VA, Lee H, Hadigan C, Grinspoon SK (2007) Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab 92:2506–2512

    Article  CAS  PubMed  Google Scholar 

  19. Levy ME, Greenberg AE, Hart R, Powers Happ L, Hadigan C, Castel A, DC Cohort Executive Committee (2017) High burden of metabolic comorbidities in a citywide cohort of HIV outpatients: evolving health care needs of people aging with HIV in Washington, DC. HIV Medicine 18:724–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Allavena C, Hanf M, Rey D et al (2018) Antiretroviral exposure and comorbidities in an aging HIV-infected population: the challenge of geriatric patients. PLoS One 13:e0203895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu Y, Chen X, Wang K (2017) Global prevalence of hypertension among people living with HIV: a systematic review and meta-analysis. J Am Soc Hypertens 11:530–540

    Article  PubMed  Google Scholar 

  22. Nduka CU, Stranges S, Sarki AM, Kimani PK, Uthman OA (2016) Evidence of increased blood pressure and hypertension risk among people living with HIV on antiretroviral therapy: a systematic review with meta-analysis. J Hum Hypertens 30:355–362

    Article  CAS  PubMed  Google Scholar 

  23. Hatleberg CI, Ryom L, d’Arminio Monforte A et al (2018) Association between exposure to antiretroviral drugs and the incidence of hypertension in HIV-positive persons: the data collection on adverse events of anti-HIV drugs (D:A:D) study. HIV Med 19:605–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Zoest RA, van den Born B-JH, Reiss P (2017) Hypertension in people living with HIV. Curr Opin HIV AIDS 12:513–522

    Article  PubMed  Google Scholar 

  25. Okeke NL, Davy T, Eron JJ, Napravnik S (2016) Hypertension among HIV-infected patients in clinical care, 1996–2013. Clin Infect Dis 63:242–248

    Article  PubMed  PubMed Central  Google Scholar 

  26. European AIDS Clinical Society Guidelines (2018) Version 9.1 Octubre 2018. 1–104. http://www.eacsociety.org/files/2018_guidelines-9.1-english.pdf. Accessed 3 Nov 2018

  27. Kaiser EA, Lotze U, Schäfer HH (2014) Increasing complexity: which drug class to choose for treatment of hypertension in the elderly? Clin Interv Aging 9:459–475

    PubMed  PubMed Central  Google Scholar 

  28. Whelton PK, Carey RM, Aronow WS et al (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the american college of cardiology/American heart association task force on clinical practice guidelines. Circulation 138:e426–e483

    PubMed  Google Scholar 

  29. Williams B, Mancia G, Spiering W et al (2018) 2018 practice guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC task force for the management of arterial hypertension. J Hypertens 36:2284–2309

    Article  CAS  PubMed  Google Scholar 

  30. Shahmanesh M, Schultze A, Burns F et al (2016) The cardiovascular risk management for people living with HIV in Europe: how well are we doing? AIDS 30:2505–2518

    Article  PubMed  Google Scholar 

  31. Smit M, van Zoest RA, Nichols BE et al (2018) Cardiovascular disease prevention policy in human immunodeficiency virus: recommendations from a modeling study. Clin Infect Dis 66:743–750

    Article  CAS  PubMed  Google Scholar 

  32. Calvo M, Martinez E (2014) Update on metabolic issues in HIV patients. Curr Opin HIV AIDS 9:332–339

    Article  PubMed  Google Scholar 

  33. Maggi P, Di Biagio A, Rusconi S et al (2017) Cardiovascular risk and dyslipidemia among persons living with HIV: a review. BMC Infect Dis 17:551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu H-H, Li J-J (2015) Aging and dyslipidemia: a review of potential mechanisms. Ageing Res Rev 19:43–52

    Article  CAS  PubMed  Google Scholar 

  35. Katsiki N, Kolovou G, Perez-Martinez P, Mikhailidis DP (2018) Dyslipidaemia in the elderly: to treat or not to treat? Expert Rev Clin Pharmacol 11:259–278

