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Abstract The optimal location and sizing of distribution

static compensator (DSTATCOM) in distribution systems

is a complex nonlinear problem. This problem is con-

strained by various technical limits and can offer different

objectives that would provide many benefits to the net-

work. These include minimization of power losses, index

of voltage profile, load balancing index, and annual cost

saving index which have been considered in this paper. In

the present work, the Imperialist Competitive Algorithm

(ICA) is employed for optimizing the distribution systems

where an optimal location and sizing of DSTATCOM is

investigated. In this study, an aggregating operator named

Max-geometric mean is used for combination of objectives

and providing overall objective function. The scaling of

objectives is performed in the fuzzy framework. The pro-

posed algorithm is implemented in 33 and 69 buses IEEE

test systems. Furthermore, the uncertainty of the loads of

the balanced system is modeled by using a fuzzy technique.

Based on the numerical results of this work, one can extract

that the performance of the ICA is slightly higher than

other meta-heuristic algorithms; hence the introduced

approach can be used by utility services for optimal

DSTATCOM allocation and sizing in the distribution

systems.

Keywords Distribution system � Distribution static

compensator (DSTATCOM) � Multi-objective

optimization � Imperialist competitive algorithm (ICA) �
Allocation and sizing � Uncertainty

Introduction

Recently, using modern techniques and power electronic

devices such as flexible AC transmission systems (FACTS)

in distribution systems have increased obviously. This

increase can be justified by factors such as environmental

concerns, the restructuring of the electricity market, com-

plete utilization of lines capacity, improvement power

quality and enhancement of voltage stability (Kumar and

Mishra 2014). Researches have shown that installation of

FACTS based equipment in the power distribution system

could lead to achieve many benefits such as voltage profile

improvement, reduction in lines losses, security enhance-

ment for critical loads, reduction in the on-peak operation

cost and improvement in the power quality and reliability

of supply (Patel et al. 2016). This equipment includes solid

state transfer switch (SSTS), dynamic voltage restorer

(DVR), distribution static compensator (DSTATCOM) and

unified power quality conditioner (UPQC) (Chan-

drasekaran and Ramachandaramurthy 2016; Vinkovic and

Mihalic 2008). In this paper, DSTATCOM as a shunt

connected voltage sourced converter (VSC) is employed to

enhance of objectives. In order to maximize the benefits of

installation of DSTATCOM, it is essential to determine the

optimal size of units and their best location in distribution

systems; otherwise, it could lead to adverse effects such as

increase in power losses and network costs (Yuvaraj et al.

2015a). In recent years, many various methods have been

reported to solve this problem. Some of the different
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methodologies used in this concern have been published in

Duan et al. (2016) and Kavousi-Fard and Akbari-Zadeh

(2014).

Different methods have been used to solve the opti-

mal location and sizing of DSTATCOM problem.

Authors in Devi and Geethanjali (2014) have used par-

ticle swarm optimization (PSO) algorithm for obtaining

the optimal location and sizing of distributed generation

(DG) and DSTATCOM. The objectives include reducing

the total power losses along with voltage profile

improvement of the radial distribution system. In Taher

and Afsari (2014), an immune Algorithm (IA) is used to

search the optimal location and sizing of DSTATCOM

for obtaining power loss reduction and improvement of

current and voltage profile in distribution systems.

Authors in Jazebi et al. (2011) have used differential

evolution (DE) algorithm for DSTATCOM allocation in

distribution networks considering reconfiguration. The

main goals include mitigating losses and improving

voltage profile. A stochastic framework based on the

point estimate method (PEM) load flow to consider the

uncertainty effects of loads in DSTATCOM allocation

and sizing problem is investigated in Khorram-Nia et al.

(2013). Authors in Akbari-Zadeh et al. (2014) have

studied a new stochastic structure to simulate the

uncertainty of loads for optimal allocation and sizing of

DSTATCOM. The objectives are minimizing the total

active power losses and diminishing the voltage devia-

tion of the buses. The suggested structure in Mahendra

Repalle et al. (2014) includes a fuzzy logic based opti-

mal location and sizing of DSTATCOM in radial dis-

tribution systems for voltage profile improvement.

Authors in Li and Li (2014) have determined the optimal

location of DSTATCOM based on the dynamic analytic

method and the trajectory sensitivity index for

improvement of nodes voltage stability. In Bagheri

Tolabi et al. (2015), a combination of a fuzzy multi-

objective approach and ant colony optimization (ACO)

algorithm to solve the simultaneous reconfiguration and

optimal allocation (size and location) of photovoltaic

(PV) arrays and DSTATCOM in a distribution system is

proposed. The objectives of the mentioned research

include loss reduction, voltage profile improvement, and

increase in the feeder load balancing.

Considering the above-discussed literature, the con-

tribution of this paper is to introduce imperialist com-

petitive algorithm (ICA) as an evolutionary

optimization tools to solve proposed multi-objective

nonlinear problem. The proposed algorithm is imple-

mented for the optimal allocation of DSTATCOM in

distribution systems using a fuzzy-based multi-objective

programming method. The considered objective

functions include the minimization of total real power

losses, index of voltage profile (IVP), load balancing in

the feeders, and annual cost. A fuzzy-based framework

is used to transform objective functions into fuzzy

memberships and then finally to combine them into a

single-objective function, which is optimized subject to

a variety of power system operational constraints. The

uncertainty of the loads is modeled by using a fuzzy

approach. The proposed method is tested on balanced

33-bus and 69-bus distribution systems. Numerical

results show the efficiency of the ICA algorithm com-

pared to the other algorithms.

The rest of this paper is organized as follows. In Sect. 2,

the proposed formulation for optimal location and sizing of

DSTATCOM in distribution systems is presented. In

Sect. 3, the basic principle of the proposed algorithm is

described. Application of the proposed method to the

problem is elaborated in Sect. 4. Section 5 models the

uncertainty of the loads. Section 6 details test results.

Finally, Sect. 7 concludes the paper.

Proposed Formulation for Optimal Location
and Sizing of DSTATCOM

In this section, the proposed formulation for optimal

location and sizing of DSTATCOM in distribution systems

is elaborated with its objective functions and constraints.

