Skip to main content
Log in

Design and characterization of a miniature free-swimming robotic fish based on multi-material 3D printing

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Research in animal behavior is increasingly benefiting from the field of robotics, whereby robots are being continuously integrated in a number of hypothesis-driven studies. A variety of robotic fish have been designed after the morphophysiology of live fish to study social behavior. Of the current design factors limiting the mimicry of live fish, size is a critical drawback, with available robotic fish generally exceeding the size of popular fish species for laboratory experiments. Here, we present the design and testing of a novel free-swimming miniature robotic fish for animal-robot studies. The robotic fish capitalizes on recent advances in multi-material three-dimensional printing that afford the integration of a range of material properties in a single print task. This capability has been leveraged in a novel design of a robotic fish, where waterproofing and kinematic functionalities are incorporated in the robotic fish. Particle image velocimetry is leveraged to systematically examine thrust production, and independent experiments are conducted in a water tunnel to evaluate drag. This information is utilized to aid the study of the forward locomotion of the robotic fish, through reduced-order modeling and experiments. Swimming efficiency and turning maneuverability is demonstrated through target experiments. This robotic fish prototype is envisaged as a tool for animal-robot interaction studies, overcoming size limitations of current design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abaid, N., Bartolini, T., Macri, S., Porfiri, M.: Zebrafish responds differentially to a robotic fish of varying aspect ratio, tail beat frequency, noise, and color. Behav. Brain Res. 233(2), 545–553 (2012)

    Article  Google Scholar 

  • Aureli, M., Kopman, V., Porfiri, M.: Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans. Mechatron. 15(4), 603–614 (2010)

    Article  Google Scholar 

  • Bartolini, T., Mwaffo, V., Butail, S., Porfiri, M.: Effect of acute ethanol administration on zebrafish tail beat motion. Alcohol 49(7), 721–725 (2015)

    Article  Google Scholar 

  • Bartolini, T., Mwaffo, V., Showler, A., Macrì, S., Butail, S., Porfiri, M.: Zebrafish response to 3D printed shoals of conspecifics: the effect of body size. Bioinspir. Biomim. 11(2), 026003 (2016)

    Article  Google Scholar 

  • Bellman, R.E.: Perturbation Techniques in Mathematics, Engineering and Physics. Cour Corp, Mineola (2003)

    MATH  Google Scholar 

  • Butail, S., Bartolini, T., Porfiri, M.: Collective response of zebrafish shoals to a free-swimming robotic fish. PLoS One 8(10), e76123 (2013)

    Article  Google Scholar 

  • Butail, S., Polverino, G., Phamduy, P., Del Sette, F., Porfiri, M.: Influence of robotic shoal size, configuration, and activity on zebrafish behavior in a free-swimming environment. Behav. Brain Res. 275, 269–280 (2014a)

    Article  Google Scholar 

  • Butail, S., Ladu, F., Spinello, D., Porfiri, M.: Information flow in animal-robot interactions. Entropy 16(3), 1315–1330 (2014b)

    Article  Google Scholar 

  • Butail, S., Abaid, N., Macrì, S., Porfiri, M.: “Fish–robot interactions: robot fish in animal behavioral studies”, in Robot Fish, Berlin, Germany, pp. 359–377. Springer, Heidelberg (2015)

    Google Scholar 

  • Cen, L., Erturk, A.: Bio-inspired aquatic robotics by untethered piezohydroelastic actuation. Bioinspir. and Biomim. 8(1), 016006 (2013)

    Article  Google Scholar 

  • Cha, Y., Laut, J., Phamduy, P., Porfiri, M.: Swimming robots have scaling laws, too. IEEE/ASME Trans. Mechatron. 21(1), 598–600 (2016)

    Article  Google Scholar 

  • Chae, W., Cha, Y., Peterson, S.D., Porfiri, M.: Flow measurement and thrust estimation of a vibrating ionic polymer metal composite. Smart Mater. Struct. 24(9), 095018 (2015)

