Skip to main content

Advertisement

Log in

Comparison of Aerosol Optical Properties Between Two Nearby Urban Sites in Beijing, China

  • Original Paper
  • Published:
Aerosol Science and Engineering Aims and scope Submit manuscript

Abstract

This study compares the aerosol optical properties measured by CE318 sunphotometers at the Institute of Atmospheric Physics and the Chinese Academy of Meteorological Sciences in Beijing between January 2013 and July 2015 to provide the framework to quantify the spatial and temporal variability of aerosol properties. Aerosol optical parameters included extinction (scattering plus absorption) aerosol optical depth (EAOD), extinction Ångström exponent (EAE), columnar water vapor (CWV), absorption aerosol optical depth (AAOD), absorption Ångström exponent (AAE), extinction aerosol optical depth of fine particles (EAODf), extinction aerosol optical depth of coarse particles (EAODc), real parts of the refractive index (REFR), imaginary parts of the refractive index (REFI), single scattering albedo (SSA), asymmetry factor (ASYM), size distribution, and sphericity fraction. Comparison of aerosol optical properties using the simultaneous observations between two sites showed that correlation coefficients were larger than or equal to 0.98 for EAOD, EAE, and CWV, but smaller than or equal to 0.90 for AAOD, REFR, REFI, and SSA; the percentage differences for most of the parameters were less than 2%, but for EAODf were relatively large, ranging from 4.35 to 6.45%; the mean size distributions simultaneously showed bi-modal patterns, with two peak volumes at the radii of 0.15 and 2.94 μm; two kinds of tri-peak model were apparent during the study period; a case of EAODs at 440 nm differing by more than 0.2 between the two sites reflected the effect of local aerosol pollution. Comparison of aerosol characterization inferred by absorption properties using all the inversion data showed that classification using EAE, AAE, and sphericity fraction indicated the main aerosol type was “U/I&BB” (urban/industrial and biomass-burning), accounting for 59.87 and 57.43%, respectively; the volume size distribution retrievals binned by AAE exhibited coarse mode particles became dominant as AAE increased to 2.0; the SSA retrievals binned by AAE demonstrated SSA transitioned from spectra representing dust to U/I&BB pollution; averaged SSA for all the retrievals and SSA data partitioned by the EAE and η 675 nm suggested there were more absorbing aerosols at IAP. The results of the study will be beneficial in validating satellite observations and model simulation results, providing more accurate input parameters for model simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aoki K, Fujiyoshi Y (2003) Sky radiometer measurements of aerosol optical properties over Sapporo, Japan. J Meteorol Soc Jpn 81:493–513. doi:10.2151/jmsj.81.49

    Article  Google Scholar 

  • Bi JR, Huang JP, Fu Q, Wang X, Shi JS, Zhang W, Huang ZW, Zhang BD (2011) Toward characterization of the aerosol optical properties over loess plateau of Northwestern China. J Quant Spectrosc Radiat 112:346–360. doi:10.1016/j.jqsrt.2010.09.006

    Article  Google Scholar 

  • Charlson RJ, Schwartz SE, Hales JM, Cess D, Coakley JA, Hansen JE (1992) Climate forcing by anthropogenic aerosols. Science 255:423–430. doi:10.1126/science.255.5043.423

    Article  Google Scholar 

  • Che HZ, Shi GY, Zhang XY (2007) Aerosol optical characteristics and its direct radiative forcing in Beijing. J Grad Sch Chin Acad Sci 24:699–704

    Google Scholar 

  • Che H, Zhang X, Chen H, Damiri B, Goloub P, Li Z, Zhang X, Wei Y, Zhou H, Dong F, Li D, Zhou T (2009) Instrument calibration and aerosol optical depth validation of the China aerosol remote sensing network. J Geophys Res 114:D03206. doi:10.1029/2008JD011030

    Article  Google Scholar 

  • Che HZ, Wang YQ, Sun JY (2011) Aerosol optical properties at Mt. Waliguan observatory, China. Atmos Environ 45:6004–6009. doi:10.1016/j.atmosenv.2011.07.050

