Skip to main content
Log in

Performance quantification of observer-based robot impact detection under modeling uncertainties

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

This work proposes a design and performance quantification methodology for observer-based impact detection in serial robot manipulators in presence of modelling errors and without force/torque sensor. After expressing the modelling errors between the physical robot and its inverse dynamic model as the sum of contributions due to dynamic parameters uncertainties and numerical differentiation errors for a given trajectory, an observer of the external disturbance torque is designed based on the inverse dynamic model and using a Kalman filter. The influence of each design parameter of the observer on the quality of the external torque estimation is studied first based on simulation results. Then a frequency analysis is conducted to distinguish between the influence of the exact external torque, the modelling uncertainties and the measurement noise on the estimated external torque. Finally a methodology is proposed to determine the optimal design corresponding to the shortest detection time depending on the expected sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bagge Carlson, F., Robertsson, A., Johansson, R.: Modeling and identification of position and temperature dependent friction phenomena without temperature sensing. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 3045–3051 (2015)

  • Baltzakis, H., Argyros, A., Trahanias, P.: Fusion of laser and visual data for robot motion planning and collision avoidance. Mach. Vis. Appl. 15(2), 92–100 (2003)

    Article  Google Scholar 

  • Bittencourt, A.C.: Modeling and Diagnosis of Friction and Wear in Industrial Robot. Department of Electrical Engineering, Linköping University, Linköping (2014)

    Book  Google Scholar 

  • Briquet-Kerestedjian, N., Makarov, M., Grossard, M., Rodriguez-Ayerbe, P.: Quantifying the uncertainties-induced errors in robot impact detection methods. In: IECON 2016—42nd annual conference of the IEEE Industrial Electronics Society, pp. 5328–5334 (2016)

  • De Luca, A., Mattone, R.: An adapt-and-detect actuator FDI scheme for robot manipulators. In: IEEE Int. conference on robotics and automation (ICRA), vol. 5, pp. 4975–4980 (2004)

  • Ding, X.: Model-based fault diagnosis techniques. Springer Science & Business Media, New York (2008)

    Google Scholar 

  • Frank, P.M., Ding, X.: Survey of robust residual generation and evaluation methods in observer-based fault detection systems. J. Process Control 7(6), 403–424 (1997)

    Article  Google Scholar 

  • Gao, Z., Cecati, C., Ding, S.X.: A survey of fault diagnosis and fault-tolerant techniques: part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 62, 3757–3767 (2015)

    Article  Google Scholar 

  • Garrec, P.: Screw and cable actuators (SCS) and their applications to force feedback teleoperation, exoskeleton and anthropomorphic robotics, chap. 10. In: Abdellatif, H. (ed.) Robotics 2010 Current and Future Challenges. IntechOpen. (2010). https://doi.org/10.5772/7327

  • Jung, B.J., Choi, H.R., Koo, J.C., Moon, H.: Collision detection using band designed disturbance observer. IEEE Int. Conf. Autom. Sci. Eng. (CASE) 2012, 1080–1085 (2012)

    Google Scholar 

  • Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots. Butterworth-Heinemann, Oxford (2004)

    MATH  Google Scholar 

  • Lu, S., Chung, J.H., Velinsky, S.A.: Human–robot collision detection and identification based on wrist and base force/torque sensors. IEEE Int. Conf. Robot. Autom. (ICRA) 2005, 3796–3801 (2005)

    Google Scholar 

  • De Luca, A., Albu-Schaffer, A., Haddadin, S., Hirzinger, G.: Collision detection and safe reaction with the DLR-III lightweight manipulator arm. IEEE/RSJ Int. Conf. Intell. Robots Syst. 2006, 1623–1630 (2006)

    Google Scholar 

  • Makarov, M., Caldas, A., Grossard, M., Rodriguez-Ayerbe, P., Dumur, D.: Adaptive filtering for robust proprioceptive robot impact detection under model uncertainties. IEEE/ASME Trans. Mechatron. 19, 1917–1928 (2014)

    Article  Google Scholar 

  • Martinez-Martin, E., del Pobil, A.P.: Visual surveillance for human–robot interaction. In: IEEE international conference on systems, man, and cybernetics (SMC) 3333–3338 (2012)

  • Mazzocchi, T., Diodato, A., Ciuti, G., Micheli, D.M.D., Menciassi, A.: Smart sensorized polymeric skin for safe robot collision and environmental interaction. IEEE/RSJ Int. Conf. Int. Robots Syst. (IROS) 2015, 837–843 (2015)