Objective Functions

Minimization of Power Losses

Minimizing active power losses has been one of the deci-

sive issues in distribution systems. It is calculated as sum of

power losses of branches as:

Ploss ¼
XNbr

k¼1

Rk Ikj j2 ð1Þ

Min f1 ¼ IPL ¼
Plossafter

Plossbefore

; ð2Þ

where Rk and Ik represent the resistance and current of

branch k, respectively; Nbr is the total number of branches

in the system; IPL is Index of Power Loss; Plossbefore is the

real power loss before allocation of DSTATCOM; Plossafter

is the real power loss of the radial system after allocation.

Minimization of Index of Voltage Profile (IVP)

For the purpose of minimizing the buses voltage deviation,

the IVP is defined as follows:
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Min f2 ¼ IVP ¼
PNbus

i¼1 1� Viafter

�� ��
PNbus

i¼1 1� Vibefore

�� �� ; ð3Þ

where Viafter and Vibefore are the values of bus voltage for each

configuration after and before allocation, respectively; Nbus

is the number of buses.

Minimization of Load Balancing Index (LBI)

For the purpose of load balancing, first, an appropriate

parameter is defined, indicating the loaded portion of the

branches. This portion is defined as the line usage index for

the ith branch, calculated as follows (Saffar et al. 2011):

Line Usage Index ¼ Ik

Imaxk

; ð4Þ

where Ik represents the current of branch k; Ik
max is the

permitted rating of branch k.

LBI is calculated and parameter of Y can be expressed as

follows:

Y ¼ I1

Imax1

I2

Imax2

I3

Imax3

. . .. . .:
INbr

ImaxNbr

" #
: ð5Þ

So the LBI is expressed as follows:

LBI ¼ Var Yð Þ ð6Þ

Min f3 ¼
LBIafter

LBIbefore
; ð7Þ

where Var represents the variance operation; LBIafter and

LBIbefore are the values of the LBI for each configuration

after and before allocation, respectively. The smaller value

of the LBI index indicates that the load balancing has been

conducted more efficiently.

Minimization of Annual Cost Saving Index (ACSI)

The investment cost for a DSTATCOM per year is calcu-

lated according to the following equation:

COSTDSTATCOM;year ¼ COSTDSTATCOM � Qinst

� ð1þ BÞn � B

ð1þ BÞn � 1
; ð8Þ

where COSTDSTATCOM;year is annual cost of DSTATCOM;

COSTDSTATCOM is cost of investment in the year of allo-

cation; B is asset rate of return; Qinst is capacity of installed

DSTATCOMs; n represents the lifelong of DSTATCOM.

The ACSI for a DSTATCOM is defined as:

Min f4 ¼ ACSI

¼
KL T � PWITH

TLOSS

� �
þ ðKTDP � COSTDSTATCOM;yearÞ

KL T � PWITHOUT
TLOSS

� � ;

ð9Þ

where KL is energy cost of losses; T is hours per year; KTDP

is time duration proportion; PTLOSS
WITHOUT and PTLOSS

WITH represent

total power loss before and after installation of DSTAT-

COM, respectively.

Fuzzy-Based Combination of Objective Functions

In order to find a solution in which all objective functions

are optimized, a multi-objective programming method

should be used. Due to the fact that the four considered

objective functions have different scales, using the simple

method of combining them into one objective function

results in scaling problems. In order to transform objective

functions into the same range, the fuzzification method is

used (Akorede et al. 2011). Applying this method, all

objective functions are fuzzified and transformed into the

same range of [0, 1]. The trapezoidal fuzzy membership

function for objective function i is defined as:

qi ¼

1 fi � f mini

f maxi � fi

f maxi � f mini

f mini � fi � f maxi

0 fi � f maxi

8
>>>><

>>>>:

; ð10Þ

where fi
min and fi

max represent the ideal and nadir values for

objective function i, respectively; fi is objective function

value; qi is its fuzzy membership value.

Ideal and nadir values represent the best and worst

accessible values of each objective function in the solution

space of the problem, respectively. The ideal value for each

objective function is obtained by individually optimizing

that objective function regardless of other objective func-

tions. Then, we should carry out four individual single-

objective optimization tasks to get the ideal value of four

objective functions described in the previous subsec-

tion. By individually optimizing each objective function,

the values of other objective functions are also obtained

and they may not be optimal if objective functions are

competing; i.e. optimizing one objective function causes

others to be deteriorated. Among the obtained values from

individual optimizations, the worst value of each objective

0

1

Fig. 1 Trapezoidal fuzzy membership function for objective

functions
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function gives its nadir value. More details can be found in

Akorede et al. (2011).

Fuzzy membership as a function of objective function is

depicted in Fig. 1. In this figure, a smaller value of the

objective function leads to a larger membership function,

which is more preferred when the objective function is for

minimization. In the proposed method, four memberships of

qLoss, qIVP, qLBI, and qACSI are calculated for the objective

functions of loss, IVP,LBI, andACSI, respectively. There are

several methods to combine these memberships and consti-

tute an overall fuzzy satisfaction function representing the

fitness of the solution of the multi-objective problem. If the

combination of objective functions is done carefully without

scaling problems, Pareto optimality of the solution can be

guaranteed (Esmaili 2013) and, at the same time, it has less

computation burden than Pareto-based methods (Esmaili

2013). This type of combining objective functions has been

already used in some papers such as Akorede et al. (2011)

using some operators. In Gupta et al. (2010) introduced a

newer operator named ‘‘max geometric mean’’ that provided

better performance than other techniques of combining

objective functions. Using this technique, the degree of

overall fuzzy satisfaction is computed as follows:

lf ¼ qLoss:qIVP:qLBI :qACSIð Þ1=4; ð11Þ

where lf represents the overall fitness function of the

solution. This overall fitness function is the objective

function that is maximized in the DSTATCOM optimal

allocation and sizing multi-objective problem.

Constraints

The proposed multi-objective problem for DSTATCOM

allocation is optimized subject to following constraints.

Power Flow Equations

Active and reactive power balance at each node of the

network should be observed using following constraints:

PGi � PDi ¼
XNbus

j¼1

Vij j Vj

�� �� Yij
�� �� cos di � dj � uij

� �
i

¼ 1; . . .;Nbus ð12Þ

QGi � QDi ¼
XNbus

j¼1

Vij j Vj

�� �� Yij
�� �� sin di � dj � uij

� �
i

¼ 1; . . .;Nbus; ð13Þ

where PGi and QGi are active and reactive generations at

bus i; PDi and QDi are active and reactive demands at bus

i; Vi and di represent the magnitude and angle of voltage

phasor at bus i; |Yij| and uij are the magnitude and angle of

ij entry from the bus admittance matrix.

