Skip to main content

Advertisement

Log in

A Relook at Food Packaging for Cost Effective by Incorporation of Novel Technologies

  • Review
  • Published:
Journal of Packaging Technology and Research Aims and scope Submit manuscript

Abstract

Food packaging is one of the essential subject areas in food technology that play an important role in preserving all types of foods. Due to many disadvantages like a non-biodegradable and environmental problem in food packaging industry, a newer concept of use of biodegradable materials in food packaging from botanicals created tremendous innovative ideas in food packaging from past few years. An increased interest in hygiene in everyday life as well as in food, feed, and medical issues lead to a strong interest in films and blends to prevent the growth and accumulation of harmful bacteria. A growing trend is to use synthetic and natural antimicrobial polymers, to provide non-migratory and non-depleting protection agents for application in films, coatings, and packaging. The aim of this review was to offer a complete view of the state of the art on natural biodegradable polymer packages for food application compared to synthetics. Also, heightened overall developments in botanicals, natural and synthetic biopolymers in food packaging and its applications were described by focusing future improvements. This is a timely review as there has been a recent renewed interest in research studies, both in the industry and academia, towards the development of a new generation of biopolymer-based food packaging materials with possible applications in other areas. A lot of achievements in nanotechnology compared to synthetic materials attracted food industry for its wonderful applications in packaging was highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahvenainen R (ed) (2003) Novel food packaging techniques. Elsevier, London

    Google Scholar 

  2. Ahvenainen R, Hurve E (1997) Active and smart packaging for meeting consumer demands for quality and safety. Food Addit Contam 14(6–7):753–763

    Article  Google Scholar 

  3. Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. LWT Food Sci Technol 43(6):837–842

    Article  Google Scholar 

  4. Alavi S, Giannetta F, Nanjundaswamy A, Madl R, Vadlani P (2014) Delivery of antioxidants through fruits and antioxidants in extruded foods. Cereal Food World 4:179–185

    Article  Google Scholar 

  5. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3(2):113–126

    Article  Google Scholar 

  6. Aranaz I, Harris R, Navarro-García F, Heras A, Acosta N (2016) Chitosan based films as supports for dual antimicrobial release. Carbohydr Polym 146:402–410

    Article  Google Scholar 

  7. Arcan I, Yemenicioğlu A (2011) Incorporating phenolic compounds opens a new perspective to use zein films as flexible bioactive packaging materials. Food Res Int 44(2):550–556

    Article  Google Scholar 

  8. Arvanitoyannis IS (1999) Totally and partially biodegradable polymer blends based on natural and synthetic macromolecules: preparation, physical properties, and potential as food packaging materials. J Macromol Sci Rev Macromol Chem Phys C39:205–271

    Article  Google Scholar 

  9. Auras R, Harte B, Selke S (2004) An over view of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  Google Scholar 

  10. Azeredo HM, Miranda KW, Ribeiro HL, Rosa MF, Nascimento DM (2012) Nanoreinforced alginate–acerola puree coatings on acerola fruits. J Food Eng 113(4):505–510

    Article  Google Scholar 

  11. Baeumner A (2004) Nanosensors identify pathogens in food. Food Technol 58(8):51–55

    Google Scholar 

  12. Begley M, Hill C (2015) Stress adaptation in foodborne pathogens. Annu Rev Food Sci Technol 6:191–210

    Article  Google Scholar 

  13. Bitton R, Josef E, Shimshelashvili I, Shapira K, Seliktar D, Bianco-Peled H (2009) Phloroglucinol-based biomimetic adhesives for medical applications. Acta Biomater 5(5):1582–1587

    Article  Google Scholar 

  14. Brockgreitens J, Abbas A (2016) Responsive food packaging: recent progress and technological prospects. Comprehen Rev Food Sci Food saf 15:3–15

    Article  Google Scholar 

  15. Brody AL (2003) “Nano, Nano” food packaging technology. Food Technol 57(12):52–58

    Google Scholar 

  16. Brody AL (2006) Nano and food packaging technologies converge. Food Technol 60(3):92–94

    Google Scholar 

  17. Burton TM (2015) “FDA panel seeks tougher antibiotic labels”. Wall Street J

  18. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23(7):1273–1335

    Article  Google Scholar 

  19. Chen XG, Zheng L, Wang Z, Lee CY, Park HJ (2002) Molecular affinity and permeability of different molecular weight chitosan membranes. J Agri Food Chem 50(21):5915–5918