    Article  CAS  PubMed  Google Scholar 

  36. Banach M, Dinca M, Ursoniu S et al (2016) A PRISMA-compliant systematic review and meta-analysis of randomized controlled trials investigating the effects of statin therapy on plasma lipid concentrations in HIV-infected patients. Pharmacol Res 111:343–356

    Article  CAS  PubMed  Google Scholar 

  37. Catapano AL, Graham I, De Backer G et al (2016) 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J 37:2999–3058

    Article  PubMed  Google Scholar 

  38. Ladapo JA, Richards AK, DeWitt CM, Harawa NT, Shoptaw S, Cunningham WE, Mafi JN (2017) Disparities in the quality of cardiovascular care between HIV-infected versus hiv-uninfected adults in the United States: a cross-sectional study. J Am Heart Assoc. https://doi.org/10.1161/jaha.117.007107

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gurwitz JH, Go AS, Fortmann SP (2016) Statins for primary prevention in older adults: uncertainty and the need for more evidence. JAMA 316:1971–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bellosta S, Corsini A (2018) Statin drug interactions and related adverse reactions: an update. Expert Opin Drug Saf 17:25–37

    Article  CAS  PubMed  Google Scholar 

  41. Eckard AR, McComsey GA (2015) The role of statins in the setting of HIV infection. Curr HIV/AIDS Rep 12:305–312

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hernandez-Romieu AC, Garg S, Rosenberg ES, Thompson-Paul AM, Skarbinski J (2017) Is diabetes prevalence higher among HIV-infected individuals compared with the general population? Evidence from MMP and NHANES 2009-2010. BMJ Open Diab Res Care 5:e000304

    Article  PubMed  PubMed Central  Google Scholar 

  43. Samad F, Harris M, Puskas CM, Ye M, Chia J, Chacko S, Bondy GP, Lima VD, Montaner JS, Guillemi SA (2017) Incidence of diabetes mellitus and factors associated with its development in HIV-positive patients over the age of 50. BMJ Open Diab Res Care 5:e000457

    Article  PubMed  PubMed Central  Google Scholar 

  44. Herrin M, Tate JP, Akgün KM et al (2016) Weight gain and incident diabetes among HIV-infected veterans initiating antiretroviral therapy compared with uninfected individuals. J Acquir Immune Defic Syndr 73:228–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nansseu JR, Bigna JJ, Kaze AD, Noubiap JJ (2018) Incidence and risk factors for prediabetes and diabetes mellitus among HIV-infected adults on antiretroviral therapy: a systematic review and meta-analysis. Epidemiology 29:431–441

    Article  PubMed  Google Scholar 

  46. Norwood J, Turner M, Bofill C et al (2017) Brief report: weight gain in persons with HIV switched from efavirenz-based to integrase strand transfer inhibitor-based regimens. J Acquir Immune Defic Syndr 76:527–531

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rodger AJ, Lodwick R, Schechter M et al (2013) Mortality in well controlled HIV in the continuous antiretroviral therapy arms of the SMART and ESPRIT trials compared with the general population. AIDS 27:973–979

    Article  CAS  PubMed  Google Scholar 

  48. Freiberg MS, Chang C-CH, Kuller LH et al (2013) HIV infection and the risk of acute myocardial infarction. JAMA Intern Med 173:614–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chow FC, Regan S, Feske S, Meigs JB, Grinspoon SK, Triant VA (2012) Comparison of ischemic stroke incidence in HIV-infected and non-HIV-infected patients in a US health care system. J Acquir Immune Defic Syndr 60:351–358

    Article  PubMed  PubMed Central  Google Scholar 

  50. Beckman JA, Duncan MS, Alcorn CW et al (2018) Association of human immunodeficiency virus infection and risk of peripheral artery disease. Circulation 138:255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tseng ZH, Secemsky EA, Dowdy D, Vittinghoff E, Moyers B, Wong JK, Havlir DV, Hsue PY (2012) Sudden cardiac death in patients with human immunodeficiency virus infection. J Am Coll Cardiol 59:1891–1896