    Google Scholar 

  • Pomares, J., Garca, G.J., Perea, I., Corrales, J.A., Jara, C.A., Torres, F.: Visual control of a multi-robot coupled system: application to collision avoidance in human–robot interaction. IEEE Int. Conf. Comput. Vis. Workshops (ICCV Workshops) 2011, 1045–1051 (2011)

    Article  Google Scholar 

  • Schiebener, D., Vahrenkamp, N., Asfour, T.: Visual collision detection for corrective movements during grasping on a humanoid robot. IEEE-RAS Int. Conf. Hum. Robots 2014, 105–111 (2014)

    Google Scholar 

  • Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis: Part I: Quantitative model-based methods. Comput. Chem. Eng. 27(3), 293–311 (2003)

    Article  Google Scholar 

  • Villagrossi, E.: Robot Dynamics Modelling and Control for Machining Applications. Dipartimento di Engegneria Meccanica e Industriale, Università degli Studi di Brescia, Brescia (2016)

    Google Scholar 

  • Wahrburg, A., Bös, J., Listmann, K.D., Dai, F., Matthias, B., Ding, H.: Motor-current-based estimation of Cartesian contact forces and torques for robotic manipulators and its application to force control. IEEE Trans. Autom. Sci. Eng. 99, 1–8 (2017)

    Google Scholar 

  • Wahrburg, A., Matthias, B., Ding, H.: Cartesian contact force estimation for robotic manipulators-a fault isolation perspective. IFAC-PapersOnLine 48(21), 1232–1237 (2015)

    Article  Google Scholar 

  • Zube, A.: Combined workspace monitoring and collision avoidance for mobile manipulators. IEEE 20th conference on emerging technologies factory automation (ETFA), pp. 1–8 (2015) (Sept 2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nolwenn Briquet-Kerestedjian.

Appendices

Appendix 1: Calculation of \(\varvec{W}_{\delta \tau ^D(t)}\)

As detailed in Briquet-Kerestedjian et al. (2016), for a given position trajectory characterized by velocities and accelerations respectively bounded by \(\varvec{v_{max}}\) and \(\varvec{a_{max}}\) and denoting D(s) the equivalent continuous filter of a numerical differentiation scheme (see Fig. 10 that compares the frequency response of two numerical differentiation schemes), for axis i, the first term of (11) and (12) can respectively be bounded by

$$\begin{aligned} A_{\dot{q}}^i&= |D(j\omega _{eq}^i) - j\omega _{eq}^i|E_{eq}^i \; , \end{aligned}$$
(34)
$$\begin{aligned} A_{\ddot{q}}^i&= |D(j\omega _{eq}^i)^2 - (j\omega _{eq}^i)^2|E_{eq}^i \; , \end{aligned}$$
(35)

where j stands for the imaginary unit and

$$\begin{aligned} E_{eq}^i = \frac{(v_{max}^i)^2}{a_{max}^i} \quad ; \quad \omega _{eq}^i = \frac{a_{max}^i}{v_{max}^i} \; . \end{aligned}$$
(36)
Fig. 10
figure 10

Frequency responses of continuous exact derivative, first-order backward finite difference and first-order filtered derivative methods with \(\omega _{c} = 2\pi 110\) rad/s and \(T_{s} = 1\) ms

For the filtered noise term, if the input noise \(\xi _{i}\) is white of variance \(\sigma _{\xi _i}^2\) (e.g. quantization noise), the output noise filtered by the equivalent discrete filter \(\bar{D}(z)\) (of impulse response d[k]) is Gaussian of variance \( \displaystyle \varvec{\sigma }_{\dot{q}_i}^2 = \sigma _{\xi _i}^2 \sum\nolimits_{{k = - \infty }}^{\infty } {d^{2} [k]}\), and similarly for \(\varvec{\sigma }_{\ddot{q}_i}^2\).

