Skip to main content
Log in

Robotic prefabrication of timber structures: towards automated large-scale spatial assembly

  • Original Paper
  • Published:
Construction Robotics Aims and scope Submit manuscript

Abstract

Despite modern timber construction being on the forefront of digital technology in construction, subtractive CNC—fabrication technologies are still predominantly used in the industry. An important break in the digital chain occurs when prefabricated small building parts have to be assembled manually into functional modules. This can result in a loss of digital information in the process. Therefore, a robotic setup for timber construction was specifically developed by the authors enabling large-scale spatial fabrication possibilities using a combination of subtractive external tools for cutting and drilling and additive robotic operations. Through automatization techniques and innovative feedback processes, the system can minimize material waste by reacting to different material sizes even during the construction process. In a case study, which was undertaken in the course of the Master of Advanced Studies program in Digital Fabrication at ETH Zurich, a complete digital workflow using additive robotic fabrication processes in timber construction was realized. We demonstrate the conception of the worldwide first double-story robotically assembled timber structure, explain its fabrication processes including an integrated envelope, and conclude by analyzing the robotic fabrication technologies in terms of their efficiency and structural and functional capabilities and limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Global precision refers to an industrial robots capability and precision of reaching coordinates and orientations in his workspace (\(<1\) mm).

  2. Centre for Information Technology and Architecture, The Royal Danish Academy of Fine Arts.

  3. Master of Advanced Studies in Architecture and Digital Fabrication of the NCCR Digital Fabrication at ETH Zurich.

  4. ABB IRB 4600, reach: 2.55 m, payload: 40 kg.

  5. ABB IRBT 2005.

  6. Schunk PEH 30.

  7. Beckhoff EK9300 PROFINET-IO-Buskoppler for EtherCAT.

  8. ABB controller specific programming environment in Rapid language.

  9. Self-weight, Safety Factor SF: 1.35; Live loads: 2 kN/m\(^2\) (SF: 1.5); Snow: 1 kN/m\(^2\) (SF: 1.35) Wind: 1 kN/m\(^2\) (SF: 1,5).

References

  • Apolinarska A et al (2016) The sequential roof. In: Menges A et al (eds), Advancing wood architecture, Routledge, London

  • Apolinarska A et al (2016) Mastering the Sequential Roof. In: Advances in Architectural Geometry 2016, vdf Hochschulverlag AG an der ETH Zurich. doi:10.3218/3778-4_17

  • Beyer P-H (1991) Technologie von CNC-Holzbearbeitungsmaschinen, 2nd edn. Cornelsen/Schwann-Girardet, Dusseldorf

    Google Scholar 

  • Boafo F, Kim J-H, Kim J-T (2016) Performance of modular prefabricated architecture: case study-based review and future pathways. Sustainability 8:558. doi:10.3390/su8060558

    Article  Google Scholar 

  • Chao M et al (2013) Comparative study of greenhouse gas emissions between off-site prefabrication and conventional construction methods: two case studies of residential projects. Energy Build 66:165–176

    Article  Google Scholar 

  • Dőrfler K et al (2012) Interlacing, an experimental approach to integrating digital and physical design methods. In: Robotic fabrication in architecture, art and design, Springer, New York, pp 82–91

  • FEM - software (2016) Karamba. www.karamba3d.com. Accessed 25 Nov 2016

  • Hans Hundegger AG (2016). Products. www.hundegger.de. Accessed 25 Nov 2016

  • Helm V et al (2016) Additive robotic fabrication of complex timber structures. In: Menges A et al (eds), Advancing wood architecture, Routledge, London

  • Holzbau Entwicklungsgemeinschaft (2017) Regeln für die Verwendung von Holzschindeln für Auenwandbekleidungen. Bauten mit Holz, 6 Jg, S 86

  • Internationale Konferenz zur Automation in der Holzwirtschaft (2006) 12. und 13. Oktober 2006, Biel, Schweiz, Biel : Berner Fachhochschule - Architektur, Holz und Bau

  • Jeffers M (2013) Autonomous robotic assembly with variable material properties, robotic fabrication in architecture, art and design. Springer, New York, pp 48–61

