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Abstract The penetration of mathematical modelling in

sports science to date has been highly limited. In particular

and in contrast to most other scientific disciplines, sports

science research has been characterized by comparatively

little effort investment in the development of phe-

nomenological models. Practical applications of such

models aimed at assisting trainees or sports professionals

more generally remain nonexistent. The present paper aims

at addressing this gap. We adopt a recently proposed

mathematical model of neuromuscular engagement and

adaptation, and develop around it an algorithmic frame-

work which allows it to be employed in actual training

program design and monitoring by resistance training

practitioners (coaches or athletes). We first show how

training performance characteristics can be extracted from

video sequences, effortlessly and with minimal human

input, using computer vision. The extracted characteristics

are then used to fit the adopted model i.e. to estimate the

values of its free parameters, from differential equations of

motion in what is usually termed the inverse dynamics

problem. A computer simulation of training bouts using the

estimated (and hence athlete specific) model is used to

predict the effected adaptation and with it the expected

changes in future performance capabilities. Lastly we

describe a proof-of-concept software tool we developed

which allows the practitioner to manipulate training

parameters and immediately see their effect on predicted

adaptation (again, on an athlete specific basis). Thus, this

work presents a holistic view of the monitoring–

assessment–adjustment loop which lies at the centre of

successful coaching. By bridging the gap between theo-

retical and applied aspects of sports science, the present

contribution highlights the potential of mathematical and

computational modelling in this field and serves to

encourage further research focus in this direction.

Keywords Capability profile � Strength � Force �
Estimation � Computer vision � Software � Weight training

Introduction

Sports science is a discipline characterized by a strong focus

on practical application. Ultimately, the aim of any research

in this field is to facilitate advancement in some aspect of the

athletic endeavour. The nature of such advancement may

take on many forms. An improvement in performance may

be achieved through the use of a novel training modal-

ity [1–3] or better training parameter selection [4, 5], for

example. Alternatively, strategies to enhance intra-train-

ing [6] or inter-training [7, 8] recovery ratesmay be devised.

Injury prevention methods [9] or methods for accelerating

rehabilitation [10], over time albeit indirectly can also be

seen to contribute to improved performance.While certainly

not an exhaustive list, the aforementioned elements of an

integral training regime have been attracting the most

attention from researchers and practitioners. The complexity

emerging from the interrelatedness of these elements illus-

trates the breadth of potential avenues for further study and

potential scientific contribution to the sports community.

In broad terms, the development of a novel idea in sport

science comprises three distinct challenges before reaching

the stage of general acceptance by the practitioners. The

first of these concerns the pursuit of data collection by
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means of empirical study. Indeed, this aspect of research

has been dominating sports science for most of its existence,

producing a consistently expanding corpus of available

data. The accumulation of empirical findings facilitates the

second challenge—the understanding of the underlying

physiological mechanisms. This is effected by the unifica-

tion of regularities in the observed data by means of phe-

nomenological models. Such models effectively reduce the

total information content needed to describe a particular

phenomenon and are subjected to scrutiny through the

predictions they produce. In this final stage the model is

applied in practice, in the context of athletic training.

This paper focuses on the final of the aforementioned

developmental stages. Specifically, it considers several out-

standing problems associated with the application of a

recently proposed physiological model underlying resistance

training performance and adaptation and extends the previous

work described in [11]. Herein, we expand on the technical

detail of each of the stages of the framework in detail, present

additional discussion, and explain how different parameters

of the framework can be estimated either directly fromdata or

based on evidence in the existing literature. Moreover, we

present additional empirical experiments and findings and

discuss the performance of the proposed method in light of

these. Finally, we present a more comprehensive description

of the proof-of-concept software tool which we developed

and which implements the proposed algorithms.

The remainder of the paper is organized as follows.

A list of the most commonly used mathematical symbols

and their explanations is given in Table 1. The estimation

of measurable performance characteristics from realistic,

loosely constrained videos of athletes in training is

addressed in Sect. 2. The process of estimation of free

model parameters from said characteristics is the subject of

Sect. 3 and the subsequent use of the model to guide future

training choices in a manner tuned to a specific athlete and

exercise of Sect. 4. A summary and a discussion of

promising future work directions are presented in Sect. 5.

Image-Based Extraction of Performance
Characteristics

The central concept in the computational model introduced

in [12] is the capability profile of an athlete in a given

exercise. It is instrumental in predicting performance as

well as in capturing the nature and magnitude of training

adaptations. An athlete’s capability profile F̂ for a given

exercise is defined as the maximum force that the athlete

can exert against the load in the exercise as a function of

the load’s position (commonly elevation) d and velocity v:

F̂ � F̂ðd; vÞ: ð1Þ
Conceptually F̂ðd; vÞ can be thought of as a generalization

of the force–length [13–15] and force–velocity character-

istics [16, 17] of an isolated skeletal muscle to an arbitrary

and in practice usually biomechanically complex exer-

cise [12]. Force–length and force–velocity characteristics,

while trainable [18] and variable between different people

as well as across different muscles of the same person,

Table 1 A summary of the key

mathematical notation used in

this paper

Symbol Description

Image

Fi ith input video frame as a matrix of pixels

x Horizontal location of a pixel i.e. pixel column index

y Vertical location of a pixel i.e. pixel row index

Wi Region of interest in frame i

T jðiÞ Vertical location of jth image feature of interest in frame i

d Displacement of a feature in pixels relative to its bottom-most location

Physical

t Time from the beginning of the first repetition

d Displacement/elevation of the load from the bottom-most position

v Velocity of the load; positive for the concentric effort

F Effective force exerted by the athlete against the load

wn Athlete’s measured n-repetition maximal load (nRM)

ŵn Estimate of athlete’s n-repetition maximal load

Model

F̂ Athlete’s capability profile for a particular exercise

TF Athlete and exercise-specific fatigue time constant

g Fatigue modulating function
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generally share the same functional form. However, this is

generally not the case for a capability profile corresponding

to an arbitrary exercise. The universal characteristics of

force production for individual muscles are modulated by

the plurality of involved musculature, attachment structure

of individual muscles and the change in the biomechanics

throughout the lift. It is an important observation that in the

model proposed in [12] these are not modelled sepa-

rately—all performance prediction and adaptation experi-

enced over time is based on the corresponding capability

profile which captures the total effective force exerted

against the load.

The model is employed by predicting exercise perfor-

mance first. This is achieved by formulating a differential

equation governing the motion of the load. Using its

numerical approximation, a computer simulation is applied

to predict the variation in the elevation of the load through

time. The effective force which the athlete can exert

against the load at different stages of the movement mod-

elled as the athlete’s capability profile which is additionally

modulated by an exponential decay capturing fatigue

accumulation which takes place over time. Simulation

results are then used to infer the adaptational stimulus,

which manifests itself through a fed-back modification of

the capability profile. The key elements of the training–

adaptation cycle are illustrated schematically in Fig. 1. For

further in-depth technical detail on the model, the reader is

referred to the original publication [12].