    Article  Google Scholar 

  • Che HZ, Xia XA, Zhu J, Li Z, Dubovik O, Holben B, Goloub P, Chen H, Estelles V, Cuevas-Agulló E et al (2014) Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China plain in 2013 based on ground-based sunphotometer measurements. Atmos Chem Phys 14:2125–2138. doi:10.5194/acp-14-2125-2014

    Article  Google Scholar 

  • Che H, Zhang XY, Xia X, Goloub P, Holben B, Zhao H, Wang Y, Zhang XC, Wang H, Blarel L et al (2015a) Ground-based aerosol climatology of China: aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmos Chem Phys 15:7619–7652. doi:10.5194/acp-15-7619-2015

    Article  Google Scholar 

  • Che HZ, Zhao HJ, Wu YF, Xia XA, Zhu J, Wang H, Wang YQ, Sun JY, Yu J, Zhang XY et al (2015b) Analyses of aerosol optical properties and direct radiative forcing over urban and industrial regions in Northeast China. Meteorol Atmos Phys 127:345–354. doi:10.1007/s00703-015-0367-3

    Article  Google Scholar 

  • Derimian Y, Karnieli A, Kaufman YJ, Andreae MO, Andreae TW, Dubovik O, Maenhaut W, Koren I (2008) The role of iron and black carbon in aerosol light absorption. Atmos Chem Phys 8:3623–3637. doi:10.5194/acp-8-3623-2008

    Article  Google Scholar 

  • Dong ZP, Li XM, Du CL, Zhang GJ (2013) Study on aerosol optical property in Xi’an Region. Plateau Meteorol 32:856–864. doi:10.7522/j.issn.1000-0534.2012.00079

    Google Scholar 

  • Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J Geophys Res Atmos 105(D16):20673–20696. doi:10.1029/2000JD900282

    Article  Google Scholar 

  • Dubovik O, Smirnov A, Holben BN, King MD, Kaufman YJ, Eck TF, Slutsker I (2000) Accuracy assessments of aerosol optical properties retrieved from aerosol robotic network (AERONET) sun and sky radiance measurements. J Geophys Res 105:9791–9806. doi:10.1029/2000JD900040

    Article  Google Scholar 

  • Dubovik O, Holben B, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanre D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59:590–608. doi:10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2

    Article  Google Scholar 

  • Dubovik O, Sinyuk A, Lapyonok T, Holben BN, Mishchenko M, Yang P, Eck TF, Volten H, Muñoz O, Veihelmann B et al (2006) Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of Desert dust. J Geophys Res. doi:10.1029/2005JD006619

    Google Scholar 

  • Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O’Neill NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass buring, Urban, and Desert Dust Aerosols. J Geophys Res 104:31333–31349. doi:10.1029/1999JD900923

    Article  Google Scholar 

  • Eck TF, Holben BN, Dubovik O, Smirnov A, Goloub P, Chen HB, Chatenet B, Gomes L, Zhang XY, Tsay SC et al (2005) Columnar aerosol optical properties at AERONET sites in Central Eastern Asia and Aerosol transport to the tropical Mid-Pacific. J Geophys Res. doi:10.1029/2004jd005274

    Google Scholar 

  • Eck TF, Holben BN, Reid JS, Sinyuk A, Dubovik O, Smirnov A, Giles D, O’Neill NT, Tsay SC, Ji Q et al (2008) Spatial and temporal variability of column-integrated aerosol optical properties in the Southern Arabian Gulf and United Arab Emirates in summer. J Geophys Res. doi:10.1029/2007JD008944

    Google Scholar 

  • Eck TF, Holben BN, Sinyuk A, Pinker RT, Goloub P, Chen H, Chatenet B, Li Z, Singh RP, Tripathi SN et al (2010) Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures. J Geophys Res 115:D19205. doi:10.1029/2010JD014002

    Article  Google Scholar 

  • Eck TF, Holben BN, Reid JS, Giles DM, Rivas MA, Singh RP, Tripathi SN, Bruegge CJ, Platnick S, Arnold GT et al (2012) Fog- and cloud-induced aerosol modification observed by the Aerosol Robotic Network (AERONET). J Geophys Res. doi:10.1029/2011JD016839

