Skip to main content
Log in

Membrane computing models and robot controller design, current results and challenges

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

Designing membrane controllers for single- and multi-robot systems is an application area initiated in 2011 at the Laboratory of Natural Computing and Robotics (natuRO) of the Politehnica University of Bucharest. In this paper, an overview of natuRO’s research on the design of robot controllers based on various models of membrane systems is given. After an introduction to robotics and natural computing, this paper follows multiple directions. Firstly, a description of three membrane system simulators is given, taking into account their evolution, comparative capabilities, and application areas for each of them. Secondly, the main part of this paper is a synopsis of the applications of membrane systems in robot control, while an emphasis is paid to the new membrane computing models introduced at natuRO, Enzymatic Numerical P Systems and XP colonies, and their specific use in single- and multiple-robot applications. Thirdly, the paper continues with a critical overview of the performances of membrane controllers as compared to traditional ways to control single- and multiple-robot systems, current challenges and possible ways to overcome these. Example avenues for future related works are given in the conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abiyev, R. H., Günsel, I., Akkaya, N., Aytac, E., Çağman, A., & Abizada, S. (2016). Robot soccer control using behaviour trees and fuzzy logic. Procedia Computer Science, 102, 477–484. https://doi.org/10.1016/J.PROCS.2016.09.430.

    Article  Google Scholar 

  2. Arsene, O., Buiu, C., & Popescu, N. (2011). SNUPS—A simulator for numerical membrane computing. International Journal of Innovative Computing, 7(6), 3509–3522.

    Google Scholar 

  3. Assis, L., Soares, A. D. S., Coelho, C. J., & Van Baalen, J. (2016). An evolutionary algorithm for autonomous robot navigation. Procedia Computer Science, 80, 2261–2265. https://doi.org/10.1016/J.PROCS.2016.05.404.

    Article  Google Scholar 

  4. Buiu, C., & Gansari, M. (2014). A New Model for Interactions Between Robots in a Swarm. In: Electronics, Computers and Artificial Intelligence (ECAI), 2014 6th International Conference On. pp. 5–10 (Oct 2014)

  5. Buiu, C., Vasile, C., & Arsene, O. (2012). Development of membrane controllers for mobile robots. Information Sciences, 187(1), 33–51. https://doi.org/10.1016/j.ins.2011.10.007.

    Article  Google Scholar 

  6. Bustos, P., Manso, L., Bandera, A., Bandera, J., García-Varea, I., & Martínez-Gómez, J. (2019). The CORTEX cognitive robotics architecture: Use cases. Cognitive Systems Research, 55, 107–123. https://doi.org/10.1016/J.COGSYS.2019.01.003.

    Article  Google Scholar 

  7. de Castro, L. N. (2007). Fundamentals of natural computing: An overview. Physics of Life Reviews, 4(1), 1–36. https://doi.org/10.1016/J.PLREV.2006.10.002.

    Article  Google Scholar 

  8. Fang, W., Chao, F., Yang, L., Lin, C. M., Shang, C., Zhou, C., et al. (2019). A recurrent emotional CMAC neural network controller for vision-based mobile robots. Neurocomputing, 334, 227–238. https://doi.org/10.1016/J.NEUCOM.2019.01.032.

    Article  Google Scholar 

  9. Florea, A. G. (2018). Contributions to the Control of Collective Robotic Systems Using Membrane Computing. Phd thesis, Politehnica University of Bucharest, Bucharest, Romania.

  10. Florea, A. G., & Buiu, C. (2016). Synchronized dispersion of robotic swarms using XP colonies. In: Electronics, Computers and Artificial Intelligence (ECAI), 2016 8th International Conference On. pp. 1–6. IEEE. https://doi.org/10.1109/ECAI.2016.7861107

  11. Florea, A. G., & Buiu, C. (2017). Membrane computing for distributed control of robotic swarms: Emerging research and opportunities. IGI Global, USA. https://doi.org/10.4018/978-1-5225-2280-5,

  12. Florea, A. G., & Buiu, C. (2017). Modelling multi-robot interactions using a generic controller based on numerical P systems and ROS. In: Electronics, Computers and Artificial Intelligence (ECAI), 2017 9th Edition International Conference On. p. in press. https://doi.org/10.1109/ECAI.2017.8166411.