Finally, \(\varvec{\delta \dot{q}}\) and \(\varvec{\delta \ddot{q}}\) can be bounded at 99,7\(\%\) respectively by \(\pm (\varvec{A}_{\dot{q}}+3\varvec{\sigma }_{\dot{q}})\) and \(\pm (\varvec{A}_{\ddot{q}}+3\varvec{\sigma }_{\ddot{q}})\). Then \(\varvec{\delta \dot{q}}\) and \(\varvec{\delta \ddot{q}}\) are approximated by equivalent noises of PSD

$$\begin{aligned} \varvec{\sigma }_{\delta \dot{q}}^2 = \left( \frac{1}{3}\varvec{A_{\dot{q}}} + \varvec{\sigma _{\dot{q}}} \right) ^2 \quad ; \quad \varvec{\sigma }_{\delta \ddot{q}}^2 = \left( \frac{1}{3}\varvec{A_{\ddot{q}}} + \varvec{\sigma _{\ddot{q}}} \right) ^2 \; , \end{aligned}$$
(37)

where the two contributions for each term are assumed to be independent. Therefore, the PSD of \(\varvec{\delta \tau }^{D}\) is deduced with the matrices \(\varvec{M_{\star }}\) and \(\varvec{C_{\star }}\) evaluated along the reference trajectory such as:

$$\begin{aligned} \varvec{W}_{\delta \tau ^D}(t) = \varvec{M_{\star }}(\varvec{q_{ref}})&\left( \frac{1}{3}\varvec{A_{\ddot{q}}} + \varvec{\sigma _{\ddot{q}}} \right) ^2\left[ \varvec{M_{\star }}(\varvec{q_{ref}})\right] ^T \nonumber \\ \quad + \varvec{C_{\star }}(\varvec{q_{ref}},\varvec{\dot{q}_{ref}})&\left( \frac{1}{3}\varvec{A_{\dot{q}}} + \varvec{\sigma _{\dot{q}}} \right) ^2\left[ \varvec{C_{\star }}(\varvec{q_{ref}},\varvec{\dot{q}_{ref}})\right] ^T. \end{aligned}$$
(38)

From a practical perspective, in order to avoid too much conservatism and overestimated uncertainties when during the major part of the motion, the bounds on the velocity and acceleration are not reached, the trajectory can be divided into several smaller segments or evaluated on a sliding time horizon in order to update the maximum velocity and acceleration for each time window. The only potential limitation for this approach is the computation power that can disrupt the update of the algorithm in real time.

Appendix 2: Calculation of transfer matrices and covariance matrix \(\varvec{P}\)

The resulting discrete state-space representation of (19) is

$$\begin{aligned} \left\{ \begin{array}{l} \varvec{X}^a(k+1) = \varvec{A_\star }^a\varvec{X}^a(k) + \varvec{B_\star }^a\varvec{\widetilde{\tau }}(k) + \; \varvec{G}^a_{ext}\varvec{\tau }_{ext}(k) + \varvec{G}^a_{\delta \tau }(k)\varvec{\underline{\delta \tau }}(k) \\ \varvec{Y_\star }^a(k) = \varvec{C_\star }^a\varvec{X}^a(k) + \varvec{v}(k) \end{array} \right. \; , \end{aligned}$$
(39)

with \(\varvec{\underline{\delta \tau }}(k)\) of variance \(\varvec{\underline{W}}_{\delta \tau }^a = \varvec{I}_{n}\) and

$$\begin{aligned} \varvec{A_\star }^a = e^{\varvec{A_\star }T_{s}} \quad&; \quad \varvec{B_\star }^a = \int _{0}^{T_{s}} e^{\varvec{A_\star }\nu }\varvec{B_\star } \, \mathrm {d}\nu \; ; \nonumber \\ \varvec{C_\star }^a = \varvec{C_\star } \quad&; \quad \varvec{G}^a_{ext} = T_s\varvec{G_\star } \; ; \end{aligned}$$
(40)
$$\begin{aligned} \varvec{G}^a_{\delta \tau }(k)[\varvec{G}^a_{\delta \tau }(k)]^T&\approx T_{s} \, \varvec{G_\star } \, \varvec{W}_{\delta \tau }(t) \, \varvec{G_\star }^T \; ; \end{aligned}$$
(41)
$$\begin{aligned} \varvec{V}^a&= \varvec{V} \, / \, T_{s} \; . \end{aligned}$$
(42)

where \(\varvec{G}^a_{\delta \tau }\) can be obtained by Cholesky-like covariance decomposition. For the analysis, the disturbance model (20) is discretised as:

$$\begin{aligned} \varvec{\tau }_{ext}(k+1) = \varvec{A}^a_{ext} \varvec{\tau }_{ext}(k) + \varvec{G}^a_w \varvec{w}_{ext}(k) \; , \end{aligned}$$
(43)

with:

$$\begin{aligned} \varvec{A}^a_{ext} = e^{\varvec{A}_{ext}T_{s}}; \quad \varvec{G}^a_w = \int _{0}^{T_{s}} e^{\varvec{A}_{ext}\nu }\varvec{B}_{ext} \, \mathrm {d}\nu. \end{aligned}$$
(44)