Branch Current Limits

In order to protect cables and feeders against excessive

currents, their rating should be taken into account:

Ikj j � Imaxk k ¼ 1; . . .;Nbr ð14Þ

Bus Voltage Permissible Range

Bus voltages, after the DSTATCOM allocation and sizing

problem should remain in their permissible range specified

by the system operator:

Vmin �Vj �Vmax j ¼ 1; . . .;Nbus; ð15Þ

where Vmin and Vmax are minimum and maximum allow-

able voltages, respectively, which are considered Vmin ¼
0:95pu and Vmax ¼ 1:05pu.

DSTATCOM Reactive Generation Limits

DSTATCOM output reactive power should be kept within

their operational limits given by its manufacturer:

Qmin
DSTATCOM �QDSTATCOM �Qmax

DSTATCOM ; ð16Þ

where QDSTATCOM
min and QDSTATCOM

max are minimum and

maximum generated reactive power by DSTATCOM,

respectively, which are considered Qmin
DSTATCOM ¼ 0kVAr

and Qmax
DSTATCOM ¼ 10000kVAr.

DSTATCOM Modeling

The static model of DSTATCOM should consider losses

such as transformer and inverter losses. The basic principles

and mathematical model of STATCOM and DSTATCOM

are similar, therefore the power flow model of STATCOM

seems to be suitable for power flow studies of DSTATCOM.

In steady state conditions, DSTATCOMbehaves similarly to

a shunt reactive power source that adjusts the voltage mag-

nitude of the buswhere it is to be installed. If the bus i is a load

bus of the system with a consumption equal to PLi ? jQLi,

the model of DSTATCOM on bus i can be considered as a

new PV bus j that is added to bus iwith its active power set to

zero (Kazemtabrizi and Acha 2014). The transformer is

modeled by its leakage resistance and reactance; RT ? jXT.

This model is illustrated in Fig. 2.

Imperialist Competitive Algorithm (ICA)

The policy of extending the power of an imperial beyond

its own boundaries is named imperialism. An imperialist

uses different policy for dominating other countries include

direct rule or by less clear tools such as control of the
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market for goods or raw materials. Atashpaz-Gargari and

Lucas (2007) proposed the ICA in 2007. This algorithm as

a socio-politically motivated global search strategy has

recently been used for optimizing different optimization

tasks (Ali 2015; Khabbazi et al. 2009).

Initialization Phase

This algorithm similar to other evolutionary algorithms is

initialized by the population of P countries which are

generated randomly within the search space. Each country

is defined by contryi ¼ ½p1; p2; . . .; pnvar� which nvar is

number of decision variables. The best countries with the

best fitness function in the initial population are chosen as

the imperialists and other countries are as the colonies of

these imperialists. The initial empires are built by dividing

colonies among imperialists based on imperialist’s power.

To divide the colonies among imperialists proportionally,

the following normalized cost of an imperialist is defined

(Khabbazi et al. 2009):

Cn ¼ cn � max cif g; ð17Þ

where cn and Cn are the cost of nth imperialist and its

normalized cost, respectively. The normalized power of

each imperialist can be calculated by the normalized cost

of all imperialists according to the following equation

(Khabbazi et al. 2009):

Pn ¼
CnPNimp

i¼1 Ci

�����

�����: ð18Þ

The empires should be divided into the initial colonies

based on their powers; consequently, the initial number of

colonies belonging to the nth empires is as follows

(Khabbazi et al. 2009):

N:C:n ¼ round Pn � Ncolf g; ð19Þ

where N.C.n is the initial number of colonies belonging to

the nth empires; Ncol is the total number of initial colonies.

The initial number of colonies are randomly allocated to

the nth imperialist. In this algorithm, the bigger empires

have more number of colonies, while the weaker ones have

less (Khabbazi et al. 2009).

Assimilation Phase

After clustering colonies among the imperialists, the

assimilation phase is started. In this phase, the colonies

start moving toward their empire. A vector x from the

colony to the imperialist is determined for direction of the

movement. The vector x is a random variable with having

uniform distribution.

x�Uð0; b� dÞ; ð20Þ

where d is the distance between the colony and the impe-

rialist state; b is a number greater than one. The reason

behind using b[ 1 is that the colonies to get closer to the

imperialist state from both sides. For realization this phase,

it is not necessary that the colonies movement toward

imperialists be done in straight line due to limitations of the

searching capability (Khabbazi et al. 2009). For movement

toward imperialists, the colonies can be diverted from

straight line equal to h degree. This fact increases the

ability of searching more area around the imperialist. h is a

random angle with uniform distribution:

h�Uð�c; cÞ; ð21Þ

where c is parameter for regulating the deviation from the

original direction. The amounts of b and c are arbitrary.

However, for good convergence of countries to the global

minimum, a value of about two for b and about p=4ðradÞ
for c are used in most of implementations (Khabbazi et al.

2009).

Exchanging Phase

When the colonies move toward imperialist, it is possible

that a colony get a position with lower cost than the

imperialist. In this situation, the colony and the imperialist

exchange their positions. After that, the algorithm will

progress by the imperialist in the new position and the

imperialist will assimilate the colonies in its new position.

Calculation of Total Power of an Empire

Total power of an empire is summation of the power of

imperialist country and a percentage of the power of the

colonies of an empire as follows:

T :C: ¼ Cost imprialistnð Þ
þ d mean ðcolonies of empirenÞf g; ð22Þ

where T.C. is the total cost of the nth empire; d is partic-

ipation factor of colonies in the total power of empire and it

is a positive small number; d represents good results with a

value 0.1 in most of the implementations (Khabbazi et al.

2009).