    Google Scholar 

  • Giles DM, Holben BN, Tripathi SN, Eck TF, Newcomb WW, Slutsker I, Dickerson RR, Thompson AM, Mattoo S, Wang SH et al (2011) Aerosol properties over the Indo-Gangetic plain: a mesoscale perspective from the TIGERZ experiment. J Geophys Res. doi:10.1029/2011JD015809

    Google Scholar 

  • Giles DM, Holben BN, Eck TF, Sinyuk A, Smirnov A, Slutsker I, Dickerson RR, Thompson AM, Schafer JS (2012) An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J Geophys Res. doi:10.1029/2012JD018127

    Google Scholar 

  • Gyawali M, Arnott WP, Lewis K, Moosmüller H (2009) In situ aerosol optics in Reno, NV, USA during and after the summer 2008 California wildfires and the influence of absorbing and non-absorbing organic coatings on spectral light absorption. Atmos Chem Phys 9:8007–8015. doi:10.5194/acp-9-8007-2009

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lacis A, Oinas V (2000) Global warming in the twenty-first century: an alternative scenario. Proc Natl Acad Sci 97:9875–9880. doi:10.1073/pnas.170278997

    Article  Google Scholar 

  • Holben BN, Eck TF, Skitsker I, Tanré D, Bziis JP, Setzer A, Vermote E, Reagan JA, Kazlfnzan YJ, Nnknjima T et al (1998) AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16. doi:10.1016/S0034-4257(98)00031-5

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Li W, Li P, Sun G, Zhou S, Yuan Q, Wang W (2011) Cloud residues and interstitial aerosols from non-precipitating clouds over an industrial and urban area in northern China. Atmos Environ 45:2488–2495. doi:10.1016/j.atmosenv.2011.02.044

    Article  Google Scholar 

  • Myhre G (2009) Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science 325:187–190. doi:10.1126/science.1174461

    Article  Google Scholar 

  • Prasad AK, Singh RP (2007) Changes in aerosol parameters during major dust storm events (2001–2005) over the Indo-Gangetic Plains using AERONET and MODIS data. J Geophys Res. doi:10.1029/2006JD007778

    Google Scholar 

  • Qi B, Hu DY, Che HZ, Du RG, Wu YF, Xia XA, Zha B, Liu J, Niu YW, Wang H, Zhang XY, Shi GY (2016) Seasonal variation of aerosol optical properties in an urban site of the Yangtze Delta region of China. Aerosol Air Qual Res 16:2884–2896. doi:10.4209/aaqr.2015.05.0350

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124. doi:10.1126/science.1064034

    Article  Google Scholar 

  • Smirnov A, Holben BN, Eck TF, Dubovik O, Slutsker I (2000) Cloud screening and quality control algorithms for the AERONET database. Remote Sens Environ 73:337–349. doi:10.1016/S0034-4257(00)00109-7

    Article  Google Scholar 

  • Song SJ, Wua Y, Xu JY, Ohara T, Hasegawa SC, Li JQ, Yang L, Hao JM (2013) Black carbon at a roadside site in Beijing: temporal variations and relationships with carbon monoxide and particle number size distribution. Atmos Environ 77:213–221. doi:10.1016/j.atmosenv.2013.04.055

    Article  Google Scholar 

  • Sun YL, Du W, Fu PQ, Wang QQ, Li J, Ge XL, Zhang Q, Zhu CM, Ren LJ, Xu WQ et al (2016) Primary and secondary aerosols in Beijing in winter: sources, variations and processes. Atmos Chem Phys 16:8309–8329. doi:10.5194/acp-16-8309-2016

    Article  Google Scholar 

  • Toledano C, Wiegner M, Groß S, Freudenthaler V, Gasteiger J, Müller D, Müller T, Schladitz A, Weinzierl B, Torres B, O’neill NT (2011) Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2. Tellus B 63:635–648. doi:10.1111/j.1600-0889.2011.00573.x

