Skip to main content

Advertisement

Log in

H2O2-Responsive MB–BSA–Fe(III) Nanoparticles as Oxygen Generators for MRI-Guided Photodynamic Therapy

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

The local tumor hypoxia has become one of the main obstacles for photodynamic therapy (PDT).To break through this barrier, the fabrication of O2-evolving nanoplatform has been more significant. Herein, the uniform methylene blue (MB)–bovine serum albumin (BSA)–Fe(III) nanoparticles (MB–BSA–Fe(III) NPs) were successfully synthesized by biomineralization approach. MB–BSA–Fe(III) NPs show high loading capacity of MB, and Fe(ΙΙΙ) has excellent catalytic performance towards abundant H2O2 in cancer cells to generate O2, overcoming tumor hypoxia. All these combination effects remarkably increase the therapeutic efficiency of PDT, resulting in almost complete destruction of cancer cells. Most importantly, MB–BSA–Fe(III) NPs exhibit T2- magnetic resonance imaging, which have the potential for precise visualization of the tumor location. Our results demonstrate that MB–BSA–Fe(III) is a novel H2O2-responsive and O2-evolving nanoplatform and it has great potential for clinical applications such as cancer diagnosis, treatment or drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang Z, Wang J, Chen C. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv Mater. 2013;25:3869–80.

    Article  CAS  Google Scholar 

  2. Peer D, Karp J, Hong S, Farokhzad O, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotech. 2007;2:751–60.

    Article  CAS  Google Scholar 

  3. Mitra A, Stables G. Topical photodynamic therapy for non-cancerous skin conditions. Photodiagn Photodyn. 2006;3:116–27.

    Article  CAS  Google Scholar 

  4. Shen L, Huang Y, Chen D, Qiu F, Ma C, Jin X, Zhu X, Zhou G, Zhang Z. pH-responsive aerobic nanoparticles for effective photodynamic therapy. Theranostics. 2017;7:4537–50.

    Article  Google Scholar 

  5. Liu Y, Liu Y, Bu W, Cheng C, Zuo C, Xiao Q, Sun Y, Ni D, Zhang C, Liu J, Shi J. Hypoxia induced by upconversion-based photodynamic therapy: towards highly effective synergistic bioreductive therapy in tumors. Angew Chem Int Ed. 2015;127:8223–7.

    Article  Google Scholar 

  6. Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H, Meng X, Wang P, Lee C, Zhang W, Han X. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2011;5:4596–603.

    Google Scholar 

  7. Schulze A, Harris A. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012;491:364–73.

    Article  CAS  Google Scholar 

  8. Wang Y, Yang T, Ke H, Zhu A, Wang Y, Wang J, Shen J, Liu G, Chen C, Zhao Y, Chen H. Nanocomposites: smart albumin-biomineralized nanocomposites for multimodal imaging and photothermal tumor ablation. Adv Mater. 2015;27:3841–9.

    Article  Google Scholar 

  9. Wang Z, Huang P, Jacobson O, Wang Z, Liu Y, Lin L, Lin J, Lu N, Zhang H, Tian R, Niu G, Liu G, Chen X. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. ACS Nano. 2016;10:3453–60.

    Article  CAS  Google Scholar 

  10. Pan J, Wang Y, Pan H, Zhang C, Zhang X, Fu Y, Zhang X, Yu C, Sun S. X Yan. Mimicking drug–substrate interaction: a smart bioinspired technology for the fabrication of theranostic nanoprobes. Adv Funct Mater. 2017;27:1603440.

    Article  Google Scholar 

  11. Chen Q, Liu Z. Albumin carriers for cancer theranostics: a conventional platform with new promise. Adv Mater. 2016;28:10557–66.

    Article  CAS  Google Scholar 

  12. Wang D, Xue B, Kong X, Tu L, Liu X, Zhang Y, Chang Y, Luo Y, Zhao H, Zhang H. 808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging. Nanoscale. 2015;7:190–7.

    Article  CAS  Google Scholar 

  13. Kim J, Cho H, Jeon H, Kim D, Song C, Lee N, Choi S, Hyeon T. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J Am Chem Soc. 2017;139:10992–5.

    Article  CAS  Google Scholar 

  14. Wang Y, Yang C, Yan X. Hydrothermal and biomineralization synthesis of a dual-modal nanoprobe for targeted near-infrared persistent luminescence and magnetic resonance imaging. Nanoscale. 2017;9:9049–55.

    Article  CAS  Google Scholar 

  15. Chen Q, Feng L, Liu J, Zhu W, Dong Z, Wu Y, Liu Z. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv Mater. 2016;28:7129–36.

    Article  CAS  Google Scholar 

  16. Ma Z, Zhang M, Jia X, Bai J, Ruan Y, Wang C, Sun X, Jiang X. Fe(III) -doped two-dimensional C3N4 nanofusiform: a new O2-evolving and mitochondria-targeting photodynamic agent for MRI and enhanced antitumor therapy. Small. 2016;12:5477–87.

    Article  CAS  Google Scholar 

  17. Yang G, Xu L, Chao Y, Xu J, Sun X, Wu Y, Peng R, Liu Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat Commun. 2017;8:902–14.

    Article  Google Scholar 

  18. Guo W, Qiu Z, Guo C, Ding D, Li T, Wang F, Sun J, Zheng N, Liu S. Multifunctional theranostic agent of Cu2(OH)PO4 quantum dots for photoacoustic image-guided photothermal/photodynamic combination cancer therapy. ACS Appl Mater Interfaces. 2017;9:9348–58.

    Article  CAS  Google Scholar 

  19. Sheng Z, Hu D, Zheng M, Zhao P, Liu H, Gao D, Gong P, Gao G, Zhang P, Ma Y, Cai L. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano. 2014;8:12310–22.

    Article  CAS  Google Scholar 

  20. Zhang C, Bu W, Ni D, Zhang S, Li Q, Yao Z, Zhang J, Yao H, Wang Z, Shi J. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angew Chem Int Ed. 2016;128:2141–6.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21675149, 21505130, 21705146), the Science and Technology Development Program of Jilin Province (20150519014JH, 20170414037GH, 20170520133JH), and the Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SLH019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-E Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 85 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, WY., Bai, J., Jia, XD. et al. H2O2-Responsive MB–BSA–Fe(III) Nanoparticles as Oxygen Generators for MRI-Guided Photodynamic Therapy. J. Anal. Test. 2, 69–76 (2018). https://doi.org/10.1007/s41664-018-0050-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-018-0050-z

Keywords

Navigation