The aim of the work presented in this paper was to

develop a framework which facilitates the application of

the aforementioned model in training practice. The key

contributions include: (1) a method for the estimation of

the free parameters of the model from data which can be

readily acquired without the use of specialized equipment,

large cost or user effort, and (2) a proof-of-concept soft-

ware tool which implements the proposed framework

allowing it to be used for planning real-world resistance

training regimens.

Overview of the Proposed Framework

The first contribution of this paper and the focus of this

section is an algorithm for estimating the motion of the

load in resistance exercise. This is a crucial element in the

pipeline described in subsequent sections. Specifically, the

reconstruction of an athlete’s capability profile [12], which

is based on the elevation–velocity characteristics, and the

corresponding force exerted against the load in the per-

formed lifts, are both inferred from the motion extracted

here.

The key stages of the proposed method are illustrated

conceptually in the diagram shown in Fig. 2. The process

beings with the detection of so-called interest points in the

starting frame of the raw input video. Overlaid on the

original image these are displayed to the user who selects a

region corresponding to the load used for exercise. Then,

each interest point within this region of interest is tracked

until the completion of the video producing a series of

continuous motion tracks, one for each interest point.

Information from all extracted tracks is polled together to

reliably infer the overall motion of the load which is then

processed further to extract the corresponding variation in

Fig. 1 Key elements of the

computational model of

neuromuscular adaptation to

resistance trained proposed by

Arandjelović [12] adopted in the

present work
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velocity and the effective force exerted against the load.

The starting and terminal times of individual repetitions

(and their concentric and eccentric portions) are extracted

here too. Each of the aforementioned steps is described in

detail next.

Detection of Reliable Tracking Features

Consider F1, the initial frame of an input video sequence

represented as a greyscale image, with the value of the

pixel at the image location x ¼ ðx; yÞ denoted as Fðx; yÞ (or
equivalently FðxÞ, depending on convenience). The corre-

sponding Gaussian scale-space Sðx; y; sÞ is a three-di-

mensional volume defined as follows:

Sðx; y; sÞ ¼ F1ðx; yÞ �xy Gðx; y; srÞ ð2Þ

where �xy denotes convolution over x and y, andGðx; y; srÞ is
a two-dimensional isotropic Gaussian distribution with the

diagonal elements of the covariance matrix equal to ðsrÞ2:

Gðx; y; srÞ ¼ 1

2ps2r2
exp � x2 þ y2

2s2r2

� �
: ð3Þ

Here s is the so-called scale parameter and it governs the

degree of image blur, suppressing image features of a lesser

spatial extent than � ffiffi
s

p
. In practice, the scale-space is

quantized to only a discrete set of values of s ¼ s1; . . .sm
usually chosen as logarithmically equidistant with a spacing

which gives an integer number of scale levels in an octave:

9q 2 N; 8i� 1 : log2ðsiþ1=siÞ ¼ q: ð4Þ

Characteristic image interest points can be readily localized

from Sðx; y; sÞ as the loci of at which appearance change

with scale (at some scale-space level) exhibits maximum

rate of change. To ensure repeatability, as proposed by

Lowe [19], this initial list is further narrowed down by

accepting only those loci which are well localized by

requiring both eigenvalues of the corresponding Hessian to

be sufficiently large [20]. This process ensures that low

contrast loci or line like regions are rejected. An example

of a typical result is shown in Fig. 3a.

Feature Seeding

By construction, interest points are image loci with locally

characteristic appearance. As such, they are promising

candidates for reliable tracking of motion through time.

However, our specific aim here is to extract the motion of

the load lifted by the athlete—the video sequence may

contain other, confounding sources of motion which are not

of interest. For example, there may be other trainees

moving in the background. Thus, we seek to restrict our

attention to those interest points which are within the

region corresponding to the moving load.

The initialization of the tracking is difficult to automate

fully because the load can greatly vary in appearance: it

may comprise a fixed dumbbell or a loaded barbell, while

the plates used to load it can differ in their shape, dimen-

sions and colour. Thus, we adopt a semi-automatic

approach, whereby brief user input is used to initialize the

tracker. Specifically, the initial frame of the video sequence

is displayed and the user asked to outline a region of the

Fig. 2 The key elements of the proposed motion extraction method
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image corresponding to the load used by the athlete. The

loci of detected interest points, which are marked on the

displayed image, thus serve to guide the user who can

choose a region with their maximal number. A typical

example is illustrated in Fig. 3a with a magnification of the

user-selected region of interest shown in Fig. 3b and the

associated image patches in Fig. 4.

Feature Tracking

Having located a set of discriminative image loci of

interest, the goal is to track them over time. The method-

ology employed here is similar to that first proposed by

Lucas and Kanade [21] and subsequently further developed

by Tomasi and Kanade [22], and Shi and Tomasi [23].

There are two key differences in the approach taken here:

in the initialization of the tracked windows and in the

search for the optimal frame-to-frame wrapping parameters

(see [24, 25]). Unlike Shi and Tomasi whose choice of

tracking windows is based on the spatio-temporal gradient

matrix corresponding to the first two video frames, here the

tracked regions surrounding interest points are detected as

described in Sect. 2.2. The dimensions of each square

region are set equal to the detection scale of the corre-

sponding interest point.

As in the previous work, tracking is formulated as an

optimization problem, whereby the region of interest W in

frame Fi is localized in the subsequent frame Fiþ1 by

estimating the set of parameters a 2 R6 of an affine

transformation which maps W onto a region in Fiþ1, such

that the observed image difference is minimized. A mod-

ification introduced here is to estimate a using a three-level

pyramidal coarse-to-fine scheme whereby the initial esti-

mate is made using quarter-resolution images, which is

then refined at half-resolution and finally full resolution.