    Article  Google Scholar 

  20. Chung SK, Cho SH, Lee DS (1998) Modified atmosphere packaging of fresh strawberries by antimicrobial plastic films. Korean J Food Sci Technol 30(5):1140–1145

    Google Scholar 

  21. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38(6):421–464

    Article  Google Scholar 

  22. Corcione CE, Maffezzoli A (2009) Glass transition in thermosetting clay-nanocomposite polyurethanes. Thermochim Acta 485(1):43–48

    Article  Google Scholar 

  23. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582

    MathSciNet  Google Scholar 

  24. Cutter CN (2006) Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods. Meat Sci 74(1):131–142

    Article  Google Scholar 

  25. Darmadji P, Izumimoto M (1994) Effect of chitosan in meat preservation. Meat Sci 38(2):243–254

    Article  Google Scholar 

  26. De Kruijf N, van Beest M, Rijk R, Sipilailen-Malm T, Pasaero-Losada P, de Meulenaur B (2002) Active and intelligent packaging: application and regulatory aspects. Food Addit Contam 19:144–162

    Article  Google Scholar 

  27. Fang JM, Fowler PA, Escrig C, Gonzalez R, Costa JA, Chamudis L (2005) Development of biodegradable laminate films derived from naturally occurring carbohydrate polymers. Carbohyd Polym 60(1):39–42

    Article  Google Scholar 

  28. Farris S, Schaich KM, Liu LS, Piergiovanni L, Yam KL (2009) Development of polyion-complex hydrogel sasan alternative approach for the production of bio-based polymers for food packaging applications: a review. Trends Food Sci Technol 20(8):316–332

    Article  Google Scholar 

  29. Fassihi RA (1991) Preservation of medicines against microbial contamination. In: Block SS (ed) Disinfection, sterilization and preservation, 4th edn. Lea & Febiger, Malvern, pp 871–886

    Google Scholar 

  30. Fernandez-Saiz P, Soler C, Lagaron JM, Ocio MJ (2010) Effects of chitosan films on the growth of Listeria monocytogenes, Staphylococcus aureus and Salmonella spp. in laboratory media and in fish soup. Int J Food Microbiol 137(2):287–294

    Article  Google Scholar 

  31. Floros JD, Dock LL, Han JH (1997) Active packaging technologies and applications. Food Cos Drug Packag 20(1):10–17

    Google Scholar 

  32. Galet VM, Clemente RG, Muñoz PH (2015) Novel antimicrobial films based on ethylene-vinyl alcohol copolymers for food packaging application (Doctoral dissertation, Universitat Politècnica de València)

  33. Gherardi R, Becerril R, Nerin C, Bosetti O (2016) Development of a multilayer antimicrobial packaging material for tomato puree using an innovative technology. LWT Food Sci Technol 72(2016):361–367

    Article  Google Scholar 

  34. Gopu V, Meena CK, Shetty PH (2015) Quercetin influences quorum sensing in food borne bacteria: in vitro and in silico evidence. PLoS One 10(8):e0134684

    Article  Google Scholar 

  35. Graham LD, Danon SJ, Johnson G, Braybrook C, Hart NK, Varley RJ, Ramshaw JA (2010) Biocompatibility and modification of the protein-based adhesive secreted by the Australian frog Notaden bennetti. J Biomed Mater Res Part A 93(2):429–441

    Google Scholar 

  36. Ha JU, Kim YM, Lee DS (2001) Multilayered antimicrobial polyethylene films applied to the packaging of ground beef. Packag Technol Sci 14(2):55–62

    Article  Google Scholar 

  37. Hanani ZN, Beatty E, Roos YH, Morris MA, Kerry JP (2012) Manufacture and characterization of gelatin films derived from beef, pork and fish sources using twin screw extrusion. J Food Eng 113(4):606–614