Thus the augmented discrete state-space representation becomes

$$\begin{aligned} \left\{ \begin{array}{l} \varvec{X}_{aug}^a(k+1) = \varvec{A}^a_{aug}\varvec{X}_{aug}^a(k) + \varvec{B}^a_{aug}\varvec{\widetilde{\tau }}(k) + \; \varvec{G}^a_{aug}(k) \varvec{\underline{w}}^a(k) \\ \varvec{Y_\star }^a(k) = \varvec{C}^a_{aug}\varvec{X}_{aug}^a(k) + \varvec{v}(k) \end{array} \right. \; , \end{aligned}$$
(45)

where \(\varvec{\underline{w}}^a(k) = \left[ \begin{array}{c} \varvec{\underline{\delta \tau }}(k)\,^T \quad \varvec{w}_{ext}(k)\,^T \end{array}\right] ^T\) and

$$\begin{aligned} \varvec{A}^a_{aug} = \left[ \begin{array}{cc} \varvec{A}^a_\star &{} \varvec{G}^a_{ext} \\ \varvec{0}_{n,2n} &{} \varvec{A}^a_{ext} \end{array} \right] \,&; \, \varvec{B}^a_{aug} = \left[ \begin{array}{c} \varvec{B_\star }^a \\ \varvec{0}_{n,n} \end{array} \right] \, ; \\ \varvec{G}^a_{aug}(k) = \left[ \begin{array}{cc} \varvec{G}^a_{\delta \tau }(k) &{} \varvec{0}_{2n,n} \\ \varvec{0}_{n,n} &{} \varvec{G}^a_w \end{array} \right] \,&; \, \varvec{C}^a_{aug} = \left[ \begin{array}{cc} \varvec{C_\star }^a&\varvec{0}_{n,n} \end{array} \right] \; . \end{aligned}$$

Given the state-space representation (45), the estimation observer is given by

$$\begin{aligned} \nonumber \varvec{\hat{X}}_{aug}^a(k+1) &=\varvec{A}^a_{aug}\varvec{X}_{aug}^a(k) + \varvec{B}^a_{aug}\varvec{\widetilde{\tau }}(k) \nonumber + \varvec{K}_f(k)[\varvec{C_\star }^a \varvec{X}^a(k+1) + \varvec{v}(k+1) \nonumber \\&\quad- \varvec{C_\star }^a \varvec{\hat{X}}^a(k+1) ] \; . \end{aligned}$$
(46)

Denoting \(\varvec{\varepsilon }_X(k) = \varvec{X}^a(k) - \varvec{\hat{X}}^a(k)\), (46) is rewritten:

$$\begin{aligned} \varvec{\hat{X}}_{aug}^a(k+1)&= \varvec{A}^a_{aug}\varvec{X}_{aug}^a(k) + \varvec{B}^a_{aug}\varvec{\widetilde{\tau }}(k) \nonumber \\&\quad+ \varvec{K}_f(k)[\varvec{C_\star }^a \varvec{A}^a_\star \varvec{\varepsilon }_X(k) + \varvec{C_\star }^a \varvec{G}^a_{\delta \tau }(k) \varvec{\underline{\delta \tau }}(k) \nonumber \\&\quad+ \varvec{v}(k+1) + \varvec{C_\star }^a \varvec{G}^a_{ext} (\varvec{\tau }_{ext}(k) - \varvec{\hat{\tau }}_{ext}(k)) ] \; . \end{aligned}$$
(47)

With \(\varvec{K}_f(k) = \left[ \varvec{K}_1(k)\,^T \; \varvec{K}_2(k)\,^T\right] \) such as \(\varvec{K}_1 \in \mathbb {R}^{2n \times n}\) and \(\varvec{K}_2 \in ~\mathbb {R}^{n \times n}\), the components of \(\varvec{\hat{\tau }}_{ext}(k+1)\) are extracted from (47)

$$\begin{aligned} \nonumber \varvec{\hat{\tau }}_{ext}(k+1)&= [\varvec{A}^a_{ext} - \varvec{K}_2(k)\varvec{C_\star }^a \varvec{G}^a_{ext}]\varvec{\hat{\tau }}_{ext}(k) \nonumber \\&\quad+ \varvec{K}_2(k) [\varvec{C_\star }^a \varvec{A}^a_\star \varvec{\varepsilon }_X(k) + \varvec{C_\star }^a \varvec{G}^a_{\delta \tau }(k) \varvec{\underline{\delta \tau }}(k) \nonumber \\&\quad+ \varvec{v}(k+1) + \varvec{C_\star }^a \varvec{G}^a_{ext} \varvec{\tau }_{ext}(k)] \; . \end{aligned}$$
(48)