    Article  PubMed  PubMed Central  Google Scholar 

  52. Freiberg MS, Chang C-CH, Skanderson M et al (2017) Association between HIV infection and the risk of heart failure with reduced ejection fraction and preserved ejection fraction in the antiretroviral therapy era: results from the veterans aging cohort study. JAMA Cardiol 2:536–546

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shah ASV, Stelzle D, Lee KK et al (2018) Global burden of atherosclerotic cardiovascular disease in people living with HIV. Circulation 138:1100–1112

    Article  PubMed  PubMed Central  Google Scholar 

  54. DAD Study Group, Sabin CA, Worm SW et al (2008) Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A: D study: a multi-cohort collaboration. Lancet 371:1417–1426

    Article  CAS  Google Scholar 

  55. Ryom L, Lundgren JD, El-Sadr W et al (2018) Cardiovascular disease and use of contemporary protease inhibitors: the D:A: D international prospective multicohort study. Lancet HIV 5:e291–e300

    Article  PubMed  Google Scholar 

  56. Alvi RM, Neilan AM, Tariq N et al (2018) Protease inhibitors and cardiovascular outcomes in patients with HIV and heart failure. J Am Coll Cardiol 72:518–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rasmussen LD, Helleberg M, May MT, Afzal S, Kronborg G, Larsen CS, Pedersen C, Gerstoft J, Nordestgaard BG, Obel N (2015) Myocardial infarction among Danish HIV-infected individuals: population-attributable fractions associated with smoking. Clin Infect Dis 10:1–9

    CAS  Google Scholar 

  58. De Socio GV, Ricci E, Parruti G et al (2016) Statins and aspirin use in HIV-infected people: gap between European AIDS Clinical Society guidelines and clinical practice: the results from HIV-HY study. Infection 44:589–597

    Article  CAS  PubMed  Google Scholar 

  59. Guaraldi G, Orlando G, Zona S, Menozzi M, Carli F, Garlassi E, Berti A, Rossi E, Roverato A, Palella F (2011) Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis 53:1120–1126

    Article  PubMed  Google Scholar 

  60. Yombi JC, Pozniak A, Boffito M, Jones R, Khoo S, Levy J, Post FA (2014) Antiretrovirals and the kidney in current clinical practice: renal pharmacokinetics, alterations of renal function and renal toxicity. AIDS 28:621–632

    Article  CAS  PubMed  Google Scholar 

  61. Nixon AC, Bampouras TM, Pendleton N, Woywodt A, Mitra S, Dhaygude A (2018) Frailty and chronic kidney disease: current evidence and continuing uncertainties. Clin Kidney J 11:236–245

    Article  PubMed  Google Scholar 

  62. Ryom L, Mocroft A, Kirk O et al (2017) Predictors of estimated glomerular filtration rate progression, stabilization or improvement after chronic renal impairment in HIV-positive individuals. AIDS 31:1261–1270

    Article  PubMed  Google Scholar 

  63. Mallon PWG (2014) Aging with HIV: osteoporosis and fractures. Curr Opin HIV AIDS 9:428–435

    Article  PubMed  Google Scholar 

  64. Brown TT, Qaqish RB (2006) Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 20:2165–2174

    Article  PubMed  Google Scholar 

  65. Battalora LA, Young B, Overton ET (2014) Bones, fractures, antiretroviral therapy and HIV. Curr Infect Dis Rep 16:393–396

    Article  PubMed  PubMed Central  Google Scholar 

  66. Grijsen ML, Vrouenraets SME, Steingrover R, Lips P, Reiss P, Wit FWNM, Prins JM (2010) High prevalence of reduced bone mineral density in primary HIV-1-infected men. AIDS 24:2233–2238

    Article  PubMed  Google Scholar 

  67. van Vonderen MG, Lips P, van Agtmael MA, Hassink EA, Brinkman K, Geerlings SE, Sutinen J, Ristola M, Danner SA, Reiss P (2009) First line zidovudine/lamivudine/lopinavir/ritonavir leads to greater bone loss compared to nevirapine/lopinavir/ritonavir. AIDS 23:1367–1376

