Skip to main content
Log in

Continuous flow production in the final step of vortioxetine synthesis. Piperazine ring formation on a flow platform with a focus on productivity and scalability

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

In this study, the piperazine formation step of vortioxetine synthesis was investigated under continuous flow conditions. The batch variant of this step could be carried out at laboratory scale at 130–135 °C with a long reaction time (27 h) followed by a laborious optimization process, but the formation of a significant amount of side-products could be detected, thus an efficient purification procedure was necessary. In the attempted scale-up of the batch reaction, a complete conversion could not at all be reached, even after elongated reaction times (36 h). The continuous-flow experiments were carried out in a new, purpose-built flow system. The examinations were extended to a wide range of reaction parameters (ratio of solvents, concentration and molar ratio of reagents, geometry of coiled loop reactor, residence time, temperature) and to the feasibility study of scale-up. In the second part of the experiments, the fine-tuning of scaled-up reaction parameters of continuous flow synthesis was carried out using a systematic design of experiments approach. Finally 190 °C reaction temperature and 30 min of residence time led to the highest efficacy in the production of vortioxetine drug substance with high yield and purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Köhler S, Cierpinsky K, Kronenberg G, Adli M (2016) The serotonergic system in the neurobiology of depression: relevance for novel antidepressants. J Psychopharmacol 30:13–22

    Article  CAS  PubMed  Google Scholar 

  2. D’Agostino A, English CD, Rey JA (2015) Vortioxetine (Brintellix): a new serotonergic antidepressant. Pharmacol Ther 40:36–40

    Google Scholar 

  3. Sanchez C, Asin KE, Artigas F (2015) Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol Ther 145:43–57

    Article  CAS  Google Scholar 

  4. Bang-Andersen B, Ruhland T, Jorgensen M, Smith G, Frederiksen K, Jensen KG, Zhong H, Nielsen SM, Hogg S, Mork A, Stensbol TB (2011) Discovery of 1-[2-(2,4-Dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. J Med Chem 54:3206–3221

    Article  CAS  PubMed  Google Scholar 

  5. Gibb A, Deeks ED (2014) Vortioxetine: first global approval. Drugs 74:135–145

    Article  CAS  PubMed  Google Scholar 

  6. Jas G, Kirschning A (2003) Continuous flow techniques in organic synthesis. Chem Eur J 9:5708–5723

    Article  CAS  PubMed  Google Scholar 

  7. Valera FE, Quaranta M, Moran A, Blacker J, Armstrong A, Cabral JT, Blackmond DG (2010) The Flow’s the thing...Or is it? Assessing the merits of homogeneous reactions in flask and flow. Angew Chem Int Ed 49:2478–2485

    Article  CAS  Google Scholar 

  8. Hartman RL, McMullen JP, Jensen KF (2011) Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. Angew Chem Int Ed 50:7502–7519

    Article  CAS  Google Scholar 

  9. Capretto L, Cheng W, Hill M, Zhang X (2011) Microfluidics: Technologies and Applications; Bingcheng, L., Ed. Springer, Berlin, Germany

    Google Scholar 

  10. Wiles C, Watts P (2012) Continuous flow reactors: a perspective. Green Chem 14:38–54

    Article  CAS  Google Scholar 

  11. Webb D, Jamison TF (2010) Continuous flow multi-step organic synthesis. Chem Sci 1:675–680

    Article  CAS  Google Scholar 

  12. Wegner J, Ceylan S, Kirschning A (2011) Ten key issues in modern flow chemistry. Chem Commun 47:4583–4592

    Article  CAS  Google Scholar 

  13. Darvas F, Dormán G, Hessel V (2014) Flow Chemistry Organic, Vol. 1: Fundamentals. Walter de Gruyter GmbH, Berlin, Germany

    Google Scholar 

  14. Hessel V, Kralisch D, Kockmann N, Noël T, Wang Q (2013) Novel process windows for enabling, accelerating, and uplifting flow chemistry. ChemSusChem 6:746–789

    Article  CAS  PubMed  Google Scholar 

  15. Razzaq T, Kappe CO (2010) Continuous flow organic synthesis under high-temperature/pressure conditions. Chem Asian J 5:1274–1289

    CAS  PubMed  Google Scholar 

  16. Marre S, Adamo A, Basak S, Aymonier C, Jensen KF (2010) Design and packaging of microreactors for high pressure and high temperature applications. Ind Eng Chem Res 49:11310–11320

    Article  CAS  Google Scholar 

  17. Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients. Angew Chem Int Ed 54:6688–6728

    Article  CAS  Google Scholar 

  18. Britton J, Raston CL (2017) Multi-step continuous-flow synthesis. Chem Soc Rev 46:1250–1271

    Article  CAS  PubMed  Google Scholar 

  19. Örkényi R, Éles J, Faigl F, Vincze P, Prechl A, Szakács Z, Kóti J, Greiner I (2017) Continuous synthesis and purification by coupling a multistep flow reaction with centrifugal partition chromatography. Angew Chem Int Ed 56:8742–8745