  13. Florea, A. G., & Buiu, C. (2019). Sensor fusion for autonomous drone waypoint navigation using ROS and numerical P systems: A critical analysis of its advantages and limitations. In: The 22nd international conference on control systems and computer science. p. accepted for publication. Bucharest, Romania.

  14. Florea, A. G., & Buiu, C. (2016). Development of a software simulator for P colonies. Applications in robotics. International Journal of Unconventional Computing, 12(2–3), 189–205.

    Google Scholar 

  15. Florea, A. G., & Buiu, C. (2018). A distributed approach to the control of multi-robot systems using XP colonies. Integrated Computer-Aided Engineering, 25(1), 15–29. https://doi.org/10.3233/ICA-170554.

    Article  Google Scholar 

  16. Haiek, D. E., Aboulissane, B., Bakkali, L. E., & Bahaoui, J. E. (2019). Optimal trajectory planning for spherical robot using evolutionary algorithms. Procedia Manufacturing, 32, 960–968. https://doi.org/10.1016/J.PROMFG.2019.02.309.

    Article  Google Scholar 

  17. Hawkes, E. W., Blumenschein, L. H., Greer, J. D., & Okamura, A. M. (2017). A soft robot that navigates its environment through growth. Science Robotics, 2(8), eaan3028. https://doi.org/10.1126/scirobotics.aan3028.

    Article  Google Scholar 

  18. Heylighen, F. (2016). Stigmergy as a universal coordination mechanism I: Definition and components. Cognitive Systems Research, 38, 4–13.

    Article  Google Scholar 

  19. Larsen, L., Schuster, A., Kim, J., & Kupke, M. (2018). Path planning of cooperating industrial robots using evolutionary algorithms. Procedia Manufacturing, 17, 286–293. https://doi.org/10.1016/J.PROMFG.2018.10.048.

    Article  Google Scholar 

  20. Laschi, C., Mazzolai, B., & Cianchetti, M. (2016). Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Science Robotics, 1(1), eaah3690. https://doi.org/10.1126/scirobotics.aah3690.

    Article  Google Scholar 

  21. Luan, F., Na, J., Huang, Y., & Gao, G. (2019). Adaptive neural network control for robotic manipulators with guaranteed finite-time convergence. Neurocomputing, 337, 153–164. https://doi.org/10.1016/J.NEUCOM.2019.01.063.

    Article  Google Scholar 

  22. Masmoudi, M. S., Krichen, N., Masmoudi, M., & Derbel, N. (2016). Fuzzy logic controllers design for omnidirectional mobile robot navigation. Applied Soft Computing, 49, 901–919. https://doi.org/10.1016/J.ASOC.2016.08.057.

    Article  Google Scholar 

  23. Mohanta, J., & Keshari, A. (2019). A knowledge based fuzzy-probabilistic roadmap method for mobile robot navigation. Applied Soft Computing, 79, 391–409. https://doi.org/10.1016/J.ASOC.2019.03.055.

    Article  Google Scholar 

  24. Orozco-Rosas, U., Montiel, O., & Sepúlveda, R. (2019). Mobile robot path planning using membrane evolutionary artificial potential field. Applied Soft Computing, 77, 236–251. https://doi.org/10.1016/J.ASOC.2019.01.036.

    Article  Google Scholar 

  25. Pavel, A. B., & Buiu, C. (2011). Using enzymatic numerical P systems for modeling mobile robot controllers. Natural Computing, 11(3), 387–393.