    Article  Google Scholar 

  • Chen, Z., Sharata, S., Tan, X.: Modeling of biomimetic robotic fish propelled by an ionic polymer metal composite caudal fin. IEEE/ASME Trans. Mechatron. 15(3), 448–459 (2010)

    Article  Google Scholar 

  • Clapham, R., J., and Hu H.: “iSplash-MICRO: A 50 mm robotic fish generating the maximum velocity of real fish”. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, pp. 287–293 (2014)

  • DEL Imaging Systems. MotionPro Y-Series compact digital cameras. Available: http://www.delimaging.com/products/MotionPro-Y-Series.htm (2014). Accessed 4 Oct 2016

  • Eastman, A., Kiefer, J., Kimber, M.: Thrust measurements and flow field analysis of a piezoelectrically actuated oscillating cantilever. Exp. Fluids 53(5), 1533–1543 (2012)

    Article  Google Scholar 

  • Facci, A.L., Porfiri, M.: Analysis of three-dimensional effects in oscillating cantilevers immersed in viscous fluids. J. Fluids Struct. 38, 205–222 (2013)

    Article  Google Scholar 

  • Faria, J.J., Dyer, J.R.G., Clement, R.O., Couzin, I.D., Holt, N., Ward, A.J.W., et al.: A novel method for investigating the collective behaviour of fish: introducing ‘Robofish’. Behav. Ecol. Sociobiol. 64(8), 1211–1218 (2010)

    Article  Google Scholar 

  • Fossen, T.I.: Guidance and Control of Ocean Vehicles. Wiley, New York (1994)

    Google Scholar 

  • Gazzola, M., Argentina, M., Mahadevan, L.: Scaling macroscopic aquatic locomotion. Nat. Phys. 10, 758–761 (2014)

    Article  Google Scholar 

  • Higuchi, H., Van Langen, P., Sawada, H., Tinney, C.E.: Axial flow over a blunt circular cylinder with and without shear layer reattachment. J. Fluids Struct. 22(6), 949–959 (2006)

    Article  Google Scholar 

  • Hoerner, S.F.: Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. Hoerner Fluid Dynamics, Bakersfield (1965)

    Google Scholar 

  • Hu, H.: Biologically inspired design of autonomous robotic fish at Essex. In: Proceedings of the IEEE SMC UK-RI Chapter Conference, Sheffield, UK, pp. 3–8 (2006)

  • Kalueff, A.V., Stewart, A.M., Gerlai, R.: Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 35(2), 63–75 (2014)

    Article  Google Scholar 

  • Keane, R.D., Adrian, R.J.: Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49(3), 191–215 (1992)

    Article  Google Scholar 

  • Kitzhofer, J., Ergin, F., G., and Jaunet, V.: “2D least squares matching applied to PIV challenge data (Part 1)”. In Proceedings of the International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, pp. 9–12 (2012)

  • Kopman, V., Porfiri, M.: Design, modeling, and characterization of a miniature robotic fish for research and education in biomimetics and bioinspiration. IEEE/ASME Trans. Mechatron. 18(2), 471–483 (2013)

    Article  Google Scholar 

  • Kopman, V., Laut, J.W., Polverino, G., Porfiri, M.: Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test. J. R. Soc. Interface 10(78), 20120540 (2013)

    Article  Google Scholar 

  • Kopman, V., Laut, J., Acquaviva, F., Rizzo, A., Porfiri, M.: Dynamic modeling of a robotic fish propelled by a compliant tail. IEEE J. Ocean. Eng. 40(1), 209–221 (2015)

    Article  Google Scholar 

  • Krause, J., Winfield, A.F., Deneubourg, J.L.: Interactive robots in experimental biology. Trends Ecol. Evol. 26(7), 369–375 (2011)