This serves both to increase the speed of convergence as

well as the robustness of the estimate by preventing the

iterative gradient descent (described next) from getting

stuck to a locally optimal value. Formally, at each level of

the pyramid, we wish to minimize:

(a) (b)

Fig. 3 a The original frame with detected features overlaid as yellow dots and b a close-up surrounding the interest region outlined by the user

(purple line)

Fig. 4 Patches of local

appearance corresponding to the

set of features enclosed by the

user in Fig. 3. They correspond

to ‘‘corner-like’’ regions, which

are well localized in space
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eðaÞ ¼
X
x2W

�
Fiþ1ðxaÞ � FiðxÞ

�2
; ð5Þ

where x ¼ ½xy�T is a vector corresponding to image loca-

tion (x, y), and:

xa ¼
ð1þ a1Þxþ a3yþ a5

a2xþ ð1þ a4Þyþ a6

� �
: ð6Þ

Minimization of the error term eðaÞ is a nonlinear

optimization task which can be solved through an iterative

steepest descent scheme. Using the first order Taylor series

expansion of the expression in Eq. 5, eðaÞ can be approx-

imated by êðaÞ:

eðaÞ � êðaÞ ¼
X
x2W

�
Fiþ1ðxaÞ þ rFiþ1

oxa
oa

Da� FiðxÞ
�2

ð7Þ

This is a quadratic minimization problem, which can be

solved in a closed form. A simple but cluttered analysis

shows that minimal êðaÞ is achieved for:

Da ¼
X
x

oxa
oa

	 
T

rFiþ1
TrFiþ1

oxa
oa

( )�1

X
x

rFiþ1

oxa
oa

� �T�
FiðxÞ � Fiþ1ðxaÞ

� ð8Þ

Equation 8 and the update of the warping parameter

a
ðjþ1Þ
i ¼ a

ðjÞ
i þ DaðjÞi are applied until convergence i.e. until

the magnitude of the update fails to exceed a tolerance

threshold on the parameter error kDaðjÞi k	 � [26].

Robust Motion Estimation

The tracking algorithm described in the previous section

follows the movement of a particular local feature within

the region of interest, initially corresponding to an auto-

matically detected interest point. However, generally, the

region of interest contains many features, each of which

produces a track:

T n ¼ xnð0Þ; . . .; xnðknDtÞ for nth feature ð9Þ

As indicated by different maximal time step indices ki, the

tracks may be of different durations—a feature once lost in

tracking is not re-spawned.

An example of a set of tracks extracted from a typical

lifting video sequence is shown in Fig. 5a. Each thin (and

blue, if viewing in colour) line is the vertical track of a

single feature. Note different starting values of elevation of

different features’ tracks—these correspond to different

initial locations and are not of relevance here. It is the

coherence in their relative motion which is being exploited

in computing the mean load displacement, shown as the

superimposed thick red line.

As will become apparent in Sect. 3, precise tracking of

the load is crucial for the accurate estimation of the vari-

ation in the force exerted by the trainee. Here we use the

entire set of obtained feature tracks to more robustly infer

their shared translatory motion, that is, the motion of the

rigid load they correspond to. Let, without loss of gener-

ality, k1 	 k2 	 � � � 	 kn. We compute the location of the

load at time kDt as follows. If Dk is the set of displace-

ments at kDt at most D pixels smaller or greater than the

median displacement at kDt:

Vk ¼ xiðkDtÞ � xið0Þ : ki 	 kf g ð10Þ

Dk ¼ d : d 2 V ^ kd � l1=2ðVÞk	D
n o

ð11Þ

Then the displacement of the bar at kDt is computed as

the robust mean:

�dðkDtÞ ¼ 1

jDkj
X
d2Dk

d ð12Þ

The result of applying this approach is illustrated in

Figs. 5 and 6.

Estimating Physical from Observed Image Motion

Hitherto we only concerned ourselves with the image

motion of the load. As our final goal is to model quantities

which exist in the physical world, such as the force pro-

ducing capability of an athlete, we need to link the apparent

motion x(t) with actual physical motion dðtÞ. In general,

this is an ill-posed problem—the process of imaging, that is

to say of projecting 3-dimensional geometry of the physical

world onto a 2-dimensional image plane, inherently creates

ambiguity. This ambiguity can be resolved only by

imposing further constraints, specific to a particular task.

Specifically, in this work we consider lifts in which the

only relevant resistive forces are constrained to the vertical

direction (note that this does not mean that the motion of

the load is constrained to the vertical direction). Most

obviously this applies to free weight lifts, which are

resisted by the force of gravity, but can also, depending on

the design of the apparatus, include a variety of other

machine-based exercises with frictional, elastic and viscous

resistive forces (see Sect. 4). Consequently, since all that is

needed for the estimation of velocities, acceleration and

forces involved is relative motion, i.e. displacement,

assuming that the extent of any horizontal motion of the

load is small compared to the load’s distance from the

camera, the relationship between the two quantities x(t) and

dðtÞ is a simple proportionality:
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(a) (b)

(c) (d)

Fig. 5 a Tracks of vertical displacement over time of features of

interest (thin blue lines) and the robust overall motion estimated using

the proposed algorithm (thick red line). b Overall vertical displace-

ment track, marked with semantic labelling corresponding to different

stages of a set of repetitions. c The detected starting and terminal

points of the concentric portions of each completed repetition (red

circles and dotted vertical lines). d Variation in the vertical

displacement of the load during three extracted concentric bouts

Fig. 6 Examples of load tracking. The motion of the load during each video is overlaid as a red line on a typical frame from the video

Augment Hum Res (2017) 2:4 Page 7 of 19 4
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dðtÞ ¼ KxxðtÞ ð13Þ

The value of the multiplicative constant Kx is deter-

mined through simple calibration using a known reference

object (e.g. the length of a standard Olympic barbell).

Repetition Segmentation and Concentric Motion

Extraction

Generally, the overall motion of the load, extracted in the

previous section, captures different aspects of a lifting

bout. This is illustrated in Fig. 5b. Initially, the athlete is

preparing for the lift and the load may exhibit motion as the

athlete assumes a comfortable starting pose. This is then

followed by alternating eccentric and concentric lifting

efforts (not necessarily in that order) separated by usually

brief pauses, that is, isometric holds. They facilitate the

dissipation of some of the accumulated fatigue, allow the

athlete to focus on the forthcoming repetition, catch breath,

check body positioning etc. Static holds may follow either

the eccentric or the concentric portion of the lift, depending

on the biomechanics of a particular exercise. In the bench

press or the squat, for example, a natural tendency is to

pause after the concentric portion of a repetition. During

the execution of the barbell row, the opposite is true, and

the pause is more likely after the eccentric effort.

From Performance Characteristics
to the Capability Profile

In the previous section we saw how the variation in the

elevation of the load used for resistance exercise can be

robustly extracted from video without strong assumptions

on the exercise, viewpoint or the appearance of the load.

Here our goal is to use these measured performance char-

acteristics to infer the athlete’s exercise-specific fitness,

that is, in the context of the performance model adopted in

this paper, the athlete’s capability profile.

This concept is central to the model employed in the

present work and is adopted from [12]. The capability

profile is instrumental in predicting performance as well as

in capturing the nature and magnitude of training adapta-

tions. An athlete’s capability profile for a given exercise

was defined as the maximum force that the athlete can

exert against the load in that exercise, as a function of the

load’s elevation and velocity. Conceptually it can be

thought of as a generalization of force–length [27, 28] and

force–velocity [16, 17] characteristics of an isolated

skeletal muscle. Force–length and force–velocity charac-

teristics, while trainable and variable between different

people as well as across different muscles of the same

person, have universal functional behaviour. In contrast,

the capability profile is dependent both on the specifics of a

particular exercise as well as athlete’s muscle attachment

structure, limb lengths, weight distribution etc [29, 30]. As

such, it must be estimated directly from performance

characteristics, such as those whose extraction was

addressed in Sect. 2.