    Article  Google Scholar 

  38. Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68(22):2831–2846

    Article  Google Scholar 

  39. Hugo WB, Russell AD (1998) Pharmaceutical microbiology. Blackwell Science. doi:10.1002/9780470988329.fmatter

  40. Jo HJ, Park KM, Na JH, Min SC, Park KH, Chang PS, Han J (2015) Development of anti-insect food packaging film containing a polyvinyl alcohol and cinnamon oil emulsion at a pilot plant scale. J Stored Prod Res 61:114–118

    Article  Google Scholar 

  41. Joerger RD, Sabesan S, Visioli D, Urian D, Joerger MC (2009) Antimicrobial activity of chitosan attached to ethylene copolymer films. Packag Technol Sci 22(3):125–138

    Article  Google Scholar 

  42. Khan YH, Islam A, Sarwar A, Gull N, Khan SM, Munawar MA, Zia S, Sabir A, Shafiq M, Jamil T (2016) Novel green nano composites films fabricated by indigenously synthesized graphene oxide and chitosan. Carbohyd Polym. doi:10.1016/j.carbpol.2016.03.031

    Google Scholar 

  43. Labuza TP, Breene W (1989) Application of ‘active packaging’ technologies for the improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods. In: Nutritional impact of food processing, vol 43. Karger Publishers, pp 252–259

  44. Laine C, Harlin A, Hartman J, Hyvärinen S, Kammiovirta K, Krogerus B, Pajari H, Rautkoski H, Setälä H, Sievänen J, Uotila J, Vähä-Nissi M (2013) Hydroxy alkylate dxylans—their synthesis and application in coatings for packaging and paper. Ind Crops Prod 44:692–704

    Article  Google Scholar 

  45. Lee DS, Hwang YI, Cho SH (1998) Developing antimicrobial packaging film for curled lettuce and soybean sprouts. Food Sci Biotechnol 7(2):117–121

    Google Scholar 

  46. Lei J, Yang L, Zhan Y, Wang Y, Ye T, Li Y, Deng H, Li B (2014) Plasma treated polyethylene terephthalate/polypropylene films assembled with chitosan and various preservatives for antimicrobial food packaging. Coll Surf B Bio interf 114:60–66

    Article  Google Scholar 

  47. Liu H, Mu L, Tang J, Shen C, Gao C, Rong M, Lai R (2014) A potential wound healing-promoting peptide from frog skin. Int J Biochem Cell Biol 49:32–41

    Article  Google Scholar 

  48. Liu H, Fengwei X, Long Y, Ling C, Lin L (2009) Thermal processing of starch-based polymers. Prog Polym Sci 34(12):1348–1368

    Article  Google Scholar 

  49. López P, Sánchez C, Batlle R, Nerín C (2007) Development of flexible antimicrobial films using essential oils as active agents. J Agric Food Chem 55(21):8814–8824

    Article  Google Scholar 

  50. Maki DG, Tambyah PA (2001) Engineering out the risk of infection with urinary catheters. Emerg Infect Dis 7:342–347

    Article  Google Scholar 

  51. Malhotra B, Keshwani A, Kharkwal H (2015) Int J Pharm Pharmaceut Sci 7(4):10–18

    Google Scholar 

  52. Malhotra B, Keshwani A, Kharkwal H (2015) Antimicrobial food packaging: potential and pit falls. Front Microbiol 6:611

    Article  Google Scholar 

  53. Manohar CM, Prabhawathi V, Sivakumar PM, Doble M (2015) Design of a papain immobilized antimicrobial food package with curcumin as a crosslinker. PloS One 10(4):e0121665. Medicine 339:2026–2027

  54. Manukumar HM, Prathima VR, Sowmya S, Thribhuvan KR (2013) Study of nutritional quality, phytochemical constituents and antioxidant activities by different solvents of nettle (Urtica urens) From Madikeri-Karnataka State. Int Res J Pharmaceut Appl Sci 3(5):112–119

    Google Scholar 

  55. Manso S, Becerril R, Nerin C, Gomez-Lus R (2015) Influence of Ph and temperature variations on vapor phase action of an antifungal food packaging against five mold strains. Food Contr 47:20–26