    Article  MathSciNet  Google Scholar 

  26. Pérez-Hurtado, I., Pérez-Jiménez, M. J., Orellana-Martín, D., & Zhang, G. (2018). Simulation of rapidly-exploring random trees in membrane computing with P-lingua and automatic programming. International Journal of Computers, Communications and Control, 13(6), 1007–1031. https://doi.org/10.15837/ijccc.2018.6.3370.

    Article  Google Scholar 

  27. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A.Y. (2009). ROS: An Open-Source Robot Operating System. In: ICRA Workshop on Open Source Software. vol. 3, p. 5. Kobe.

  28. Rubenstein, M., Ahler, C., & Nagpal, R. (May 2012). Kilobot: A Low Cost Scalable Robot System for Collective Behaviors. In: 2012 IEEE International Conference on Robotics and Automation (ICRA). pp. 3293–3298. Ieee. https://doi.org/10.1109/ICRA.2012.6224638.

  29. SPARC, EuRobotics: Robotics Multi-Annual Roadmap. https://www.eu-robotics.net/sparc/about/roadmap/index.html).

  30. Vasile, C. I. (2015). Distributed Control for Multi-Robot Systems. Phd, Politehnica University of Bucharest.

  31. Vega-Heredia, M., Mohan, R. E., Wen, T. Y., Aisyah, J. S., Vengadesh, A., Ghanta, S., et al. (2019). Design and modelling of a modular window cleaning robot. Automation in Construction, 103, 268–278. https://doi.org/10.1016/J.AUTCON.2019.01.025.

    Article  Google Scholar 

  32. Verl, A., Valente, A., Melkote, S., Brecher, C., Ozturk, E., & Tunc, L. T. (2019). Robots in machining. CIRP Annals,. https://doi.org/10.1016/J.CIRP.2019.05.009.

    Article  Google Scholar 

  33. Wang, X., Zhang, G., Neri, F., Jiang, T., Zhao, J., Gheorghe, M., et al. (2015). Design and implementation of membrane controllers for trajectory tracking of nonholonomic wheeled mobile robots. Integrated Computer-Aided Engineering, 23(1), 15–30. 10.3233/ICA-150503.

    Article  Google Scholar 

  34. Wang, X. Y., Zhang, G. X., Zhao, J. B., Rong, H. N., Ipate, F., & Lefticaru, R. (2015). A modified membrane-inspired algorithm based on particle swarm optimization for mobile robot path planning. International Journal of Computers, Communications and Control, 10(5), 732–745. 10.15837/ijccc.2015.5.2030.

    Article  Google Scholar 

  35. Williams, H. A., Jones, M. H., Nejati, M., Seabright, M. J., Bell, J., Penhall, N. D., et al. (2019). Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms. Biosystems Engineering, 181, 140–156. https://doi.org/10.1016/J.BIOSYSTEMSENG.2019.03.007.

    Article  Google Scholar 

  36. Yang, G. Z., Bellingham, J., Dupont, P. E., Fischer, P., Floridi, L., Full, R., et al. (2018). The grand challenges of science robotics. Science Robotics, 3(14), eaar7650. https://doi.org/10.1126/scirobotics.aar7650.

    Article  Google Scholar 

  37. Zhang, L., Merrifield, R., Deguet, A., & Yang, G. Z. (2017). Powering the world’s robots—10 years of ROS. Science Robotics, 2(11), eaar1868. https://doi.org/10.1126/scirobotics.aar1868.

    Article  Google Scholar 

  38. Zhang, G., Pérez-Jiménez, M. J., & Gheorghe, M. (2017). Real-life applications with membrane computing, emergence, complexity and computation (Vol. 25). Cham: Springer. https://doi.org/10.1007/978-3-319-55989-6.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cătălin Buiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buiu, C., Florea, A.G. Membrane computing models and robot controller design, current results and challenges. J Membr Comput 1, 262–269 (2019). https://doi.org/10.1007/s41965-019-00029-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-019-00029-8

Keywords

Navigation