    Article  Google Scholar 

  • Twomey SA, Piepgrass M, Wolfe TL (1984) An assessment of the impact of pollution on the global cloud albedo. Tellus 36B:356–366. doi:10.1111/j.1600-0889.1984.tb00254.x

    Article  Google Scholar 

  • Wang P, Che HZ, Zhang XC, Song QL, Wang YQ, Zhang ZH, Dai X, Yu DJ (2010a) Aerosol Optical Properties of Regional Background Atmosphere in Northeast China. Atmos Environ 44:4404–4412. doi:10.1016/j.atmosenv.2010.07.043

    Article  Google Scholar 

  • Wang X, Huang JP, Zhang RD, Chen B, Bi JR (2010b) Surface measurements of aerosol properties over Northwest China during ARM China 2008 deployment. J Geophys Res 115:D00K27. doi:10.1029/2009JD013467

    Google Scholar 

  • Xiao ZY, Jiang H, Chen J, Wang B, Jiang ZS (2011) Monitoring the aerosol optical properties over Hangzhou using remote sensing data. Acta Sci Circumst 31:1758–1767

    Google Scholar 

  • Xie Y, Zhang Y, Xiong XX, Qu JJ, Che HZ (2011) Validation of modis aerosol optical depth product over China using Carsnet measurements. Atmos Environ 45:5970–5978. doi:10.1016/j.atmosenv.2011.08.002

    Article  Google Scholar 

  • Yan H, Wu Y, Zhang SJ, Song SJ, Fu LX, Hao JM (2014) Emission characteristics and concentrations of vehicular black carbon in a typical freeway traffic environment of Beijing. Acta Sci Circum 34:1891–1899. doi:10.13671/j.hjkxxb.2014.0523

    Google Scholar 

  • Zege EP, Ivanov AP, Katsev IL (1991) Image transfer through a scattering medium. Springer, New York

    Book  Google Scholar 

  • Zhang XY, Wang YQ, Niu T, Zhang XC, Gong SL, Zhang YM, Sun JY (2012) Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys 12:779–799. doi:10.5194/acp-12-779-2012

    Article  Google Scholar 

  • Zhang JK, Sun Y, Liu ZR, Ji DS, Hu B, Liu Q, Wang YS (2013a) Characterization of submicron aerosols during a serious pollution month in Beijing (2013) using an aerodyne high-resolution aerosol mass spectrometer. Atmos Chem Phys 13:19009–19049. doi:10.5194/acpd-13-19009-2013

    Article  Google Scholar 

  • Zhang R, Jing J, Tao J, Hsu SC, Wang G, Cao J, Lee CSL, Zhu L, Chen Z, Zhao Y, Shen Z (2013b) Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmos Chem Phys 13:7053–7074. doi:10.5194/acp-13-7053-2013

    Article  Google Scholar 

  • Zhao HJ, Che HZ, Zhang XY, Ma YJ, Wang YF, Wang XX, Liu C, Hou B, Che HC (2013) Aerosol optical properties over urban and industrial region of Northeast China by using ground-based sun-photometer measurement. Atmos Environ 75:270–278. doi:10.1016/j.atmosenv.2013.04.048

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program (2016YFA0601900), the NSFC Project of Nos. 41375153 and 41590874, CAMS Basic Research Project (2014R17), the Climate Change Special Fund of the CMA (CCSF201504), and Jiangsu Collaborative Innovation Center of Climate Change.

Author information

Authors and Affiliations

Authors

Contributions

Jie Yu and Huizheng Che designed and conceived the study. Hongbin Chen, Philippe Goloub, Quanliang Chen, Ke Gui, and Yu Zheng analyzed data. Hong Wang, Yaqiang Wang, Linchang An, Tianze Sun and Xiaoye Zhang significantly contributed to the manuscript’s revision. Jie Yu analyzed the data and wrote the paper.

Corresponding author

Correspondence to Huizheng Che.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Che, H., Chen, Q. et al. Comparison of Aerosol Optical Properties Between Two Nearby Urban Sites in Beijing, China. Aerosol Sci Eng 1, 78–92 (2017). https://doi.org/10.1007/s41810-017-0009-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41810-017-0009-x

Keywords

Navigation