    Article  Google Scholar 

  56. Mensitieri G, Di Maio E, Buonocore GG, Nedi I, Oliviero M, Sansone L, Iannace S (2011) Processing and shelf life issues of selected food packaging materials and structures from renewable resources. Trends Food Sci Technol 22(2–3):72–80

    Article  Google Scholar 

  57. Mitrus M, Wojtowicz A, Moscicki L (2009) Biodegradable polymers and their practical utility. In: Janssen LPBM, Moscicki L (eds) Thermoplastic starch: a green material for various industries. Wiley, Weinheim, Germany

    Google Scholar 

  58. Mochizuki M, Hirami M (1997) Structural effects on the biodegradation of aliphatic polyesters. Polym Adv Technol 8(4):203–209

    Article  Google Scholar 

  59. Möller H, Grelier S, Pardon P, Coma V (2004) Antimicrobial and physicochemical properties of Chitosan–HPMC-based films. J Agric Food Chem 52(21):6585–6591

    Article  Google Scholar 

  60. Nampoothiri MK, Nair NR, Rojan PJ (2010) An over view of the recent developments in polylactide (PLA) research. Biores Technol 101(22):8493–8501

    Article  Google Scholar 

  61. Oussalah M, Caillet S, Salmiéri S, Saucier L, Lacroix M (2004) Antimicrobial and antioxidant effects of milk protein-based film containing essential oils for the preservation of whole beef muscle. J Agric Food Chem 52(18):5598–5605

    Article  Google Scholar 

  62. Ozdemir M, Floros JD (2004) Active food packaging technologies. Crit Rev Food Sci 44:185–193

    Article  Google Scholar 

  63. Park ES (2015) Antimicrobial polymeric materials for packaging applications: a review. The battle against microbial pathogens: basic science, technological advances and educational programs, 1

  64. Pawar PA, Purwar Aachal H (2013) Biodegradable polymers in food packaging. Am J Eng Res 2(5):151–164

    Google Scholar 

  65. Peltzer M, Wagner J, Jiménez A (2009) Migration study of carvacrol as a natural antioxidant in high-density polyethylene for active packaging. Food Addit Contam 26(6):938–946

    Article  Google Scholar 

  66. Pennisi E (2000) Geckos climb by the hairs of their toes. Science 288(5472):1717–1718

    Article  Google Scholar 

  67. Pereirade Abreu DA, Cruz JM, Losada PP (2012) Active and intelligent packaging for food industry. Food Rev Int 28(2):146–187

    Article  Google Scholar 

  68. Ponce AG, Roura SI, del Valle CE, Moreira MR (2008) Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: in vitro and in vivo studies. Postharvest Biol Technol 49(2):294–300

    Article  Google Scholar 

  69. Pranoto Y, Rakshit SK, Salokhe VM (2005) Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT-Food Sci Technol 38(8):859–865

    Article  Google Scholar 

  70. Quintavalla S, Vicini L (2002) Antimicrobial food packaging in Meat industry. Meat Sci 62:373–380

    Article  Google Scholar 

  71. Randenburg J (2009) Modified atmospheric packaging. In: Yan KL (ed) The Wiley encyclopedia of packaging technology. Wiley, Hoboken, pp 787–794

    Google Scholar 

  72. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652

    Article  Google Scholar 

  73. Robertson GL (2012) Food Packaging: principles and practices, 3rd edn. CRC Press-Taylor and Francis group, Boca Raton

    Google Scholar 

  74. Rojas-Graü MA, Avena-Bustillos RJ, Olsen C, Friedman M, Henika PR, Martín-Belloso O, Pan Z, McHugh TH (2007) Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. J Food Eng 81(3):634–641

    Article  Google Scholar 

  75. Rooney ML (2005) Introduction to active food packaging. In: Han JH (ed) Innovations in food packaging. Elsevier ltd., London, pp 63–75

    Chapter  Google Scholar 

  76. Rowe RC, Sheskey PJ, Owen SC (2006) Handbook of pharmaceutical excipients. Pharmaceutical Press

  77. Ruban SW (2009) Biobased packaging—application in meat industry. Vet World 2(2):79–82

    Article  Google Scholar 

  78. Rubio EM, Domingo R, Arenas JM, Gonzalez C (2004) Energetic analysis of drawing process by upper-bound techniques. J Mater Process Tech 155:1220–1226