Estimating Velocity and Force Variation

The athlete’s capability profile F̂ in an exercise is defined

as a bivariate function capturing the dependence of the

maximum force that the athlete can exert against the load

and the load’s elevation d and velocity v. That is:

F̂ � F̂ðd; vÞ: ð14Þ

It is this variation that we wish to infer from a set of

motion tracks, each corresponding to a concentric portion

of a repetition in a given lift, extracted using the algorithm

detailed in Sect. 2.

Consider the vector comprising the displacement (eleva-

tion) and velocity of the load over time, dðtÞ � dðtÞ _dðtÞ
h iT

where a dot over a symbol signifies time differentiation (thus
_d ¼ dd

dt
is the rate of change of elevation, or velocity, and

€d ¼ d2d
dt2

is the rate of change of velocity, or acceleration). This

state vector of the load changes throughout the lift, thus

making a path P through the two-dimensional elevation–

velocity (or capability) plane. The idea proposed here is that

the capability profile F̂ðd; vÞ can be inferred in the localities
of all available paths Pi from the estimates of the effective

force variation FiðtÞ along the said paths.

Velocity, Acceleration and Effective Force

The quantity directly measured from an input video is the

elevation of the load. From the position of the load, its

vertical velocity must be estimated to obtain capability

plane tracks Pi, as well as its acceleration from which FiðtÞ
can be computed.

In principle this can be achieved by means of simple

numerical differentiation of the elevation dðtÞ. If the vari-

ation dðtÞ is sampled at equidistant intervals t � tk ¼ kDt,
the corresponding instantaneous velocity can be estimated

using the well-known three point finite difference

approximation:

vk ¼
1

2Dt
� ðdkþ1 � dk�1Þ: k[ 0

0: k ¼ 0 ðinitial conditionÞ

8<
:

ð15Þ

and similarly the acceleration:
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ak ¼

1

2Dt
� ðvkþ1 � vk�1Þ: k[ 0

1

Dt
� ðvkþ1 � vkÞ: k ¼ 0

8><
>: ð16Þ

where the subscript k is used to denote the value of a par-

ticular variable at time t ¼ kDt. However, this approach has
the undesirable effect of amplifying high frequency noise

present in the initial estimates of dk [31]. The corruption of

the desired signal is particularly pronounced with repeated

differentiation. On the other hand, the usual practice of

simple data smoothing (i.e. smoothing that does not include

in its underlying model any constraints that emerge from the

semantics of the specific signal—in this case the underlying

physics and physiology) prior to differentiation is problem-

atic because it can result in physiologically unrealistic force

estimates [32]. Instead, to ensure that our known domain

specific physical constraints are satisfied,we fit a constrained

smoothing cubic spline [33] to load elevation values dðkDtÞ
and then differentiate the spline itself. Specifically, we

construct a spline which minimizes the objective function

which comprises two terms: (1) the discrepancy between the

observed data (load elevation) and that predicted by the

spline, and (2) the spline roughness. Formally, the objective

function �d is:

�d ¼ x
X
k

dðkDtÞ � d̂ðkDtÞ
��� ���2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fitting disagreement

þð1� xÞ
Z
t

€dðtÞ2dt
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Roughness

;

ð17Þ

where 0	x	 1, and the initial condition constraint:

dd
dt

���
t¼0

¼ v0 ¼ 0: ð18Þ

The value of the weighting parameter x is set empiri-

cally and is dependent on the quality of input video (in

particular, its resolution and the level of noise associated

with the CCD sensor).

Estimation of Effective Force Exerted by the Athlete

The final step in the process of extracting lift characteristics

from video proposed in this paper is the estimation of

effective force exerted by the athlete and against the load.

Having estimated the variation of the load’s position,

velocity and acceleration through time, force can be com-

puted from the differential equations of motion, that is, by

the method of so-called ‘‘inverse dynamics’’. In its most

general form, the motion of the load can be described

through an equation capturing the dependency of its position

d on (1) the force F applied against the load, (2) the velocity,

acceleration and possibly higher order derivatives of the

load’s position, and (3) a set of exercise parametersKwhich

include a variety of biomechanical variables. Formally:

0 ¼ wðF; d; _d; €d; . . .;KÞ ð19Þ

The application of inverse dynamics then comprises the

computation of F from the known values of the remaining

quantities in Eq. 19. For clarity, we shall consider a few

relevant examples next.

Inverse dynamics example 1: free load only The simplest

setup of practical relevance involves a free load of mass m

lifted by the athlete against gravity. If the variation of the

acceleration of the load through time is known, the effec-

tive force exerted by the athlete at any time t during the lift

can be computed as:

FðtÞ ¼ m � €dðtÞ þ g
h i

ð20Þ

where g is the acceleration due to gravity.

Inverse dynamics example 2: free load with added elastic

resistance A more complex system can be obtained by

the addition of an elastic resistance component to the free

weight, as frequently done by powerlifters using elastic

bands [34]. The equation of motion then becomes:

m€dðtÞ ¼ FðtÞ � mg� FEðdÞ; ð21Þ

where FEðdÞ captures the dependency of the elastic force

exerted on the load. This dependency is usually linear so

the equation of motion can be rewritten as:

m€dðtÞ ¼ FðtÞ � mg� kdðtÞ þ FE0½ �; ð22Þ

where FE0 is the elastic force at the bottom-most position

of the load, dðtÞ ¼ 0. Thus, the force exerted by the athlete

at any time t can be computed from the estimates of the

load’s position and acceleration as:

FðtÞ ¼ m �
�
€dðtÞ þ g

�
þ
�
kdðtÞ þ FE0

�
: ð23Þ

Estimation of effective force: concluding remarks While

simple, the two loading scenarios which were provided as

examples illustrate the general principle that the effective

force exerted by the athlete against the load can be com-

puted from the characteristics of the load’s motion (posi-

tion, velocity, acceleration etc.) and the physical model of

the resistance seen by the load (due to gravity, elastic

forces, drag etc.). For a detailed treatment of more complex

resistance systems encountered in practice the reader is

referred to the relevant previous work [12, 35–37].