    Article  CAS  Google Scholar 

  20. Adamo A, Beingessner RL, Behnam M, Chen J, Jamison TF, Jensen KF, Monbaliu JC, Myerson AS, Revalor EM, Snead DR, Stelzer T, Weeranoppanant N, Wong SY, Zhang P (2016) On-demand continuous-flow production of Pharmaceuticals in a Compact, reconfigurable system. Science 352:61–67

    Article  CAS  PubMed  Google Scholar 

  21. Mascia S, Heider PL, Zhang H, Lakerveld R, Benyahia B, Barton PI, Braatz RD, Cooney CL, Evans JM, Jamison TF, Jensen KF, Myerson AS, Trout BL (2013) End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation. Angew Chem Int Ed 52:12359–12363

    Article  CAS  Google Scholar 

  22. Cranwell PB, O’Brien M, Browne DL, Koos P, Polyzos A, Pena-Lopez M, Ley SV (2012) Flow synthesis using gaseous Ammonia in a Teflon AF-2400 tube-in-tube reactor: Paal-Knorr Pyrrole formation and gas concentration measurement by inline flow titration. Org Biomol Chem 10:5774–5779

    Article  CAS  PubMed  Google Scholar 

  23. Noel T, Su Y, Hessel VB (2015) Organometallic flow chemistry: the principles behind the use of continuous-flow reactors for synthesis. J Organomet Chem 57(1):42

    Google Scholar 

  24. Müller STR, Wirth T (2014) Diazo compounds in continuous-flow technology. ChemSusChem 8:245–250

    Article  CAS  PubMed  Google Scholar 

  25. Nagy-Győr L, Abaházi E, Bódai V, Sátorhelyi P, Erdélyi B, Balogh-Weiser D, Paizs C, Hornyánszky G, Poppe L (2018) Co-immobilized whole cells with ω-transaminase and Ketoreductase activities for continuous-flow Cascade reactions. ChemBioChem 19:1845–1848

    Article  CAS  PubMed  Google Scholar 

  26. Liu KG, Robichaud AJ (2005) A general and convenient synthesis of N-aryl Piperazines. Tetrahedron Lett 46:7921–7922

    Article  CAS  Google Scholar 

  27. Juvale K, Wiese M (2012) 4-Substituted-2-Phenylquinazolines as Inhibitors of BCRP. Bioorg Med Chem Lett 22:6766–6769

    Article  CAS  PubMed  Google Scholar 

  28. Zupancic, B. New Process for the Synthesis of l-(2-((2,4-Dimethylphenyl)thio)phenyl)piperazine. WO 2014161976 PCT Intern. Pat. Appl

  29. Pennell, A. M. K.; Aggen, J. B.; Wright, J. J. K.; Sen, S.; Mcmaster, B. E.; Dairaghi, D. J.; Chen, W.; Zhang, P. Substituted Piperazines. WO 2005056015 PCT intern. Pat Appl

  30. Sun A, Moore TW, Gunther JR, Kim MS, Rhoden E, Du Y, Fu H, Snyder JP, Katzenellenbogen JA (2011) Discovering small-molecule estrogen receptor α/Coactivator binding inhibitors: high-throughput screening, ligand development, and models for enhanced potency. Chem Med Chem 6:654–666

    Article  CAS  PubMed  Google Scholar 

  31. Mao Y, Jang L, Chen T, He H, Liu G, Wang H (2015) A new and practical synthesis of Vortioxetine Hydrobromide. Synthesis 47:1387–1389

    Article  CAS  Google Scholar 

  32. Welthy JR, Wicks CE, Wilson RE, Rorrer GL (2007) Fundamentals of momentum. Heat and mass transfer5th edn. John Wiley and Sons, New York

    Google Scholar 

  33. Novi M, Garbarino G, Petrillo G, Dell’Erba C (1987) Electrochemical reduction of some O-Bis(phenylsulphonyl)benzene derivatives. Effect of the substrate structure and of the addition of bases on the product distribution. J Chem Soc Perkin Trans 2:623–632

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Ildikó Pomlényi for the analytical measurements. Thanks are due to Medicinal Chemistry Research Group and Dr. Péter Kovács (Hungarian Academy of Sciences, Budapest, Hungary) for scientific support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zoltán Boros or Balázs Volk.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

A discussion about efficiency of the heat transfer with varying loop geometries can be found at ???.

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boros, Z., Nagy-Győr, L., Kátai-Fadgyas, K. et al. Continuous flow production in the final step of vortioxetine synthesis. Piperazine ring formation on a flow platform with a focus on productivity and scalability. J Flow Chem 9, 101–113 (2019). https://doi.org/10.1007/s41981-019-00036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-019-00036-x

Keywords

Navigation