    Article  CAS  PubMed  Google Scholar 

  68. Dolan SE, Carpenter S, Grinspoon S (2007) Effects of weight, body composition, and testosterone on bone mineral density in HIV-infected women. JAIDS J Acquir Immune Defic Syndr 45:161–167

    Article  CAS  PubMed  Google Scholar 

  69. Yin MT, Shane E (2006) Low bone-mineral density in patients with HIV: pathogenesis and clinical significance. Curr Opin Endocrinol Diabetes 13:497–502

    Article  PubMed  PubMed Central  Google Scholar 

  70. Grund B, Peng G, Gibert CL, Hoy JF, Isaksson RL, Shlay JC, Martinez E, Reiss P, Visnegarwala F, Carr AD (2009) Continuous antiretroviral therapy decreases bone mineral density. AIDS 23:1519–1529

    Article  CAS  PubMed  Google Scholar 

  71. Carr A, Grund B, Neuhaus J et al (2015) Prevalence of and risk factors for low bone mineral density in untreated HIV infection: a substudy of the INSIGHT strategic timing of antiretroviral treatment (START) trial. HIV Med 16(Suppl 1):137–146

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hoy JF, Grund B, Roediger M et al (2017) Immediate initiation of antiretroviral therapy for HIV infection accelerates bone loss relative to deferring therapy: findings from the START bone mineral density substudy, a randomized trial. J Bone Miner Res 32:1945–1955

    Article  CAS  PubMed  Google Scholar 

  73. McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Tebas P, Myers L, Melbourne K, Ha B, Sax PE (2011) Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis 203:1791–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stellbrink H-J, Orkin C, Arribas JR et al (2010) Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clin Infect Dis 51:963–972

    Article  PubMed  Google Scholar 

  75. Cotter AG, Vrouenraets SME, Brady JJ, Wit FW, Fux CA, Furrer H, Brinkman K, Sabin CA, Reiss P, Mallon PWG (2013) Impact of switching from zidovudine to tenofovir disoproxil fumarate on bone mineral density and markers of bone metabolism in virologically suppressed HIV-1 infected patients; a substudy of the PREPARE study. J Clin Endocrinol Metab 98:1659–1666

    Article  CAS  PubMed  Google Scholar 

  76. Bernardino JI, Mocroft A, Mallon PW et al (2015) Bone mineral density and inflammatory and bone biomarkers after darunavir-ritonavir combined with either raltegravir or tenofovir-emtricitabine in antiretroviral-naive adults with HIV-1: a substudy of the NEAT001/ANRS143 randomised trial. Lancet HIV 2:e464–e473

    Article  PubMed  Google Scholar 

  77. Sax PE, Wohl D, Yin MT et al (2015) Tenofovir alafenamide versus tenofovir disoproxil fumarate, coformulated with elvitegravir, cobicistat, and emtricitabine, for initial treatment of HIV-1 infection: two randomised, double-blind, phase 3, non-inferiority trials. Lancet 385:2606–2615

    Article  CAS  PubMed  Google Scholar 

  78. Young B, Dao CN, Buchacz K, Baker R, Brooks JT, the HIV Outpatient Study (HOPS) Investigators (2011) Increased Rates of Bone Fracture Among HIV-Infected Persons in the HIV Outpatient Study (HOPS) Compared With the US General Population, 2000-2006. Clin Infect Dis 52:1061–1068

    Article  PubMed  Google Scholar 

  79. Grant PM, Kitch D, McComsey GA et al (2013) Low baseline CD4+ count is associated with greater bone mineral density loss after antiretroviral therapy initiation. Clin Infect Dis 57:1483–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bedimo R, Maalouf NM, Zhang S, Drechsler H, Tebas P (2012) Osteoporotic fracture risk associated with cumulative exposure to tenofovir and other antiretroviral agents. AIDS 26:825–831

    Article  CAS  PubMed  Google Scholar 

  81. Güerri-Fernandez R, Vestergaard P, Carbonell C, Knobel H, Avilés FF, Castro AS, Nogués X, Prieto-Alhambra D, Diez-Perez A (2013) HIV infection is strongly associated with hip fracture risk, independently of age, gender, and comorbidities: a population-based cohort study. J Bone Miner Res 28:1259–1263