Fatigue Modelling and Parameter Inference

In the previous section it was shown how the effective

force F(t) exerted by the lifter can be estimated from the
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motion of the load and the prior knowledge of the system

dynamics. Under the adopted model, this force is bounded

above by the value of the capability profile for the corre-

sponding state F̂ðdðtÞ; _dðtÞÞ, modulated by the accumulated

fatigue:

FðtÞ	 F̂ðdðtÞ; _dðtÞÞ � expð�t=TFÞ; ð24Þ

where TF is the person-specific fatigue time constant,

unknown a priori. In simulations reported in [12], and the

discussion of a possible approach for model parameter

inference, it was assumed that the upper bound in Eq. 24

was actually attained at all times. In other words, the ath-

lete was assumed to always attempt to maximally accel-

erate the load. This assumption was justified by the focus of

the original publication on strength and power athletes,

such as powerlifters, who indeed do observe this practice in

training [38]. However, the aim in the present work is to

devise an approach more widely applicable and, as will be

shown, the aforementioned assumption of continuous

maximum exertion does not hold well for maximal sets at

intensities lower than �85% (i.e. for maximum sets of

more than �6 repetitions).

Variable Fatigue Model

Firstly, to account for non-maximum exertion, Eq. 24 is

here extended to explicitly account for a variable rate of

fatigue accumulation. Formally:

FðtÞ ¼ F̂ðdðtÞ; _dðtÞÞ � gðtÞ; ð25Þ

where 0	 gðtÞ	 1 is the newly introduced fatigue modu-

lating function, and:

dgðtÞ
dt

¼ � 1

TF
gðtÞqðtÞ ð26Þ

The coefficient qðtÞ, where 0	 qðtÞ	 1, effectively

scales the time fatigue constant from its minimum value of

TF attained during maximum exertion. Put differently,

fatigue (captured through g) is accumulated less quickly

(governed by dg=dt) when a trainee exerts a lower force.

The rate of maximum voluntary force loss is decreased at

the time of submaximum effort (lower voluntary force can

be sustained for longer time):

qðtÞ ¼ FðtÞ=F̂ðdðtÞ; _dðtÞÞ: ð27Þ

Note that when qðtÞ � 1 i.e. when F̂ðdðtÞ; _dðtÞÞ � FðtÞ,
the form of the fatigue function becomes simply

gðtÞ ¼ expð�t=TFÞ, as in the original model [12]. How-

ever, in general, because qðtÞ is a function of time (inferred

from observed data as explained in the next section),

Eq. 26 cannot be solved in closed form.

Force–Fatigue Model for Trained Athletes

In the original work by Arandjelović [12] the assumption

was that the athlete exerts the maximum force possible at

each point in the lift. This force is readily computed using

the athlete’s capability profile corresponding to the lift in

question and the model of fatigue accumulation. The

assumption of continuous maximal exertion is effectively a

simple model of force–fatigue management, characterizing

how an athlete employs the underlying capability to pro-

duce force to complete the lift. In this work, an alternative

model is described which is aimed at a broader range of

athletes. Our focus is on athletes who explicitly seek per-

formance improvement across a range of intensities, unlike

powerlifters who are ultimately concerned only with per-

formance at the maximal intensity i.e. 100% of one repe-

tition maximum (1RM).

Here we consider trained athletes. This allows us to

assume that the use of the underlying force production

capability is approximately optimized for the training task.

Specifically, we assume that for a given training intensity

(i.e. load relative to 1RM), the athlete’s force production is

such as to complete a repetition with minimize fatigue

accumulation thus allowing the athlete to perform the most

work (repetitions) at this intensity.

To formalize the above, let LðkÞðdnþ1; vÞ be the negative
logarithm of the fatigue modulating function g(t) at the

repetition k, the load’s position dnþ1 and velocity v:

LðkÞðdnþ1; vÞ ¼ � log gðtÞ: ð28Þ

Then, to meet the assumption of the minimal accumu-

lated fatigue, the force exerted by the athlete at each time

step n has to satisfy the following equality:

LðkÞðdnþ1; vÞ ¼ min
v02Rs

Lðdn; v0Þ þ
Dt
TF

� qðtÞ
� �

¼ min
v02Rs

Lðdn; v0Þ þ
dnþ1 � dn

TFðvþ v0Þ=2 �
Fnðdn; vÞ
F̂ðdn; vÞ

� �
:

ð29Þ

Here, fatigue corresponding to LðkÞðdnþ1; vÞ is minimized

by considering the minimal fatigue achievable at the pre-

vious time step at LðkÞðdn; v0Þ and the incremental increase

in fatigue accumulated in reaching LðkÞðdnþ1; vÞ from

LðkÞðdn; v0Þ. The range of possible velocities v0 at the pre-

vious time step is restricted by the athlete’s ability to

produce force to a region Rs in the capability plane. This

concept is graphically illustrated in Fig. 7 which shows the

locus ðd; _dÞ in the capability plane, the path though the

capability plane corresponding to the preceding stages of

the repetition (blue arrow), and the region of interest for the

next time step (shaded, green). This region is triangular and
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defined by the locus ðdn; _dnÞ, the condition that failure does

not take place (i.e. the locus ðdn; 0Þ) and the maximal

velocity that the load can have given the athlete’s capa-

bility (corresponding to the maximal force that the athlete

can produce). Finally, the repetition has to end with the

load velocity vT such that:

vT ¼ argmin
vT

LðkÞðdmax; vTÞ: ð30Þ

This boundary condition enforces global optimality of

the repetition i.e. minimizes the total fatigue accumulated

in lifting the load.

Inference of model parameters Observe that the nature of

lifting performance optimality described by Eq. 29 is not

such that incremental fatigue at each time step is mini-

mized, that is, the term dnþ1�dn
TFðvþv0Þ=2 �

Fnðdn;vÞ
F̂ðdn;vÞ

. Rather than being

local, optimization is global. It is by virtue of this

assumption that it is necessary to constrain our attention to

trained individuals [39]. Specifically, the reader should

note that fatigue minimization described by the introduced

model is not achieved through conscious efforts of the

athlete. Instead, it is an adaptation of the neuromuscular

system induced through repeated training bouts.

In mathematical vernacular, the optimization problem of

interest is not ‘‘greedy’’. On the other hand, it does exhibit

the property of optimality of nested overlapping

subproblems. This is readily apparent by inspection from

Eq. 29—the optimal solution at the load position dnþ1 can

be expressed as a function of a locally computable term and

the optimal solution corresponding to the position of the

load at the preceding time step, that is, dn. Optimization

problems of this type are solvable efficiently [40]. How-

ever, note that this is not what we are trying to achieve

here. Rather than trying to compute the optimal solution,

our goal is to infer the underlying model parameters (the

athlete’s capability profile) from (1) the optimal solution

and (2) the form of the model. The optimal solution is

given by the lifting characteristics or, equivalently, the

corresponding repetition paths in the capability plane. The

form of the underlying model is that described by Eq. 29.

The difficulty of this inference is rooted in the global nature

of the optimization, that is, in terms of our mathematical

model, the loss of local information through summation.