    Article  Google Scholar 

  • Ladu, F., Mwaffo, V., Li, J., Macrì, S., Porfiri, M.: Acute caffeine administration affects zebrafish response to a robotic stimulus. Behav. Brain Res. 289, 48–54 (2015)

    Article  Google Scholar 

  • Landgraf, T., Bierbach, D., Nguyen, H., Muggelberg, N., Romanczuk, P., Krause, J.: RoboFish: increased acceptance of interactive robotic fish with realistic eyes and natural motion patterns by live Trinidadian guppies. Bioinspir. Biomim. 11(1), 015001 (2016)

    Article  Google Scholar 

  • Lighthill, M.J.: Large-amplitude elongated-body theory of fish locomotion. Proc. R. Soc. Lond. B. Biol. Sci. 179(1055), 125–138 (1971)

    Article  Google Scholar 

  • Marchese, A.D., Onal, C.D., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot 1(1), 75–87 (2014)

    Article  Google Scholar 

  • Marras, S., Porfiri, M.: Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion. J. R. Soc. Interface 9(73), 1856–1868 (2012)

    Article  Google Scholar 

  • Morrison, F.A.: An Introduction to Fluid Mechanics. Cambridge University Press, New York (2013)

    Book  MATH  Google Scholar 

  • Nakayama, Y., Boucher, R.: Introduction to Fluid Mechanics. Butterworth-Heinemann, Oxford (1998)

    Google Scholar 

  • Stratasys. Objet500 and Objet350 Connex3. Available: http://www.stratasys.com/3d-printers/production-series/connex3-systems (2016). Accessed 4 Oct 2016

  • Peterson, S.D., Porfiri, M., Rovardi, A.: A particle image velocimetry study of vibrating ionic polymer metal composites in aqueous environments. IEEE/ASME Trans. Mechatron. 14(4), 474–483 (2009)

    Article  Google Scholar 

  • Phamduy, P., Polverino, G., Fuller, R.C., Porfiri, M.: Fish and robot dancing together: bluefin killifish females respond differently to the courtship of a robot with varying color morphs. Bioinspir. Biomim. 9(3), 036021 (2014)

    Article  Google Scholar 

  • Phamduy, P., LeGrand, R., Porfiri, M.: Design and characterization of an interactive iDevice-controlled robotic fish for informal science education. IEEE Robot. Autom. Mag. 22(1), 86–96 (2015)

    Article  Google Scholar 

  • Phamduy, P., Cheong, J., Porfiri, M.: An autonomous charging system for a robotic fish. IEEE/ASME Trans. Mechatron. 21(6), 2953–2963 (2016)

    Article  Google Scholar 

  • Polverino, G., Porfiri, M.: Mosquitofish (Gambusia affinis) responds differentially to a robotic fish of varying swimming depth and aspect ratio. Behav. Brain Res. 250(1), 133–138 (2013a)

    Article  Google Scholar 

  • Polverino, G., Porfiri, M.: Zebrafish (Danio rerio) behavioural response to bioinspired robotic fish and mosquitofish (Gambusia affinis). Bioinspir. Biomim. 8(4), 044001 (2013b)

    Article  Google Scholar 

  • Polverino, G., Phamduy, P., Porfiri, M.: Fish and robots swimming together in a water tunnel: robot color and tail-beat frequency influence fish behavior. PLoS One 8(10), e77589 (2013)

    Article  Google Scholar 

  • Prince, C., Lin, W., Lin, J., Peterson, S.D., Porfiri, M.: Temporally-resolved hydrodynamics in the vicinity of a vibrating ionic polymer metal composite. J. Appl. Phys. 107(9), 094908 (2010)

    Article  Google Scholar 

  • Raj, A., Thakur, A.: Fish-inspired robots: design, sensing, actuation, and autonomy—a review of research. Bioinspir. Biomim. 11(3), 031001 (2016)