+

+

PV bus with 
fixed voltage

Fig. 2 Static model for DSTATCOM installed in bus i
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Imperialistic Competition

This phase is started by selecting a colony of the weakest

empire and then finding the possession probability of each

empire. The possession probability PP and the total power

of the empire have a proportional relation. The normalized

total cost of an empire is obtained as follows:

N:T:C:n ¼ T :C:n � max T :C:if g; ð23Þ

where N.T.C.n and T.C.n are the normalized total cost and

the total cost of nth empire, respectively. The possession

probability of each empire is determined by having the

normalized total cost as follows:

PPn
¼ N:T :C:nPNimp

i¼1 N:T :C:i

�����

�����: ð24Þ

The vector P is generated to cluster the mentioned

colonies among empires, this vector is as follows:

P ¼ Pp1;Pp2;Pp3; . . .;PpNimp

� �
: ð25Þ

After that, the vector R is generated in the same size

with P. The elements of this vector are uniformly dis-

tributed random numbers.

R ¼ r1; r2; r3; . . .; rNimp

� �
r 2 UðO; 1Þ: ð26Þ

Finally, the vector D is created by subtracting R from

P. The mentioned colony (colonies) belonging to an empire

which relevant index in D has maximum value. The pro-

cess of selecting an empire is similar to the roulette wheel

process in Genetic Algorithm (GA) (Khabbazi et al. 2009).

Application of the Proposed Algorithm
to DSTATCOM Allocation

In this problem, the size and the placement of DSTAT-

COMs are selected as decision variables. Figure 3 shows

the structure of countries in the employed ICA.

As shown in Fig. 3, the countries are in the form of

strings the number of cells of which corresponds to the

number of buses, Nbus. A random number multiple of 5

between 0 and 10,000 kVAr is attributed to each cell with

the value of Dsizei. The algorithm then updates the values

at each iteration. Since the updated values are most likely

not to be multiples of 5, the values are rounded to the

closest number which is a multiple of 5. After the

convergence, those buses for which a zero value is obtained

are not considered for equipment installation.

Figure 4 shows the flowchart of the proposed method.

To applying the proposed ICA to this problem, the fol-

lowing steps have been considered:

1. Define the input data. The input data which should

be provided include system base configuration, line

impedances, characteristics of DSTATCOM, the

number of countries, the number of empires, number

of decision variables in the country, the maximum

number of iterations, and the internal parameters of

the algorithm (assimilation coefficient and assimila-

tion angle).

2. Generate the initial population (countries). A random

number multiple of 5 between 0 and 10,000 kVAr is

attributed to each cell.

3. Perform the load flow and calculate the objective

functions. A so-called direct approach which is

proposed in Jen-Hao (2003) is used to provide load

flow solutions. For each individual in the population,

based on power flow results, the overall fitness

function is calculated by using (11). The violation of

the constraints is also verified in this step. The fitness

function value associated to a solution is considered

to be zero if the constraints are violated for that

solution.

4. Selecting the colonies and imperialists and forming

empires.

5. Moving the colonies toward their relevant imperial-

ist (assimilation).

6. Exchanging the position of the colony with its

imperialist if the cost of the mentioned colony is

lower than that in the imperialist.

7. Computing the total cost of all empires, regarding

the power of the imperialist and its colonies.

8. Selecting the weakest colony (colonies) from the

weakest empires and give it (them) to the empire that

has the most likelihood to possess it (imperialistic

competition).

9. Removing the powerless empires. The updated

values are rounded to the closest number which is

a multiple of 5.

10. Check the termination criterion. The termination

criterion is the maximum number of iterations. If

the number of iterations is equal to the predefined

number, go to the step 11; otherwise, go to the

step 5.

11. Determine the best solution. After meeting the

termination criterion, the process is finished.

Those buses for which a zero value is obtained are not

considered for equipment installation.

…………

Fig. 3 Structure of a country
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Fuzzy Modeling of Uncertainties

In the third case of simulation, loads of networks are

considered uncertain instead of the constant power.

Therefore, the principle of uncertain modeling of the net-

works loads is clarified in this section.

Fuzzy Load Modeling

Using fuzzy numbers is one of the effective methods to

model load uncertainty in a distribution system. For rep-

resentation of uncertainty in load, Triangular Fuzzy

Number (TFN) is often used, because it is the most suit-

able to handle while providing a high-quality explanation

of the load uncertainties in networks (Haghifam et al.

2008). In this study, the uncertainty of the load is presented

as TFN. ~P is shown in Fig. 5, which can be written in the

form of ~P ¼ ðPL;PM ;PRÞ. The likelihoods of the load is

described through TFN as a triangular possibility distri-

bution where the load is estimated to be in the vicinity of

mean value PM, no more than PR and no less than PL.

Voltage and Current Constraints Modeling

Since the loads are modeled using fuzzy numbers, system

variables are considered as TFNs which may have real or

imaginary parts; therefore fuzzy domain is utilized to

employ mathematical operators. For this reason, result of

the system load flow is calculated in the fuzzy domain.

Voltage at node k is described as TFN while in this node,

deterministic values are used for the upper and lower

voltage limits (Vmax and Vmin, respectively). Voltage con-

straint in the fuzzy domain is defined as (Haghifam et al.

2008):

Vmin
~� ~Vk

~�Vmax k ¼ 1; . . .;Nbus: ð27Þ

In this fuzzy equation, simple ‘true’ or ‘false’ values

cannot be related to voltage. However voltage constraint is

violated only if definite degree of possibility expressed as

follows is obtained:

Start

Define the input data

Generate the ini�al 
popula�on (countries)

Calculate the objec�ve func�ons for 
each individual in the popula�on

Selec�ng colonies and imperialists and 
forming empires

Assimila�on revolu�on

Calculate the objec�ve func�ons for 
each individual in the popula�on

 Are the colonies fi�er 
than the empire?

Exchange the posi�ons of the colony 
with that imperialist

Evalua�on of empires

Imperialis�c compe��on

 Is there a empire which 
has not colonies?

Remove it as the powerless empire

Termina�on criterion 
sa�sfied?

Report the best solu�on

No

Yes

Yes

No

Yes

No

Fig. 4 Flowchart of the proposed ICA for allocation of DSTATCOM

0

1 ~

Fig. 5 Triangular membership function for power load
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SVk
¼ Avl þ Avr

Av þ Avr þ Avl

; ð28Þ

where Av is the area under the membership function

between the Vmin and Vmax. Moreover, regarding Fig. 6, the

Avl and Avr are the areas under the membership function, at

the left side of Vmin and the right side of Vmax, respectively.