Similarly with \(\varvec{\hat{X}}^a(k+1)\) extracted from (47), \(\varvec{\varepsilon }_X(k+1) = \varvec{X}^a(k+1) - \varvec{\hat{X}}^a(k+1)\) is expressed as:

$$\begin{aligned} \varvec{\varepsilon }_X(k+1)&= \left[ \varvec{A}^a_\star - \varvec{K}_1(k)\varvec{C_\star }^a\varvec{A}^a_\star \right] \varvec{\varepsilon }_X(k) \nonumber \\&\quad+ [\varvec{G}^a_{\delta \tau }(k) - \varvec{K}_1(k)\varvec{C_\star }^a\varvec{G}^a_{\delta \tau }(k)]\varvec{\underline{\delta \tau }}(k) \nonumber \\&\quad- \varvec{K}_1(k)\varvec{v}(k+1) \nonumber \\&\quad+ \left[ \varvec{G}^a_{ext} - \varvec{K}_1(k)\varvec{C_\star }^a\varvec{G}^a_{ext}\right] \left[ \varvec{\tau }_{ext}(k) - \varvec{\hat{\tau }}_{ext}(k)\right]. \end{aligned}$$
(49)

Using (48) and (49), the following state-space representation is derived at each time step k

$$\begin{aligned} \left\{ \begin{array}{l} \varvec{X}_e(k+1) = \varvec{A}_e^k \varvec{X}_e(k) + \varvec{B}_e^k \varvec{U}_e(k) \\ \varvec{Y}_e(k) = \varvec{C}_e \varvec{X}_e(k) \end{array} \right. \; , \end{aligned}$$
(50)

with:

$$\begin{aligned} \varvec{X}_e(k) = \left[ \begin{array}{c} \varvec{\varepsilon }_X(k) \\ \varvec{\hat{\tau }}_{ext}(k) \end{array} \right] \; ; \; \varvec{Y}_e(k) = \varvec{\hat{\tau }}_{ext}(k) \; ; \; \varvec{U}_e(k) = \left[ \begin{array}{c} \varvec{\tau }_{ext}(k) \\ \varvec{\underline{\delta \tau }}(k) \\ \varvec{v}(k+1) \end{array} \right] \end{aligned}$$
(51)

and

$$\begin{aligned} \varvec{A}_e^k&= \left[ \begin{array}{cc} \varvec{A}^a_\star - \varvec{K}_1(k)\varvec{C_\star }^a\varvec{A}^a_\star &{} \quad -(\varvec{G}^a_{ext} - \varvec{K}_1(k)\varvec{C_\star }^a\varvec{G}^a_{ext}) \\ \varvec{K}_2(k) \varvec{C_\star }^a \varvec{A}^a_\star &{} \quad \varvec{A}^a_{ext} - \varvec{K}_2(k)\varvec{C_\star }^a \varvec{G}^a_{ext} \end{array} \right] \\ \varvec{B}_e^k&= \left[ \begin{array}{ccc} \varvec{B}_{11} &{} \; \varvec{B}_{12} &{} \varvec{B}_{13} \\ \varvec{B}_{21} &{} \; \varvec{B}_{22} &{} \varvec{B}_{23} \end{array} \right] \\ \varvec{B}_{11}&= \varvec{G}^a_{ext} - \varvec{K}_1(k)\varvec{C_\star }^a\varvec{G}^a_{ext} \\ \varvec{B}_{12}&= \varvec{G}^a_{\delta \tau }(k) - \varvec{K}_1(k)\varvec{C_\star }^a\varvec{G}^a_{\delta \tau }(k) \\ \varvec{B}_{13}&= - \varvec{K}_1(k) \\ \varvec{B}_{21}&= \varvec{K}_2(k) \varvec{C_\star }^a \varvec{G}^a_{ext} \\ \varvec{B}_{22}&= \varvec{K}_2(k) \varvec{C_\star }^a \varvec{G}^a_{\delta \tau } \\ \varvec{B}_{23}&= \varvec{K}_2(k) \\ \varvec{C}_e&= \left[ \begin{array}{cc} \varvec{0}_{n,2n}&\quad I_{n} \end{array} \right] \; . \end{aligned}$$