    Article  PubMed  Google Scholar 

  82. Triant VA, Brown TT, Lee H, Grinspoon SK (2008) Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large US healthcare system. J Clin Endocrinol Metab 93:3499–3504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Borges ÁH, Hoy J, Florence E et al (2017) Antiretrovirals, fractures, and osteonecrosis in a large international HIV cohort. Clin Infect Dis 64:1413–1421

    Article  CAS  PubMed  Google Scholar 

  84. Silverberg MJ, Lau B, Achenbach CJ et al (2015) Cumulative incidence of cancer among persons with HIV in North America: a cohort study. Ann Intern Med 163:507–518

    Article  PubMed  PubMed Central  Google Scholar 

  85. Robbins HA, Shiels MS, Pfeiffer RM, Engels EA (2014) Epidemiologic contributions to recent cancer trends among HIV-infected people in the United States. AIDS 28:881–890

    Article  PubMed  Google Scholar 

  86. Yanik EL, Katki HA, Engels EA (2016) Cancer risk among the HIV-infected elderly in the United States. AIDS 30:1663–1668

    Article  PubMed  Google Scholar 

  87. Robbins HA, Pfeiffer RM, Shiels MS, Li J, Hall HI, Engels EA (2015) Excess cancers among HIV-infected people in the United States. J Natl Cancer Inst. https://doi.org/10.1093/jnci/dju503

    Article  PubMed  PubMed Central  Google Scholar 

  88. Shiels MS, Cole SR, Kirk GD, Poole C (2009) A meta-analysis of the incidence of non-AIDS cancers in HIV-infected individuals. J Acquir Immune Defic Syndr 52:611–622

    Article  PubMed  PubMed Central  Google Scholar 

  89. Silverberg MJ, Chao C, Leyden WA, Xu L, Tang B, Horberg MA, Klein D, Quesenberry CP, Towner WJ, Abrams DI (2009) HIV infection and the risk of cancers with and without a known infectious cause. AIDS 23:2337–2345

    Article  PubMed  Google Scholar 

  90. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM (2007) Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370:59–67

    Article  PubMed  Google Scholar 

  91. Reekie J, Kosa C, Engsig F et al (2010) Relationship between current level of immunodeficiency and non-acquired immunodeficiency syndrome-defining malignancies. Cancer 116:5306–5315

    Article  PubMed  Google Scholar 

  92. Hernández-Ramírez RU, Shiels MS, Dubrow R, Engels EA (2017) Cancer risk in HIV-infected people in the USA from 1996 to 2012: a population-based, registry-linkage study. Lancet HIV 4:e495–e504

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shiels MS, Islam JY, Rosenberg PS, Hall HI, Jacobson E, Engels EA (2018) Projected cancer incidence rates and burden of incident cancer cases in HIV-infected adults in the united states through 2030. Ann Intern Med 168:866–873

    Article  PubMed  PubMed Central  Google Scholar 

  94. Helleberg M, May MT, Ingle SM et al (2015) Smoking and life expectancy among HIV-infected individuals on antiretroviral therapy in Europe and North America. AIDS 29:221–229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Rosa de Miguel is supported by a Río Hortega fellowship from the Fondo de Investigación Sanitaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José I. Bernardino.

Ethics declarations

Conflict of interest

Dr. Bernardino reports grants and personal fees from Gilead Sciences, personal fees from ViiV Healthcare, Janssen Pharmaceuticals, and Merck Sharp & Dohme, outside the submitted work. Dr de Miguel reports personal fees from Gilead Sciences and Janssen Pharma outside the submitted work. Dr Montejano received personal fees from Janssen Pharmaceuticals, personal fees from Merck Sharp & Dohme, and Gilead Sciences outside the submitted work.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study informed consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montejano, R., de Miguel, R. & Bernardino, J.I. Older HIV-infected adults: complex patients—comorbidity (I). Eur Geriatr Med 10, 189–197 (2019). https://doi.org/10.1007/s41999-018-0152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41999-018-0152-1

Keywords

Navigation