The set-ending repetition Consider the last attempted

repetition in a set which ends in momentary muscular

failure. Referring back to the illustration in Fig. 7, in the

last elementary time interval Dt, the shaded region Rs

collapses to a line—the velocity of the load drops to 0 even

when maximal possible force is applied by the athlete. This

means that the coefficient qðtÞ is equal to 1. By means of

mathematical induction and working backwards in time, it

can be seen that qðtÞ ¼ 1 for the entire duration of the final

repetition. Thus, we can write:

Fnðdn; vÞ ¼ F̂ðdn; vÞ � exp �LðKÞðdn; vÞ
n o

¼ F̂ðdn; vÞ

� exp �LðKÞð0; 0Þ � t̂=TF

n o
; ð31Þ

where K is the index of the final repetition and t̂ time since

its beginning. It is clear from Eq. 31 that the values of the

capability profile F̂ðd; vÞ along the path corresponding to

the final repetition can be computed directly up to scale.

The global scale of the capability profile is then estimated

by matching its prediction with the actual load lifted by the

trainee. Lastly, the value of the fatigue time constant TF
was adopted from previous work [12] where it was esti-

mated from empirical data to be TF � 65 s.

Successful repetitions The lifting conditions during the

last repetition in a set are rather special—failure to complete

the lift results despite athlete’s maximal effort investment. In

contrast, the preceding, successful repetitions offer a

‘‘choice’’ (not necessarily conscious, as noted earlier) in the

manner force exerted against the load is managed over time,

This choice is described mathematically in the form of the

optimization in Eq. 29. It is the global nature of this opti-

mization which makes lifting characteristics measured dur-

ing successful repetitions less informative in the

reconstruction of the underlying capability profile.

Fig. 7 At every point in a successful lift the motion of the load is

constrained. This can be visualized usefully by considering the lift as

a path through the capability plane (see Sect. 2). In the process of

inference of the underlying capability profile, the position of the load

at ðdn; d̂nÞ constrains its position at the next time increment to a

triangle, defined by the load’s current position ðdn; d̂nÞ, the point

which would be reached in the case of subsequent immediate failure

ðdnþ1; 0Þ and the point which would be reached in the case of athlete’s
maximal exertion
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Successful repetitions can merely be used to formulate a

lower bound on the values of the capability profile along the

capability plane paths corresponding to the repetitions. For

this reason, in the present work, successful repetitions are

not used in the capability profile reconstruction.

Integrating data from multiple sets Repetitions of sets

performed by the same athlete but different intensities trace

different paths in the capability plane. Thus, performance

characteristics at a range of training intensities can be used

to infer the functional forms of different regions of the

athlete’s capability profile underlying the exercise in

consideration.

In practice, sufficient data for accurate reconstruction of

the region of the capability profile relevant to the athlete’s

performance could be accumulated with ease. This is

especially true in the case of cornerstone exercises (e.g. the

bench press for powerlifters or the squat for weightlifters)

which are practiced with relatively high frequency and

volume. Monitoring training performance over only a few

sessions would typically suffice. In this paper, to overcome

the limited amount of data we had available and extend the

area of the capability plane over which capability is esti-

mated, we also employ interpolative and extrapolative

methods. These are employed while ensuring the confor-

mance of the results with constraints derived to the fun-

damental physiological principles underlying the capability

profile. Specifically, we require that the capability profile is

monotonically decreasing in the ‘‘velocity direction’’ i.e.

that for any given point in an exercise, maximum effective

force that the athlete can exert against the load decreases

with the increase in the load’s velocity:

8d; v1\v2 : Fðd; v1Þ[Fðd; v2Þ ð32Þ

For a single muscle, Eq. 32 follows trivially from Hill’s

equation [16]. For an arbitrary number of contributing mus-

cles in a complex, compound exercise, the same conclusion

follows from Hill’s equation and the monotonicity of

functions W and Ui which are in [12] used to model exercise

biomechanics and impose kinematic constraints.

Recall from Sect. 3.2 and the original publication [12]

that a capability profile is represented by a set of samples. As

illustrated in Fig. 8, the samples correspond to predeter-

mined, discrete values of the load’s position and velocity i.e.

a regular, densemesh over the capability plane. As explained

earlier in this section, only those samples which lie on the

paths of set-ending repetitions are directly measured. To

estimate the values of the capability profile corresponding to

regions enclosed by the paths, interpolation using a quadratic

form penalty was performed. Formally, the discrepancy in

the values of the capability profile of two samples neigh-

bouring in the d or position direction is computed as:

DJd ¼ kd F̂ðd; vÞ � F̂ðdþ Dd; vÞ
� �2

: ð33Þ

Similarly, for samples neighbouring in the v or velocity

direction is:

DJv ¼ kv F̂ðd; vÞ � F̂ðd; vþ DvÞ
� �2

; ð34Þ

and finally in the diagonal direction:

DJdv ¼ kdv F̂ðd; vÞ � F̂ðdþ Dd; vþ DvÞ
� �2

; ð35Þ

Thus, the full error function J which is minimized is:

J ¼
Xdmax�Dd

d¼0

Xvmax

v¼0

kd F̂ðd; vÞ � F̂ðdþ Dd; vÞ
� �2

þ
Xdmax

d¼0

Xvmax�Dv

v¼0

kv F̂ðd; vÞ � F̂ðd; vþ DvÞ
� �2

þ
Xdmax�Dd

d¼0

Xvmax�Dv

v¼0

kdv F̂ðd; vÞ � F̂ðdþ Dd; vþ DvÞ
� �2

:

ð36Þ

As the form of J is quadratic, minimization over

unknown values of the capability profile samples is com-

puted readily in closed form by differentiation.

Fig. 8 Capability profile which

is a bivariate function F̂ðd; vÞ
over d 2 ½0; dmax�, v 2 ½0; vmax�
is represented by a set of

samples taken from a regular

dense mesh over the capability

plane. Load displacement is

thus constrained to discrete

values 0	 iDd	 dmax and

velocity to 0	 jDv	 vmax for

integer i, j
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Cross-Validation and Empirical Results

In this paper we introduced a cascade of algorithms which

allow for an athlete’s capability profile to be estimated from

the athlete’s resistance training performance captured in

video form. Our methods need only minimal human input

and allow for the use of realistic and virtually unconstrained

video sequences. Thus, little technical proficiency from the

user is required. We finish this section with an empirical

demonstration of how the underlying capability profile

representation together with the algorithms developed in the

present work allows for accurate and principled prediction

of performance under unseen conditions.

Design

The effectiveness of the proposed method was evaluated

using the video footage of 12 trainees, 10 male and 2

female, performing multiple sets of the squat or the bench

press. All of the participants had been regularly performing

the corresponding exercise for at least the last 5 years. The

participants’ mean age and bodyweight were, respectively,

32.8 years and 91.6 kg, and the corresponding standard

deviations 6.0 years and 15.0 kg. The squat and the bench

press were chosen as exercises used by a wide range of

trainees with different goals, and which can be safely

performed to momentary muscular failure1 both at low and

high intensities (from 15RM to 3RM in our case). After a

gradual warm-up, during which the athlete followed his/her

established routine, maximum 15RM, 12RM and 8RM lifts

were recorded for the training of our algorithm (i.e.

learning the athlete’s capability profile) and a 3RM lift for

validation purposes. Notice that in practice, by ensuring

consistent monitoring of performance (for discussion see

Sect. 4), a far larger amount of data would be available for

the capability profile estimation.