Transforming (50) in the complex z-domain, it gives

$$\begin{aligned} \varvec{\hat{\tau }}_{ext}(z) = \underbrace{\varvec{C}_e\left( z\varvec{I}_{3n}-\varvec{A}_e^k\right) ^{-1}\varvec{B}_e^k}_{\varvec{H}^k(z)}\varvec{U}_e(z) \; . \end{aligned}$$
(52)

We define the following transfer matrices calculated at each time step k

$$\begin{aligned} \varvec{H}_1^k(z) \;&\widehat{=} \; \frac{\varvec{\hat{\tau }}_{ext}(z)}{\varvec{\tau }_{ext}(z)} = \varvec{H}^k(z) \left[ \begin{array}{ccc} \varvec{I}_{n}&\varvec{0}_{n,n}&\varvec{0}_{n,n} \end{array} \right] ^T \quad \in \mathbb {R}^{n,n} \; , \nonumber \\ \varvec{H}_2^k(z) \;&\widehat{=} \; \frac{\varvec{\hat{\tau }}_{ext}(z)}{\varvec{\underline{\delta \tau }}(z)} = \varvec{H}^k(z) \left[ \begin{array}{ccc} \varvec{0}_{n,n}&\varvec{I}_{n}&\varvec{0}_{n,n} \end{array} \right] ^T \quad \in \mathbb {R}^{n,n} \; ,\nonumber \\ \varvec{H}_3^k(z) \;&\widehat{=} \; \frac{\varvec{\hat{\tau }}_{ext}(z)}{\varvec{v}(z)} = z \, \varvec{H}^k(z) \left[ \begin{array}{ccc} \varvec{0}_{n,n}&\varvec{0}_{n,n}&\varvec{I}_{n} \end{array} \right] ^T \quad \in \mathbb {R}^{n,n} \; . \end{aligned}$$
(53)

The covariance matrix \(\varvec{P}_{\varvec{X}_e}(k) \in \mathbb {R}^{n,n}\) of Xe(k) is defined as:

$$\begin{aligned} \varvec{P}_{\varvec{X}_e}(k) = E\left[ \varvec{X}_e(k)\varvec{X}_e^T(k)\right] \; . \end{aligned}$$
(54)

Assuming Xe(k) and Ue(k) on one hand, and \(\varvec{\tau }_{ext}(k)\), \(\varvec{\underline{\delta \tau }}(k)\) and \(\varvec{v}(k+1)\) on the other hand, are respectively not correlated, thus in steady state and at each time step, \(\varvec{P}_{\varvec{X}_e}(k)\) is the positive solution of the algebraic equation of Riccati:

$$\begin{aligned} \varvec{A}_e^k\varvec{P}_{\varvec{X}_e}(k)(\varvec{A}_e^k)^T + \varvec{B}_e^k\left[ \begin{array}{ccc} \varvec{W}_{ext} &{} \varvec{0}_{n,n} &{} \varvec{0}_{n,n} \\ \varvec{0}_{n,n} &{} \varvec{I}_{n} &{} \varvec{0}_{n,n} \\ \varvec{0}_{n,n} &{} \varvec{0}_{n,n} &{} \varvec{V}^a \end{array} \right] (\varvec{B}_e^k)^T = 0 \; . \end{aligned}$$
(55)

Thus the covariance matrix \(\varvec{P}_{ext}(k)\) of \(\varvec{\hat{\tau }}_{ext}\) is defined by:

$$\begin{aligned} \varvec{P}_{ext}(k) = \varvec{C}_e \varvec{P}_{\varvec{X}_e}(k) \varvec{C}_e^T \; . \end{aligned}$$
(56)

Finally the covariance matrix P(k) of \(\varvec{\hat{\tau }}_{ext}\) when \(\varvec{\hat{\tau }}_{ext}\) is only due to uncertainties and measurement noise and in absence of collision is obtained by resolving (55) when \(\varvec{W}_{ext} = \varvec{0}_{n,n}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briquet-Kerestedjian, N., Makarov, M., Grossard, M. et al. Performance quantification of observer-based robot impact detection under modeling uncertainties. Int J Intell Robot Appl 3, 207–220 (2019). https://doi.org/10.1007/s41315-018-0068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-018-0068-4

Keywords

Navigation