Skip to main content

Advertisement

Log in

Why are people with HIV considered “older adults” in their fifties?

  • Review
  • Published:
European Geriatric Medicine Aims and scope Submit manuscript

Abstract

One in six new HIV diagnoses in Europe occur among people over 50 years of age. As in the general population, the aging process is not homogeneous among older adults with HIV, and some of them exhibit impaired physical function, higher frailty and more frequent geriatric syndromes. These illness reflect a higher biological age independently of their chronological age. After starting antirretroviral treatment, people living with HIV (PLWH) older than 50 exhibit a poorer immunological recovery than younger PLWH. Moreover, older adults with HIV present early onset of comorbidities and functional impairment caused by persistent and chronic activation of the immune system, which leads to immune exhaustion and accelerated immunosenescence despite optimal suppression of HIV replication. The evidence of poorer immunological response to ARV, linked with early immunosenescence in PLWH and its prematurely deleterious effect in physiological functions and its clinical consequences, are the basis to accept the cut-off of 50 years of age to define an “older adult with HIV”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA et al (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 338(13):853–860

    Article  PubMed  Google Scholar 

  2. Tavoschi L, Gomes Dias J, Pharris A (2017) New HIV diagnoses among adults aged 50 years or older in 31 European countries, 2004–15: an analysis of surveillance data. lancet HIV 4(11):e514–e521

    Article  PubMed  Google Scholar 

  3. Smit M, Brinkman K, Geerlings S, Smit C, Thyagarajan K, Sighem A et al (2015) Future challenges for clinical care of an ageing population infected with HIV: a modelling study. Lancet Infect Dis 15(7):810–818

    Article  PubMed  PubMed Central  Google Scholar 

  4. Trickey A, May MT, Vehreschild JJ, Obel N, Gill MJ, Crane HM, Boesecke C, Patterson S, Grabar S, Cazanave C, Cavassini M (2017) Survival of HIV-positive patients starting antiretroviral therapy between 1996 and 2013: a collaborative analysis of cohort studies. Lancet HIV 4(8):e349–e356

    Article  Google Scholar 

  5. Wong C, Gange SJ, Moore RD, Justice AC, Buchacz K, Abraham AG et al (2018) Multimorbidity among persons living with human immunodeficiency virus in the United States. Clin Infect Dis 66(8):1230–1238

    Article  PubMed  Google Scholar 

  6. Lazar R, Kersanske L, Xia Q, Daskalakis D, Braunstein SL (2017) Hospitalization rates among people with HIV/AIDS in New York City, 2013. Clin Infect Dis 65(3):469–476

    Article  PubMed  Google Scholar 

  7. Khaw KT, Wareham N, Bingham S, Welch A, Luben R, Day N (2008) Combined impact of health behaviours and mortality in men and women: the EPIC-Norfolk prospective population study. PLoS Med 5(1):e12

    Article  PubMed  PubMed Central  Google Scholar 

  8. Horvath S, Levine AJ (2015) HIV-1 infection accelerates age according to the epigenetic clock. J Infect Dis 212(10):1563–1573

    Article  PubMed  PubMed Central  Google Scholar 

  9. Guaraldi G, Orlando G, Zona S, Menozzi M, Carli F, Garlassi E et al (2011) Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis 53(11):1120–1126

    Article  PubMed  Google Scholar 

  10. Desquilbet L, Margolick JB, Fried LP, Phair JP, Jamieson BD, Holloway M et al (2009) Relationship between a frailty-related phenotype and progressive deterioration of the immune system in HIV-infected men. J Acquir Immune Defic Syndr 50(3):299–306

    Article  PubMed  PubMed Central  Google Scholar 

  11. Branas F, Jimenez Z, Sanchez-Conde M, Dronda F, Lopez-Bernaldo De Quiros JC, Perez-Elias MJ et al (2017) Frailty and physical function in older HIV-infected adults. Age Ageing 46(3):522–526

    Article  PubMed  Google Scholar 

  12. Greene M, Justice AC, Covinsky KE (2017) Assessment of geriatric syndromes and physical function in people living with HIV. Virulence 8(5):586–598

    Article  PubMed  Google Scholar 

  13. Lowsky DJ, Olshansky SJ, Bhattacharya J, Goldman DP (2014) Heterogeneity in healthy aging. J Gerontol Ser A 69(6):640–649

    Article  Google Scholar 

  14. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jylhava J, Pedersen NL, Hagg S (2017) Biological age predictors. EBioMedicine 21:29–36

    Article  PubMed  PubMed Central  Google Scholar 

  16. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE et al (2015) DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 16:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Christiansen L, Lenart A, Tan Q, Vaupel JW, Aviv A, McGue M et al (2016) DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 15(1):149–154