Capability Profile Estimation

In the case of all video sequences used for the evaluation

herein, the camera angle was not in any way specially

chosen (e.g. to capture either the fully frontal or the fully

profile view of the trainee). As desirable in practice, the

camera was instead simply placed in a location which was

found to be convenient in the context of the equipment

setup of the training facility.

A typical keyframe of one of the videos used to extract

training and validation data used to evaluate the proposed

methods is shown in Fig. 9a. The corresponding charac-

teristics of the training lifts are shown in Fig. 9b. Note that

the remarkable resemblance of the characteristics of dif-

ferent repetitions in the same set supports our fatigue

management model introduced in Sect. 3.3.2. Under the

maximum exertion model used in [12] (reviewed in

Sect. 3.3), greater effects of accumulating fatigue would

(a)

(b)

(c)

Fig. 9 a A snapshot from the video used to collect data for the

evaluation of the methods introduced in this paper, b the variation in

effective force exerted by the athlete against the load through

repetitions of sets at different loading intensities and c the corre-

sponding capability profile reconstruction

1 With the assistance of competent ‘spotters’.
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have been expected. A reconstruction of the athlete’s

capability profile is shown in Fig. 9c.

Comparison with Measured Performance

The main results of our experiment are summarized in

Fig. 10a which shows the plot of predicted 3RM loads

against those that were determined empirically. In the case

of perfect prediction, the data points would lie on the dotted

line shown in the plot. While our algorithm expectedly did

not attain perfect performance, it is readily apparent that it

has performed remarkably well. Specifically, the measured

standard deviation of the prediction error was found to be

3.7% for the squat and 3.4% for the bench press. This

compares favourably with the well-known Brzycki equa-

tion [41, 42], for example, particulary considering that

empirically obtained maximum strength estimates from

higher repetition ranges (such as those used here) exhibit

greater test–retest variability [43–45].

While a comparison of maximum effort lifting perfor-

mances predicted using statistical, regression techniques

and that using the model proposed in the present paper

allows for clear and readily understood validation of the

information extracted as a capability profile, the capability

profile model is much richer in information, allowing for a

far wider spectrum of predictions to be cast. To exemplify

this, here we also show an example of a comparison

between the actual, empirically measured performance

characteristics with those simulated using the capability

profile estimate of Sect. 3.4.2.

Actual lifting performance characteristics were collected

by asking the trainee to perform the maximum number of

repetitions using a 3RM load which was previously deter-

mined to be 375 lbs. From a video recording of the lift, the

elevation and velocity of the load through time were then

extracted using the methods described in Sect. 3.1. Finally, a

comparison was made with performance simulated using the

capability profile of Sect. 3.4.2. The result of this compar-

ison is summarized on the graph shown in Fig. 10b. Lifting

characteristics predicted by the model described in this

paper match the measured motion of the load remarkably

well throughout the entire duration of the lift i.e. across all

three repetitions. It is particularly interesting to observe that

the model correctly predicted even subtle phenomena such

as small convexities and concavities in the elevation–time

plots of Fig. 10b. The convexities and concavities likely

correspond to loci in the exercise range of motion (ROM)

when a transition, respectively, from a biomechanically

weaker to a biomechanically stronger or a biomechanically

stronger to a biomechanically weaker position of the load

occurs. That performance characteristics of this nature are

predicted with such precision provides strong evidence that

the underlying model is capable of accurately capturing

those elements of the athlete’s fitness which govern relevant

exercise performance, as well as that the proposed

methodology for inferring the parameters of the model is

indeed extracting meaningful information from training

data.

Application in Training Analysis and Design

Owing to the central role that the capability profile plays,

the ability to estimate it from actual performance opens a

wide range of possibilities for practical use. To illustrate

(a)

(b)

Fig. 10 a Predicted versus measured 3RM loads for the 12 athletes

used to assess the proposed methods. b The predicted (blue lines) and

actual, measured (red lines) 3RM performance to exhaustion, shown

as plots of the load’s elevation against time. The resulted prediction

exhibits remarkable agreement with measured performance at both

low frequencies (i.e. long time scale) and high frequencies (i.e. as

subtle motion features at short time scales)

4 Page 14 of 19 Augment Hum Res (2017) 2:4

123



this, we developed a computer application that allows a

practitioner to investigate predicted athlete-specific

effects of differently targeted training regimes. The key

aspects of the application’s functionality are described

next.

Summary of Software Features

Figure 11a shows the main window of the software and

its principal elements. The window consists of four panels

and a selection of buttons controlling the application. The

panel furthest to the left is the Capability Profile Panel

which displays the capability profile which is studied.

Furthest to the right is the Exercise Setup Panel con-

taining controls that adjust a variety of exercise parame-

ters (that are not already implicitly incorporated in the

capability profile). The central two panels display simu-

lated performance characteristics (as in Sect. 3.4.3), pre-

dicted by using the capability profile shown in the

Capability Profile Panel and resistance variables from the

Fig. 11 Main window of the software demonstrating a possible

practical application the methods proposed in this paper. a The

capability profile from Fig. 9c displayed as a colour-coded image and

the predicted performance characteristics for the values of resistance

parameters in the right hand side panel. Performance characteristics

are automatically reevaluated and visually updated when b the

resistance settings are changed or when c the user modifies the

capability profile
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Exercise Setup Panel. The first of the central panels

shows predicted performance as a plot of the load’s ele-

vation against time; the other panel shows the same data

but in the form of the corresponding capability plane path

(the reader may find it useful to revisit the material of

Sect. 3.1 as well as [12]).

Capability Profile Panel

The left-most panel in the main window of our software

application shows the capability profile, displayed as an

image. The rate of force production at a particular com-

bination of values of the load’s elevation and velocity is

indicated using a colour-code, with warmer colours cor-

responding to higher force and cooler colours to lower

force, see Fig. 11a. Note, for example, that the top of the

image is uniformly blue corresponding to diminished

capability to exert force against a rapidly moving load.

The capability profile, which may have been estimated

using the algorithm described in the previous sections,

can be modified by the user. Clicks in the capability

plane with the left and right mouse buttons produce,

respectively, positive and negative Gaussian ‘‘bumps’’ in

the profile. Formally, a click at the location corre-

sponding to ðx0; v0Þ creates a modified profile F̂modðd; vÞ
from F̂ðd; vÞ:
F̂modðd; vÞ ¼ F̂ðd; vÞ þ m � Gðd0; v0; rd; rvÞ; ð37Þ

where m is the adjustable (see next paragraph) magnitude of

the effect, while parameters rd and rv, which too are user-

adjustable, control its breadth in the capability plane. This

principle of capability profile modification is similar to that

described in detail in [35].