    Article  Google Scholar 

  • Roper, D., T., Sharma, S., Sutton, R., and Culverhouse, P.: “A review of developments towards biologically inspired propulsion systems for autonomous underwater vehicles”. In: Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, London, pp. 77–96 (2011)

  • Rossi, C., Colorado, J., Coral, W., Barrientos, A.: Bending continuous structures with SMAs: a novel robotic fish design. Bioinspir. And Biomim. 6(4), 045005 (2011)

    Article  Google Scholar 

  • Ruberto, T., Mwaffo, V., Singh, S., Neri, D., Porfiri, M.: Zebrafish response to a robotic replica in three dimensions. R. Soc. Open Sci. 3(10), 160505 (2016)

    Article  Google Scholar 

  • Russell, W.M.S., Burch, R.L., Hume, C.W.: The Principles of Humane Experimental Technique. Johns Hopkins Center for Alternatives to Animal Testing, Baltimore (1959)

    Google Scholar 

  • Scarano, F., Riethmuller, M.L.: Iterative multigrid approach in PIV image processing with discrete window offset. Exp. Fluids 26(6), 513–523 (1999)

    Article  Google Scholar 

  • Spinello, C., Macrì, S., Porfiri, M.: Acute ethanol administration affects zebrafish preference for a biologically-inspired robot. Alcohol 47(5), 391–398 (2013)

    Article  Google Scholar 

  • Swain, D.T., Couzin, I.D., Leonard, N.E.: Real-time feedback-controlled robotic fish for behavioral experiments with fish schools. Proc. IEEE 100, 150–163 (2012)

    Article  Google Scholar 

  • Tan, X., Carpenter, M., Thon, J., and Alequin-Ramos, F.: “Analytical modeling and experimental studies of robotic fish turning”. In Proceedings of the International Conference on Robotics and Automation, Anchorage, AK, USA, 2010, pp. 102–108

  • Thielicke, W., and Stamhuis, E.: “PIVlab–Towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB”. J. Open Res. Softw. 2(1), 1–10 (2014)

  • Wang, J., Tan, X.: A dynamic model for tail-actuated robotic fish with drag coefficient adaptation. Mechatronics 23(6), 659–668 (2013)

    Article  Google Scholar 

  • Wang, J., Tan, X.: Averaging tail-actuated robotic fish dynamics through force and moment scaling. IEEE Trans. Rob. 31(4), 906–917 (2015)

    Article  Google Scholar 

  • Wang, J., McKinley, P.K., Tan, X.: Dynamic modeling of robotic fish with a base-actuated flexible tail. ASME J. Dyn. Syst. Meas. Control 137(1), 011004 (2015)

    Article  Google Scholar 

  • Yan, Q., Han, Z., Zhang, S.W., Yang, J.: Parametric research of experiments on a carangiform robotic fish. J. Bionic Eng. 5(2), 95–101 (2008)

    Article  Google Scholar 

  • Yu, J., Tan, M., Wang, S., Chen, E.: Development of a biomimetic robotic fish and its control algorithm. IEEE Trans. Syst. Man Cybern. B Cybern. 34(4), 1798–1810 (2004)

    Article  Google Scholar 

  • Xcitex. ProAnalyst motion analysis software description. Available: http://www.xcitex.com/proanalyst-motion-analysis-software.php (2016). Accessed 4 Oct 2016

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant Nos. DRL-1200911, CMMI-1433670, and OISE-1545857. The work of V. Mwaffo was supported in part by a Mitsui USA Foundation scholarship. Alessandro Rizzo acknowledges the support of Compagnia di San Paolo, Italy. The authors would like to thank Gabrielle Cord-Cruz for assisting with the experimental swimming tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Porfiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phamduy, P., Vazquez, M.A., Kim, C. et al. Design and characterization of a miniature free-swimming robotic fish based on multi-material 3D printing. Int J Intell Robot Appl 1, 209–223 (2017). https://doi.org/10.1007/s41315-017-0012-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-017-0012-z

Keywords

Navigation