  • Jeska S, Pascha KS (2015) Emergent timber technologies materials, structures, engineering, projects. Birkhuser, Basel

    Google Scholar 

  • Knippers J, Menges A (2013) ICD/ITKE research pavilion 2011. In: Hu C (ed), Architectural material and Texture I, pp 266–273 (2013). ISBN 978-7-214-08683-9

  • Menges A (2012) Material computation higher integration in morphogenetic design. Archit Des Vol 82, No 2, Wiley Academy, London (2012). ISBN: 978 0470973301

  • Monier V, Bignon J-C, Duchanois G (2013) Use of irregular wood components to design non-standard structures. Adv Mater Res 671–674:2337–2343. ISSN: 1662-8985

  • Niemiec SS, Brown TD (1993) Care and maintenance of wood shingle and shake roofs. Oregon State University Extension Service, EC 1271

  • Parascho S, Gandia A et al (2017) Cooperative fabrication of spatial metal structures. In: Menges A, Sheil B, Glynn R, Skavara M (eds), Fabricate 2017, UCL Press, London, pp 24–29

  • Popovic D, Fast-Berglund A, Winroth M (2016) Production of customized and standardized single family timber houses. A comparative study on levels of automation. 7th Swedish production symposium, vol 1

  • Robeller C, Hahn B, Mayencourt P, Weinand Y (2014) CNC-fabricated dovetails for joints of prefabricated CLT components. Bauingenieur 89:487–490

    Google Scholar 

  • Robeller C, Weinand Y (2016) Integrale Verbindungen fr Faltwerke aus Holzwerkstoffplatten. Detail -Munchen 1:68–74

    Google Scholar 

  • Sass L (2007) Synthesis of design production with integrated digital fabrication. Automation in construction 16, Elsevier, Amsterdam, pp 298–310

  • Scheurer F (2011) Digitaler Workflow im Freiform-Holzbau. Forum Bois Construction Beaune, Biel, Forum Holzbau

    Google Scholar 

  • Schindler C, Tamke M, Tabatabai A, Bereuter M, Yoshida H (2014) Processing branches: reactivating the performativity of natural wooden form with contemporary information technology. Int J Archit Comput 12(2):101–115. doi:10.1260/1475-472X.12.2.101

    Article  Google Scholar 

  • Søndergaard A et al (2016) Topology optimization and robotic fabrication of advanced timber space-frame structures. Robotic fabrication in architecture, art and design, Springer, New York, pp 190–203

  • Weinand Y (2009) Innovative timber constructions. J Int Assoc Shell Spatial Struct 50(2):111–120

    Google Scholar 

  • Zock P, Bachmann E, Gramazio F, Kohler M, Kohlhammer T, Knauss M, Sigrist C, Sitzmann S (2014) Additive robotergestützte Herstellung komplexer Holzstrukturen, 46. Tagungsband Fortbildungskurs Holzverbindungen mit Klebstoffen fr die Bauanwendung, pp 197–208

Download references

Acknowledgements

The case study project was realized in the framework of a Master of Advanced Studies class on digital fabrication with the students Jay Chenault, Alessandro Dell’Endice, Matthias Helmreich, Nicholas Hoban, Jesús Medina, Pietro Odaglia, Federico Salvalaio, and Stavroula Tsafou. This study was supported by the NCCR Digital Fabrication, Funded by the Swiss National Science Foundation SNSF. (Agreement # 51NF40-141853), and builds directly on research findings and developments from the NRP-66/ SNSF research project “Additive Robotic Fabrication of Complex Timber Structures”, established in collaboration between ETH Zurich, Bern University of Applied Science and Nolax AG. We would like to thank the companies Schilliger Holz AG, Rothoblaas, Krinner Ag, ABB, and BAWO Befestigungstechnik AG for their generous support. We would also like to thank P. Fleischmann and M. Lyrenmann for their advice and continuous efforts for the robotic setup and V. Helm and E. Schling for reviewing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Eversmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eversmann, P., Gramazio, F. & Kohler, M. Robotic prefabrication of timber structures: towards automated large-scale spatial assembly. Constr Robot 1, 49–60 (2017). https://doi.org/10.1007/s41693-017-0006-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41693-017-0006-2

Keywords

Navigation