As it is mentioned earlier, the voltage constraint is violated

only if definite degree of possibility SVk
is obtained. In

order to change the possibility SVk
, the parameters of the ~Vk

must be changed. This can be achieved by changing the

ratio between areas (Av, Avl, and Avr).

For a specified condition in a distribution network, by

running the fuzzy load flow, the currents of the network

branches are also happen to be fuzzy numbers. The TFN

(~Ik) is used in Fig. 7 to represent the current of branch k,

where permissible rate of currents in this branch is speci-

fied by Ik
max. Alike to the fuzzy description of the voltage

constraint, same concepts are utilized for the definition of

current constraint in the fuzzy domain as follows (Haghi-

fam et al. 2008):

~Ik ~� Imaxk k ¼ 1; . . .;Nbr: ð29Þ

In addition to the fuzzy description of current constraint,

this current constraint is violated only if definite degree of

possibility is obtained. Degree of possibility for violation

of the current constraint can be defined as:

SIk ¼
Air

Ail þ Air

; ð30Þ

where Ail and Air are the areas under the membership

function at the left side and right side of the permissible

rating of currents in branch k, i.e. Ik
max, respectively. Nor-

mally, greater possibility in violation of voltage constraint

at node k and current of branch k is presumable by larger

values of SVk
and SIk .

With fuzzy modeling of the loads in which variables

expressed as TFNs having real or imaginary parameters,

the objective functions are obtained as fuzzy numbers. The

objective functions relating triangular fuzzy values are to

be compared and classified to investigate various planning

solutions. In this paper, the defuzzification of the objective

function value is implemented using removal function

R ~b
� �

, which for a TFN ðbL; bM; bRÞ is defined as:

R ~b
� �

¼ ðbL þ 2bM þ bRÞ=4: ð31Þ

Simulation Results

The proposed method has been tested on two different

systems: a 33-bus and a 69-bus balanced distribution sys-

tem. The simulations have been implemented using

MATLAB 7.10.0 (R2010a; The MathWorks, Natick,

Massachusetts, USA) on an Intel(R) Core(TM) i5, 2.40-

GHz, PC with 4-GB RAM. The constant power load model

has been considered for simulations of both distribution

test systems and three load levels are defined as follows:

PL;new þ QL;new ¼ LF � ðPL þ QLÞ; ð32Þ

where LF is Load Factor and equal to 0.5, 1.0 and 1.6 for

light, medium and peak load, respectively. The parameters

of optimization algorithm and objective function for the

examined test systems are shown in Tables 1 and 2. The

parameters in Table 1 are chosen from literature (Ali 2015;

Khabbazi et al. 2009) and are further improved by a trial

and error process.

0

1

~

Fig. 6 Voltage constraint in fuzzy domain

0

1

~

Fig. 7 Current constraint in fuzzy domain

Table 1 Parameters of the proposed algorithm for the examined test systems

Test system Number of countries Number of empires b c Max. iterations TrialMax

IEEE 33-bus test system 50 6 2 0.5 60 30

IEEE 69-bus test system 50 6 2 0.5 100 30
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Case study 1: IEEE 33-bus balanced test system

This is a 12.66 kV radial distribution system that has 33

buses and 32 branches and system data is derived from

Taher and Afsari (2014). The total real and reactive power

loads of this radial system that is shown in Fig. 8 are

3715 kW and 2300 kVAr, respectively.

This system has the initial power loss equal to

202.677 kW and minimum bus voltage equal to 0.91 pu.

The multi-objective fitness function is optimized by ICA

and the parameters of the algorithm were selected in

accordance with Table 1. The Results derived by opti-

mizing the multi-objective fitness function for this test

system are shown in Table 3. Since the proposed algorithm

has a random number generation basis, several runs should

be done to obtain a group of solutions and finally the best

solution is selected. In this case study, the best solution is

chosen after 30 runs.

According to Table 3, application of the DSTATCOM

for all the load levels has led to improvement of the

objectives of the optimization including loss reduction,

voltage profile improvement and LBI enhancement. In this

table, the base case results which are the results of the

system without installation of the DSTATCOM are

extracted using the medium load level. By comparison of

the medium load and the base case results, it is seen that

loss is reduced up to 31 percent, the minimum voltage has

1.8 percent increase and LBI has experienced 73 percent

reduction.

Figure 9 shows the bus voltage profile before and after

optimal DSTATCOM placement for a medium load. As

shown in this figure, the bus voltage profile is obviously

improved with optimal allocation of DSTATCOM using

the ICA.

In order to evaluate the performance of the ICA with

other algorithms, results of the proposed algorithm are

compared with Bacterial Foraging Optimization Algorithm

(BFOA), Bat Algorithm (BA), Harmony Search Algorithm

(HSA) and IA. The results of the comparison are given in

Table 4. According to the results, all three algorithms have

proposed the same location for installation of the

DSTATCOM, i.e. bus 10 and bus 30, however sizes of the

DSTATCOMs are different. The largest size of the

DSTATCOM is proposed by BFOA which is 1800 kVAr

and the smallest size is proposed by IA. Moreover, the

proposed ICA has offered less kVAr in comparison with

Table 2 Parameters of the objective function for the examined test

systems

COSTDSTATCOMð $
kVAR

Þ N (year) KLð $
kWh

Þ B KTDP T

50 30 0.06 0.1 1 8760

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

23 24 25

26 27 28 29 30 31 32 33

Fig. 8 Single line diagram of IEEE 33-bus system

Table 3 Results of multi-objective optimization by the proposed algorithm for 33-bus test system under different types of load factor

Load factor

Base case Light load Medium load Peak load

Optimal size (kVAr) and location – 195 (10), 475 (30) 455 (10), 1005 (30) 790 (10), 1670 (30)

Total kVAr – 670 1460 2460

PlossðkWÞ 202.67 30.766 140.24 366.324

QlossðkVArÞ 135.24 19.786 93.67 236.897

VminðpuÞ 0.9131 0.9789 0.9301 0.9001

LBI ðpuÞ 0.1575 0.0427 0.0435 0.0476
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Fig. 9 Bus voltage profile of the 33-bus test system with multiple

DSTATCOMs
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BFOA. Therefore, the percentage of active and reactive

power loss reduction and also the minimum voltage are

slightly smaller than the BFOA. However, regarding the

economical index (ACSI), the proposed ICA method pro-

vides improvements over the BFOA and BA. In addition,

in terms of the calculation time, the proposed algorithm is

remarkably faster than the two other algorithms.