    Article  CAS  PubMed  Google Scholar 

  19. Perna L, Zhang Y, Mons U, Holleczek B, Saum KU, Brenner H (2016) Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenetics 8:64

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC et al (2016) DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8(9):1844–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gross AM, Jaeger PA, Kreisberg JF, Licon K, Jepsen KL, Khosroheidari M et al (2016) Methylome-wide analysis of chronic HIV infection reveals five-year increase in biological age and epigenetic targeting of HLA. Mol Cell 62(2):157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nelson KN, Hui Q, Rimland D, Xu K, Freiberg MS, Justice AC et al (2017) Identification of HIV infection-related DNA methylation sites and advanced epigenetic aging in HIV-positive, treatment-naive US veterans. AIDS 31(4):571–575

    Article  CAS  PubMed  Google Scholar 

  23. Levine AJ, Quach A, Moore DJ, Achim CL, Soontornniyomkij V, Masliah E et al (2016) Accelerated epigenetic aging in brain is associated with pre-mortem HIV-associated neurocognitive disorders. J Neurovirol 22(3):366–375

    Article  CAS  PubMed  Google Scholar 

  24. Greene M, Covinsky KE, Valcour V, Miao Y, Madamba J, Lampiris H et al (2015) Geriatric syndromes in older HIV-infected adults. J Acquir Immune Defic Syndr 69(2):161–167

    Article  PubMed  PubMed Central  Google Scholar 

  25. Marioni RE, Shah S, McRae AF, Ritchie SJ, Muniz-Terrera G, Harris SE et al (2015) The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int J Epidemiol 44(4):1388–1396

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bellizzi D, D’Aquila P, Montesanto A, Corsonello A, Mari V, Mazzei B et al (2012) Global DNA methylation in old subjects is correlated with frailty. Age 34(1):169–179

    Article  CAS  PubMed  Google Scholar 

  27. Schrack JA, Althoff KN, Jacobson LP, Erlandson KM, Jamieson BD, Koletar SL et al (2015) Accelerated longitudinal gait speed decline in HIV-infected older men. J Acquir Immune Defic Syndr 70(4):370–376

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brothers TD, Kirkland S, Guaraldi G, Falutz J, Theou O, Johnston BL et al (2014) Frailty in people aging with human immunodeficiency virus (HIV) infection. J Infect Dis 210(8):1170–1179

    Article  PubMed  Google Scholar 

  29. Centers for Disease Control and Prevention (1998) AIDS among persons aged greater than or equal to 50 years – United States, 1991–1996. MMWR 47:21–27

    Google Scholar 

  30. Manfredi R, Chiodo F (2000) A case-control study of virological and immunological effects of highly active antiretroviral therapy in HIV-infected patients with advanced age. AIDS 14(10):1475–1477

    Article  CAS  PubMed  Google Scholar 

  31. Knobel H, Guelar A, Valldecillo G, Carmona A, Gonzalez A, Lopez-Colomes JL et al (2001) Response to highly active antiretroviral therapy in HIV-infected patients aged 60 years or older after 24 months follow-up. AIDS 15(12):1591–1593

    Article  CAS  PubMed  Google Scholar 

  32. Viard JP, Mocroft A, Chiesi A, Kirk O, Roge B, Panos G et al (2001) Influence of age on CD4 cell recovery in human immunodeficiency virus-infected patients receiving highly active antiretroviral therapy: evidence from the EuroSIDA study. J Infect Dis 183(8):1290–1294

    Article  CAS  PubMed  Google Scholar 

  33. Grabar S, Kousignian I, Sobel A, Le Bras P, Gasnault J, Enel P et al (2004) Immunologic and clinical responses to highly active antiretroviral therapy over 50 years of age. Results from the French Hospital Database on HIV. AIDS 18(15):2029–2038

    Article  PubMed  Google Scholar 

  34. Yamashita TE, Phair JP, Munoz A, Margolick JB, Detels R, O’Brien SJ et al (2001) Immunologic and virologic response to highly active antiretroviral therapy in the Multicenter AIDS Cohort Study. AIDS 15(6):735–746

    Article  CAS  PubMed  Google Scholar 

  35. Branas F, Berenguer J, Sanchez-Conde M, Lopez-Bernaldo de Quiros JC, Miralles P, Cosin J et al (2008) The eldest of older adults living with HIV: response and adherence to highly active antiretroviral therapy. Am J Med 121(9):820–824

    Article  PubMed  Google Scholar 

  36. Blanco JR, Jarrin I, Vallejo M, Berenguer J, Solera C, Rubio R et al (2012) Definition of advanced age in HIV infection: looking for an age cut-off. AIDS Res Hum Retroviruses 28(9):1000–1006