    Article  Google Scholar 

  79. Rutot D, Dubois P (2004) Les (bio) polymeres biodegradables: l’enjeu de demain? Chim Nouv 86:66–74

    Google Scholar 

  80. Sabde S, Bodiwala HS, Karmase A, Deshpande PJ, Kaur A, Ahmed N, Bhutani KK (2011) Anti-HIV activity of Indian medicinal plants. J Nat Med 65(3–4):662–669

    Article  Google Scholar 

  81. Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34(9):982–1021

    Article  Google Scholar 

  82. Sawant SN, Selvaraj V, Prabhawathi V, Doble M (2013) Antibiofilm properties of silver and gold incorporated PU, PCLm, PC and PMMA nanocomposites under two shear conditions. PLoS One 8(5):e63311

    Article  Google Scholar 

  83. Scott G, Wiles DM (2001) Reviews programmed-life plastics from polyolefins: a new look at sustainability. Biomacromol 2(3):615–622

    Article  Google Scholar 

  84. Scott G (2000) Greenpolymer. Polym Degrad Stab 68:1–7

    Article  Google Scholar 

  85. Seydim AC, Sarikus G (2006) Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res Int 39(5):639–644

    Article  Google Scholar 

  86. Sodergard A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Progr Polym Sci 27:1123–1163

    Article  Google Scholar 

  87. Sun L, Sun J, Chen L, Niu P, Yang X, Guo Y (2017) Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohydr Polym 163:81–91

    Article  Google Scholar 

  88. Suppakul P, Miltz J, Sonneveld K, Bigger SW (2002) Preliminary study of antimicrobial films containing the principal constituents of basil. World Conference on Packaging: Proceedings of the 13th Intl. Assoc. of Packaging Res. Inst., Michigan State Univ., East Lansing, Mich., June 23–28. Fla.: CRC Press LLC. pp 834–839

  89. Tang E, Cheng G, Ma X (2006) Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles. Powder Technol 161(3):209–214

    Article  Google Scholar 

  90. Tokiwa Y, Suzuki T (1981) Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. J App Polym Sci 26(2):441–448

    Article  Google Scholar 

  91. Tripathi S, Mehrotra GK, Dutta PK (2008) Chitosan based antimicrobial films for food packaging applications. e-Polymers 8(1):1082–1088 (ISSN1618-7229)

    Article  Google Scholar 

  92. Valderrama Solano AC, de Rojas Gante C (2012) Food Bioprocess Technol 5:2522

    Article  Google Scholar 

  93. Van Den Broek LAM, Knoop RJI, Kappen FHJ, Boeriu CG (2015) Chitosan films and blends for packaging material. Carbohydr Polym 116:237–242

    Article  Google Scholar 

  94. Vert M (2002) Polymères de fermentation: Les poly (acide lactique) s et leurs précurseurs, les acides lactiques. L’Actualité chimique 11–12:79–82

    Google Scholar 

  95. Wang XX, Huang MY, Jiang YY (1992) Hydrogenation catalytic behaviors of palladium complexes of chitin and chitosan. In: Macromolecular symposia, vol. 59, no. 1. Hüthig & Wepf Verlag, pp 113–121

  96. Weber CJ, Haugaard V, Festerson R, Bertelson G (2002) Production and applicationof biobased packaging material for food industry. Food Addit Contam 19:172–177

    Article  Google Scholar 

  97. Willis D, Saidman S (2013) Botanical essential oils as natural food preservatives. In: 13th Annual Freshman Engineering Conference

  98. Youssef AM, El-Sayed SM, El-Sayed HS, Salama HH, Dufresne A (2016) Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohydr Polym 151:9–19

    Article  Google Scholar 

  99. Zhang X, Xiao G, Wang Y, Zhao Y, Su H, Tan T (2017) Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr Polym 169:101–107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. P. Ananda or N. B. Krishnamurthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ananda, A.P., Manukumar, H.M., Umesha, S. et al. A Relook at Food Packaging for Cost Effective by Incorporation of Novel Technologies. J Package Technol Res 1, 67–85 (2017). https://doi.org/10.1007/s41783-017-0011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41783-017-0011-4

Keywords

Navigation