It is to be noted that in the considered objective function,

in comparison to Yuvaraj et al. (2015b), as well as the cost

associated with loss and installation of DSTATCOM, the

LBI and IVP indices are also involved. It is clear that

inclusion of additional terms in a goal function deviates the

solution from that which is provided when these terms had

not been considered.

Figure 10 indicates the convergence characteristic of the

ICA for the multi-objective function in case study 1. It is

shown that after 28 iterations, the ICA reaches to full

convergence and fitness function value remains constant at

approximately 0.852.

Case Study 2: IEEE 69-Bus Balanced Test System

The second case study is a large-scale test system with 69

buses and 68 branches. Details for the line and load data of

the system can be found in Taher and Afsari (2014). This

system is shown in Fig. 11 with total real and reactive

power loads of 3.80 MW and 2.69 MVAr, respectively.

This system has the initial power loss equal to 225 kW and

minimum bus voltage equal to 0.9090 pu.

The optimal solutions for optimizing the multi-ob-

jective function are presented in Table 5. The results

indicated for the multi-objective function were the best

results obtained after 30 instances of running the pro-

posed method. Results presented in Table 5 are the

results of the optimization for three levels of the loading

of the system. As it is seen in this table, in all the load

levels, the same location is offered for DSTATCOM

installation. However, the size of the DSTATCOM is

increased by the growth of the loading of the system. On

the other hand, the active and reactive power losses

during the medium loading of the system, which is

dominant loading for the distribution system, have

experienced 34.6 percent reduction compared to the base

case. Installation of the DSTATCOM has led to 2.5

percent enhancement of the minimum voltage and

improvement of the load balancing in feeders up to 57.1

percent.

For assessing the performance of the proposed algorithm

in comparison with other algorithms, results of the pro-

posed algorithm are compared with the BFOA and BA. The

results of the comparison are given in Table 6. Based on

the results, all three algorithms have proposed the same

location for installation of the DSTATCOM, i.e. bus 15 and

bus 61, but sizes of the DSTATCOMs are different. The

BFOA has proposed the greatest size of the DSTATCOM,

which is 1910 kVAr and the least size is proposed by BA.

Table 4 Comparison of the results of ICA with other algorithms for the 33-bus test system

Proposed

algorithm

BFOA (Yuvaraj et al.

2015b)

BA (Yuvaraj et al.

2015b)

HSA (Yuvaraj et al.

2015a)

IA (Taher and Afsari

2014)

Optimal size (kVAr) and

location

455 (10), 1005

(30)

600 (10), 1200 (30) 450 (10), 995 (30) 1150 (30) 962.49 (12)

Total kVAr 1460 1800 1445 1150 962.49

Ploss ðkWÞ 140.24 137.50 146.73 143.97 171.79

Reduction in Ploss (%) 30.31 32.15 27.60 28.97 15.23

QlossðkVArÞ 93.67 92.01 95.63 96.47 115.26

Reduction in Qloss (%) 30.73 31.96 29.28 28.67 14.77

Vmin ðpuÞ 0.9301 0.9789 0.9299 0.9236 0.9258

LBIðpuÞ 0.0435 – – – –

ACSI 0.7684 0.7718 0.7998 – –

Computational time (s) 8.86 11.06 9.85 – –
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Fig. 10 Convergence rate of the multi-objective function in case

study 1 using ICA
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However, the proposed ICA has offered less MVAr in

comparison with BFOA. As a result, the percentage of

active and reactive power loss reduction, as well as the

minimum voltage, are a bit smaller than the BFOA.

Moreover, regarding the ACSI which is an economical

index, the proposed ICA has a better performance. Besides,

in terms of the calculation time, the proposed algorithm is

remarkably faster than two other algorithms.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

47 48 49 50

28 29 30

1

36 37 38 39 40 41 42 43 44 45 46

51 52 66 67

19 20 21 22 23 24 25 26 27

31 32 33 34 35

68 69

53 54 55 56 57 58 59 60 61 62 63 64 65

Fig. 11 Single line diagram of IEEE 69-bus system

Table 5 Results of multi-objective optimization by the proposed algorithm for 69-bus test system under different types of load factor

Load factor

Base case Light load Medium load Peak load

Optimal size (kVAr) and location – 165 (15), 885 (61) 375 (15), 1280 (61) 685 (15), 2350 (61)

Total kVAr – 1050 1655 3035

PlossðkWÞ 225 35.974 147.35 412.657

QlossðkVArÞ 102.2 18.603 72.382 195.235

Vmin ðpuÞ 0.9090 0.9634 0.9324 0.9001

LBI ðpuÞ 0.1345 0.0567 0.0577 0.0589

Table 6 Comparison of the results of ICA with other algorithms for the 69-bus test system

Proposed algorithm BFOA (Yuvaraj et al. 2015b) BA (Yuvaraj et al. 2015b)

Optimal size (kVAr) and location 375 (15), 1280 (61) 480 (15), 1430 (61) 330 (15), 1220 (61)

Total kVAr 1655 1910 1550

Ploss ðkWÞ 147.35 148.07 146.73

Reduction in Ploss (%) 34.6 34.19 34.78

Qloss ðkVArÞ 72.382 68.76 68.43

Reduction in Qloss (%) 29.17 32.72 33.04

Vmin ðpuÞ 0.9324 0.9332 0.9299

LBI ðpuÞ 0.0577 – –

ACSI 0.8125 0.8236 0.8312

Computational time (s) 9.37 11.06 9.85
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Figure 12 shows the bus voltage profile before and after

optimal DSTATCOM placement. Regarding this figure, by

installation of the DSTATCOM, the optimum voltage

profile at all the busbars of the distribution system is

improved. Furthermore, Fig. 13 shows the convergence

characteristic of the ICA for case study 2. As shown in

Fig. 13, fitness function after 73 iterations converged to

0.82.