    Article  CAS  PubMed  Google Scholar 

  37. Gomez de la Camara A, Rubio Herrera MA, Gutierrez Fuentes JA, Gomez Gerique JA, del Campo J, Jurado Valenzuela C et al (2008) [1991–2004 follow-up of a Spanish general population cohort. Mortality and raising risk factors in the DRECE III Study (Diet and Risk of Cardiovascular Diseases in Spain)]. Revista espanola de salud publica. 82(4):415–423. Seguimiento de 1991 a 2004 de la mortalidad y los factores de riesgo emergentes en una cohorte de poblacion general espanola. Estudio Drece III (Dieta y Riesgo de Enfermedades Cardiovasculares en Espana)

  38. Smith C, Sabin CA, Lundgren JD, Thiebaut R, Weber R, Law M et al (2010) Factors associated with specific causes of death amongst HIV-positive individuals in the D: A: D Study. AIDS 24(10):1537–1548

    PubMed  Google Scholar 

  39. Dawood H, Hassan-Moosa R, Zuma NY, Naidoo K (2018) Mortality and treatment response amongst HIV-infected patients 50 years and older accessing antiretroviral services in South Africa. BMC Infect Dis 18(1):168

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bunting E, Rajkumar C, Fisher M (2014) The human immunodeficiency virus and ageing. Age Ageing 43(3):308–310

    Article  PubMed  Google Scholar 

  41. Butt AA, Chang CC, Kuller L, Goetz MB, Leaf D, Rimland D et al (2011) Risk of heart failure with human immunodeficiency virus in the absence of prior diagnosis of coronary heart disease. Arch Intern Med 171(8):737–743

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schouten J, Wit FW, Stolte IG, Kootstra NA, van der Valk M, Geerlings SE et al (2014) Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-infected and uninfected individuals: the AGEhIV cohort study. Clin Infect Dis 59(12):1787–1797

    Article  CAS  PubMed  Google Scholar 

  43. Buehring B, Kirchner E, Sun Z, Calabrese L (2012) The frequency of low muscle mass and its overlap with low bone mineral density and lipodystrophy in individuals with HIV—a pilot study using DXA total body composition analysis. J Clin Densitom 15(2):224–232

    Article  PubMed  Google Scholar 

  44. Desai S, Landay A (2010) Early immune senescence in HIV disease. Curr HIV/AIDS Rep 7(1):4–10

    Article  PubMed  PubMed Central  Google Scholar 

  45. Deeks SG (2011) HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med 62:141–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rodriguez-Penney AT, Iudicello JE, Riggs PK, Doyle K, Ellis RJ, Letendre SL et al (2013) Co-morbidities in persons infected with HIV: increased burden with older age and negative effects on health-related quality of life. AIDS Patient Care STDs 27(1):5–16

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lagathu C, Cossarizza A, Bereziat V, Nasi M, Capeau J, Pinti M (2017) Basic science and pathogenesis of ageing with HIV: potential mechanisms and biomarkers. AIDS 31(Suppl 2):S105–S119

    Article  CAS  PubMed  Google Scholar 

  48. Lundgren JD, Babiker AG, Gordin F, Emery S, Grund B, Sharma S et al (2015) Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med 373(9):795–807

    Article  CAS  PubMed  Google Scholar 

  49. Rickabaugh TM, Baxter RM, Sehl M, Sinsheimer JS, Hultin PM, Hultin LE et al (2015) Acceleration of age-associated methylation patterns in HIV-1-infected adults. PloS ONE 10(3):e0119201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leung JM, Fishbane N, Jones M, Morin A, Xu S, Liu JC et al (2017) Longitudinal study of surrogate aging measures during human immunodeficiency virus seroconversion. Aging 9(3):687–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Horvath S, Stein DJ, Phillips N, Heany SJ, Kobor MS, Lin DTS et al (2018) Perinatally acquired HIV infection accelerates epigenetic aging in South African adolescents. AIDS 32(11):1465–1474

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matilde Sánchez-Conde.

Ethics declarations

Conflict of interest

MSC has received honoraria for the following: speaking at symposia organized on behalf of MSD, ViiV Healthcare and Gilead. FBB has received honoraria for the following: research grants from MSD, speaking at symposia organized on behalf of MSD and ViiV Healthcare; developing educational materials for MSD; and board membership from ViiV Healthcare. JDA has no conflict of interest. FD has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Conde, M., Díaz-Alvarez, J., Dronda, F. et al. Why are people with HIV considered “older adults” in their fifties?. Eur Geriatr Med 10, 183–188 (2019). https://doi.org/10.1007/s41999-018-0148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41999-018-0148-x

Keywords

Navigation