The example in Fig. 11c shows the resulting capa-

bility profile after the original one from Fig. 11a was

modified by decrementing the force in the locality of the

point of elevation-velocity ðd; vÞ � ð0:2m; 0:45m s�1Þ
and incrementing it in the locality of

ðd; vÞ � ð0:6m; 0:6 m s�1Þ.

Exercise Setup Panel

The panel furthest to the right in the main window of our

application is the Exercise Setup Panel, used to control a

number of exercise parameters. The first two of these

control the effects of user input. ‘‘Influence breadth’’,

changes the width of the capability profile modification

(relative to the scale d 2 ½0; dmax�; v 2 ½0; vmax� of the ele-

vation–velocity plane region displayed) affected by input:

rd ¼ ðinfluence breadthÞ 
 dmax ð38Þ

rv ¼ ðinfluence breadthÞ 
 vmax ð39Þ

‘‘Influence magnitude’’ controls the magnitude m of the

adjustment in Eq. 37. The remaining three parameters con-

trol the nature of resistance used to predict performance

characteristics achieved when the current capability profile

is used in a computer simulation of a lifting effort. To

account for different types of resistance commonly

encountered in weight training equipment we consider the

general mechanism schematically illustrated in Fig. 12.

Thus, ‘‘load mass‘‘ is the mass m of the free adjustable load,

such as a weighted barbell, while ‘‘countermass’’ m0 and

‘‘viscosity’’ c are, respectively, the mass of a counterweight

and the viscous resistance constant. An unmodified, free

weight lift, is obtained by setting m0 ¼ 0 and c ¼ 0.

Legend:

g acceleration due to gravity
m mass of the adjustable load
m0 mass of the counterweight
x1, x2 displacements of the adjustable

load and the counterweight
ẋ1 velocity of the adjustable load
T cord tension (T ≥ 0)
c viscous resistance
Ff1, Ff2 friction forces.

Fig. 12 A schematic diagram of the key components of the resistance

mechanism considered in the present work. Forces acting on the

system when the direction of the velocity of both the adjustable load

and the counterweight is positive (and thus, respectively, in the

upward and downward directions, due to differently oriented axes

measuring the two displacements)
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Predicted Performance Panels

The central two panels of the main window hold plots of,

respectively, the variation of the load’s elevation as a

function of time and the path of the elevation–velocity state

vector in the capability plane through the lift. These are

estimated using a computer simulation as described in [35],

performed automatically after any of the application

parameters are changed: the capability profile or the

resistance settings.

Discussion

Having described the key aspects of our software’s func-

tionality, we lastly describe how such a computer tool may

be used in day to day training practice.

The challenge central to the design of a continuously

productive training regime is that of feedback-based

adjustment of training parameters. In principle, the under-

lying idea is simple and consists of the following stages:

Step 1: Observation Actual performance in training is

monitored (usually by a coach or

the athlete himself) and compared

with the projected performance.

Step 2: Limiting

factor identification

Aspects of performance which are

assessed to be the limiting factors

in progress are identified.

Step 3: Parameter

adjustment

A suitable modification of training

parameters is implemented to

correct for the weaknesses

identified in Step 2.

Observation: data acquisition It has been emphasized

throughout this paper that one of our key aims is to

develop a principle system for monitoring, evaluating and

optimizing training which is inexpensive and convenient,

requiring little technical proficiency from the user. Indeed

the proposed methods require no more than a readily

affordable camera and a PC. One of the consequences of a

setup such as this is that training data can be continuously

acquired, allowing for the creation of a more reliable and

up-to-date model of an athlete’s fitness. Specifically, video

sequences (acquired by the athlete’s coach, training part-

ner or using a stationary camera set up by the athlete

himself) of the athlete’s training sets can be continuously

fed into our capability profile estimation algorithm (see

Sect. 3).

Limiting factor identification: performance analysis The

task of identifying those aspects of an athlete’s fitness

which are limiting performance is usually not trivial. This

is because unlike the task of observing past performance,

here it is necessary to be able to hypothesize small changes

to specific aspects of the athlete’s fitness and furthermore

predict the nature and magnitude of performance change

they would produce. The software tool described at the

beginning of this section achieves precisely this in the

context of resistance training. Guided by insight and

experience, the coach can investigate how small changes to

the athlete’s current capability profile affect performance.

For example, a ready estimate of the new maximum

strength can be obtained. Alternatively, different training

modalities can be explored. By changing the loading

parameters, the practitioner can promptly see how this is

reflected on the corresponding path in the capability plane

i.e. which aspects of performance are exerted and trained

the most.

Parameter adjustment The adjustment of training

parameters to achieve performance improvement is inti-

mately linked to the previously discussed task of identi-

fying those aspects of fitness which currently limit

performance. This link is made explicit in our model and

software. A productive adjustment is one which directs

capability paths of training repetition sets towards capa-

bility plane regions which correspond to limiting force

production conditions. This can be achieved by the prac-

titioner though experimentation with loading parameters in

the Exercise Setup Panel and observation of the effects on

training performance characteristics. It is worth noting the

indispensability of experience and insight, that is to say the

human factor, in guiding such experimentation.

Summary and Conclusions

The work described in this paper addressed a broad range

of practical challenges which until now limited the appli-

cation of a recently proposed model of neuromuscular

adaptation to resistance training. In a number of studies this

model has demonstrated promising results both in predic-

tive and explanatory domains, and revealed novel insights

into different training practices. Being able to take this

model, or indeed future models based upon similar pre-

mises, from the realm of theoretical or highly specific

studies and make them useful in everyday practice has the

potential of transforming the use of technology in sports

and of reshaping sports science research.

Starting from raw video input, acquired using readily

available, low cost equipment, the proposed framework

consists of a series of steps, ending with an estimate of the

parameters of the model describing a specific athlete’s

force production capability in a given exercise. The key

contributions include:

• visual tracking of the load lifted, of unknown shape and

appearance,
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• robust estimation of the position, velocity and acceler-

ation of the load,

• effective force estimation from the characteristics of the

load’s motion,

• a model of force–fatigue management applicable to the

trained population

• inference of the athlete’s maximum force production

capability at a certain position in a lift from the estimate

of the effective force actually exerted, and

• reconstruction of the relevant regions of the capability

profile from curved cross-sections through the capabil-

ity profile.

The proposed framework was evaluated empirically using

data representative of that which would be used in weight

training practice. Agreement of the model’s predictions with

empirical performance data and relevant previous work was

demonstrated. Finally, a description of a software program

implementing the proposed framework was used to illustrate

its possible application in practice as a tool for monitoring,

evaluating and improving training performance.
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