Case Study 3: the 33-Bus Balanced Test System

with Load Uncertainty

In the third case study of the paper, the earlier discussed

33-bus distribution system is utilized with taking into

account the fuzzy modeling of network loads uncertainty

which is explained in Sect. 5. The simulation results of

these scenarios including the distribution system with light,

medium, and peak load are presented in Table 7. As pre-

viously mentioned, since loads of the network are modeled

using fuzzy numbers, the objective functions are obtained

in the form of TFNs and defuzzification of the objective

function values are implemented using removal function,

hence they are transformed into integers. Regarding the

Table 7, the objective functions of base case are

210.30 kW (Ploss), 141.67 kVAr (Qloss), 0.9037 (Vmin), and

0.1597 (LBI). By comparison of these values with the

corresponding values in Table 3, it can be concluded that

in the uncertainty situation, the objective functions are

weaker. According to the Table 7, the location of

DSTATCOM has not changed in comparison to the

Table 3, which uncertainties are not considered, however

the size of DSTATCOM is slightly reduced. Since the

loads are modeled in fuzzy domain, the variables are

expressed as TFNs having real or imaginary parameters

instead of integers, the objective functions are obtained as

fuzzy numbers and they get small distance from their

suitable values.

Conclusions

This paper has presented a new long-term planning for

optimal location and sizing of the DSTATCOMs in radial

distribution networks using the imperialist competitive

algorithm. The multi-objective optimization problem

includes loss reduction, voltage profile improvement, fee-

der load balancing, and cost reduction. Considering the

proposed long-term planning, the costs of distribution

system are declined; therefore it can provide more interests
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Fig. 12 Bus voltage profile of the 69-bus test system with multiple

DSTATCOMs
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Fig. 13 Convergence rate of the multi-objective function in case

study 2 using ICA

Table 7 Results of multi-objective optimization by the proposed algorithm for the 33-bus test system under different types of load factor

considering load uncertainty

Load factor

Base case Light load Medium load Peak load

Optimal size (kVAr) and location – 185 (10), 465 (30) 435 (10), 995 (30) 775 (10), 1660 (30)

Total kVAr – 650 1430 2435

PlossðkWÞ 210.30 33.876 142.77 375.127

QlossðkVArÞ 141.67 22.648 95.87 241.925

Vmin ðpuÞ 0.9037 0.9425 0.9189 0.9000

LBI ðpuÞ 0.1597 0.0465 0.0477 0.0498
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for utility services. The proposed algorithm is implemented

in a 33-bus and a 69-bus radial distribution system and the

results are compared with other meta-heuristic optimiza-

tion algorithms. Based on the numerical results, the optimal

placing and sizing of the DSTATCOM in distribution

systems improve all of the mentioned objectives; hence the

proposed approach can be used by utility services for

optimal DSTATCOM allocation and sizing in the distri-

bution systems. According to obtained results from case

study 1, the improvements in the active power loss, reac-

tive power loss, Vmin and LBI indices are 30.31, 30.37, 1.8,

and 72.3%, respectively. Also in case study 2, the con-

sidered objectives such as active power loss, reactive

power loss, Vmin and LBI are improved by 34.6, 30.73,

0.085, and 53.13%, respectively. Finally, considering the

results of case study 3, the improvements in the active

power loss, reactive power loss, Vmin and LBI indices are

32.11, 32.32, 1.6, and 70.13%, respectively.

References

Akbari-Zadeh M, Kokabi R, Gerami S (2014) DSTATCOM alloca-

tion in the distribution system considering load uncertainty.

J Intell Fuzzy Syst 27:691–700

Akorede MF, Hizam H, Aris I, Ab Kadir MZA (2011) Effective

method for optimal allocation of distributed generation units in

meshed electric power systems. IET Gener Transm Distrib

5:276. doi:10.1049/iet-gtd.2010.0199

Ali ES (2015) Speed control of induction motor supplied by wind

turbine via imperialist competitive algorithm. Energy

89:593–600. doi:10.1016/j.energy.2015.06.011

Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algo-

rithm: an algorithm for optimization inspired by imperialistic

competition. Evolut Comput 2007:4661–4667. doi:10.1109/

CEC.2007.4425083

Bagheri Tolabi H, Ali MH, Rizwan M (2015) Simultaneous

reconfiguration, optimal placement of DSTATCOM, and photo-

voltaic array in a distribution system based on fuzzy-ACO

approach. IEEE Trans Sustain Energy 6:210–218. doi:10.1109/

tste.2014.2364230

Chandrasekaran K, Ramachandaramurthy VK (2016) An improved

dynamic voltage restorer for power quality improvement. Int J

Electr Power Energy Syst 82:354–362. doi:10.1016/j.ijepes.

2016.02.036

Devi S, Geethanjali M (2014) Optimal location and sizing determi-

nation of distributed generation and DSTATCOM using particle

swarm optimization algorithm. Int J Electr Power Energy Syst

62:562–570. doi:10.1016/j.ijepes.2014.05.015

Duan C, Fang W, Jiang L, Niu S (2016) FACTS devices allocation via

sparse optimization. IEEE Trans Power Syst 31:1308–1319.

doi:10.1109/tpwrs.2015.2433891

Esmaili M (2013) Placement of minimum distributed generation units

observing power losses and voltage stability with network

constraints. IET Gener Transm Distrib 7:813–821. doi:10.1049/

iet-gtd.2013.0140

Gupta N, Swarnkar A, Niazi KR, Bansal RC (2010) Multi-objective

reconfiguration of distribution systems using adaptive genetic

algorithm in fuzzy framework. IET Gener Transm Distrib

4:1288. doi:10.1049/iet-gtd.2010.0056

Haghifam MR, Falaghi H, Malik OP (2008) Risk-based distributed

generation placement. IET Gener Transm Distrib 2:252. doi:10.

1049/iet-gtd:20070046

Jazebi S, Hosseinian SH, Vahidi B (2011) DSTATCOM allocation in

distribution networks considering reconfiguration using differ-

ential evolution algorithm. Energy Convers Manag

52:2777–2783. doi:10.1016/j.enconman.2011.01.006

Jen-Hao T (2003) A direct approach for distribution system load flow

solutions. IEEE Trans Power Delivery 18:882–887. doi:10.1109/

tpwrd.2003.813818

Kavousi-Fard A, Akbari-Zadeh M-R (2014) Probabilistic multiple

distribution static compensator placement and sizing based on

the two-point estimate method. Int J Sustain Energy

33:1041–1053. doi:10.1080/14786451.2013.799470

Kazemtabrizi B, Acha E (2014) An advanced STATCOM model for

optimal power flows using Newton’s method. IEEE Trans Power

Syst 29:514–525. doi:10.1109/tpwrs.2013.2287914

Khabbazi A, Atashpaz-Gargari E, Lucas C (2009) Imperialist

competitive algorithm for minimum bit error rate beamforming.

Int J Bio-Inspir Comput 1:125–133

Khorram-Nia R, Baziar A, Kavousi-Fard A (2013) A novel stochastic

framework for the optimal placement and sizing of distribution

static compensator. J Intell Learn Syst Appl 5:90–98

Kumar C, Mishra MK (2014) A voltage-controlled DSTATCOM for

power-quality improvement. IEEE Trans Power Deliv

29:1499–1507. doi:10.1109/tpwrd.2014.2310234

Li JH, Li SH (2014) A novel D-STATCOM synthetical optimization

configuration method for stability control. Adv Mater Res

933:608–614

Mahendra Repalle B, Mercy Rosalina K, Prema Kumar N (2014)

Fuzzy logic based optimal location and sizing of DSTATCOM in

radial distribution systems. Int J Adv Technol Eng Sci

2:122–129

Patel SK, Arya SR, Maurya R, Singh B (2016) Control of distribution

static compensator using three-phase enhanced phase-locked

loop. Electr Power Compon Syst 44:1515–1529. doi:10.1080/

15325008.2016.1173128

Saffar A, Hooshmand R, Khodabakhshian A (2011) A new fuzzy

optimal reconfiguration of distribution systems for loss reduction

and load balancing using ant colony search-based algorithm.

Appl Soft Comput 11:4021–4028. doi:10.1016/j.asoc.2011.03.

003

Taher SA, Afsari SA (2014) Optimal location and sizing of

DSTATCOM in distribution systems by immune algorithm. Int

J Electr Power Energy Syst 60:34–44. doi:10.1016/j.ijepes.2014.

02.020

Vinkovic A, Mihalic R (2008) A current-based model of the static

synchronous series compensator (SSSC) for Newton-Raphson

power flow. Electr Power Syst Res 78:1806–1813. doi:10.1016/j.

epsr.2008.03.006

Yuvaraj T, Devabalaji KR, Ravi K (2015a) Optimal placement and

sizing of DSTATCOM using harmony search algorithm. Energy

Procedia 79:759–765. doi:10.1016/j.egypro.2015.11.563

Yuvaraj T, Ravi K, Devabalaji KR (2015b) DSTATCOM allocation

in distribution networks considering load variations using bat

algorithm. Ain Shams Eng J. doi:10.1016/j.asej.2015.08.006

INAE Lett (2017) 2:83–95 95

123

http://dx.doi.org/10.1049/iet-gtd.2010.0199
http://dx.doi.org/10.1016/j.energy.2015.06.011
http://dx.doi.org/10.1109/CEC.2007.4425083
http://dx.doi.org/10.1109/CEC.2007.4425083
http://dx.doi.org/10.1109/tste.2014.2364230
http://dx.doi.org/10.1109/tste.2014.2364230
http://dx.doi.org/10.1016/j.ijepes.2016.02.036
http://dx.doi.org/10.1016/j.ijepes.2016.02.036
http://dx.doi.org/10.1016/j.ijepes.2014.05.015
http://dx.doi.org/10.1109/tpwrs.2015.2433891
http://dx.doi.org/10.1049/iet-gtd.2013.0140
http://dx.doi.org/10.1049/iet-gtd.2013.0140
http://dx.doi.org/10.1049/iet-gtd.2010.0056
http://dx.doi.org/10.1049/iet-gtd:20070046
http://dx.doi.org/10.1049/iet-gtd:20070046
http://dx.doi.org/10.1016/j.enconman.2011.01.006
http://dx.doi.org/10.1109/tpwrd.2003.813818
http://dx.doi.org/10.1109/tpwrd.2003.813818
http://dx.doi.org/10.1080/14786451.2013.799470
http://dx.doi.org/10.1109/tpwrs.2013.2287914
http://dx.doi.org/10.1109/tpwrd.2014.2310234
http://dx.doi.org/10.1080/15325008.2016.1173128
http://dx.doi.org/10.1080/15325008.2016.1173128
http://dx.doi.org/10.1016/j.asoc.2011.03.003
http://dx.doi.org/10.1016/j.asoc.2011.03.003
http://dx.doi.org/10.1016/j.ijepes.2014.02.020
http://dx.doi.org/10.1016/j.ijepes.2014.02.020
http://dx.doi.org/10.1016/j.epsr.2008.03.006
http://dx.doi.org/10.1016/j.epsr.2008.03.006
http://dx.doi.org/10.1016/j.egypro.2015.11.563
http://dx.doi.org/10.1016/j.asej.2015.08.006

	The Imperialist Competitive Algorithm for Optimal Multi-Objective Location and Sizing of DSTATCOM in Distribution Systems Considering Loads Uncertainty
	Abstract
	Introduction
	Proposed Formulation for Optimal Location and Sizing of DSTATCOM
	Objective Functions
	Minimization of Power Losses
	Minimization of Index of Voltage Profile (IVP)
	Minimization of Load Balancing Index (LBI)
	Minimization of Annual Cost Saving Index (ACSI)

	Fuzzy-Based Combination of Objective Functions
	Constraints
	Power Flow Equations
	Branch Current Limits
	Bus Voltage Permissible Range
	DSTATCOM Reactive Generation Limits

	DSTATCOM Modeling

	Imperialist Competitive Algorithm (ICA)
	Initialization Phase
	Assimilation Phase
	Exchanging Phase
	Calculation of Total Power of an Empire
	Imperialistic Competition

	Application of the Proposed Algorithm to DSTATCOM Allocation
	Fuzzy Modeling of Uncertainties
	Fuzzy Load Modeling
	Voltage and Current Constraints Modeling

	Simulation Results
	Case study 1: IEEE 33-bus balanced test system
	Case Study 2: IEEE 69-Bus Balanced Test System
	Case Study 3: the 33-Bus Balanced Test System with Load Uncertainty

	Conclusions
	References




