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Abstract
The growing interconnectivity of socio-economic systems requires one to treat
multiple relevant social and economic variables simultaneously as parts of a strongly
interacting complex system. Here, we analyze and exploit correlations between the
price fluctuations of selected cryptocurrencies and social media activities, and develop
a predictive framework using noise-correlated stochastic differential equations. We
employ the standard Geometric Brownian Motion to model cryptocurrency rates, while
for social media activities and trading volume of cryptocurrencies we use the
Geometric Ornstein-Uhlenbeck process. In our model, correlations between the
different stochastic variables are introduced through the noise in the respective
stochastic differential equation. Using a Maximum Likelihood Estimation on historical
data of the corresponding cryptocurrencies and social media activities we estimate
parameters, and using the observed correlations, forecast selected time series. We
successfully analyze and predict cryptocurrency related social media and the
cryptocurrency market itself with a reasonable degree of accuracy. In particular, we
show that our method has impressive accuracy in predicting whether a cryptocurrency
market will increase or decrease a day in the future, a significant result with regards to
investing and trading cryptocurrencies.

Keywords: Cryptocurrency, Social media activity, Stochastic differential equations,
Maximum likelihood estimation, Predictive modeling

Introduction
Increasingly interconnected financial systems and online social networks present both
critical challenges and opportunities. Volatility in the former (e.g., cryptocurrency rates)
can give rise to increased volume of activities in online social networks on relevant top-
ics, while sentiments and rumors in online social networks can also have a significant
impact on the corresponding financial time series. In this work, we aim to expand upon
the study of (correlated) stochastic differential equations (SDEs) and their application
to cryptocurrency markets. A large number of studies have demonstrated that complex
socio-economic systems (Máté and Néda 2016), more specifically stocks (Merton 1973;
1971; Black and Scholes 1973; Wilmott et al. 1995; Bouchaud and Potters 2000; Mantegna
and Stanly 2000; Reddy and Clinton 2016; Øksendal 2003), commodities (Schwartz 1997;
Mejía Vega 2018), and cryptocurrencies (Cretarola and Figà-Talamanca 2019b; Cretarola
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et al. 2019; Cretarola and Figà-Talamanca 2019) can be modeled using SDEs. Further,
correlations do exist between some stocks (Mantegna and Stanly 2000; Teng et al. 2016;
Plerou et al. 2002; Sándor and Néda 2015; Onnela et al. 2003), various cryptocurrencies
(Saha 2018; Chaim and Laurini 2019), and possibly exist between online social media
activities. We exploit these correlations and construct a general predictive method for
sets of cryptocurrency markets. In addition, we incorporate social media information, not
only to augment our predictions of the trading rates of cryptocurrencies, but also predict
the activity in these social media in a similar fashion by modeling them with SDEs as well.
Our results show that our prediction method yields fairly accurate results consistently
outperforming our baseline measurements. Our method’s most applicable result is the
model’s impressive accuracy in predicting whether the trading rate of cryptocurrencies
would increase or decrease during the following day during volatile periods.
A prevalent and common choice is the Geometric Brownian Motion (GBM) which has

been used for modeling stocks (Merton 1973; Black and Scholes 1973;Wilmott et al. 1995;
Reddy and Clinton 2016; Øksendal 2003) and more recently also for cryptocurrencies
(Cretarola et al. 2019; Cretarola and Figà-Talamanca 2019; Tarnopolski 2017; Kreuser and
Sornette 2018; Wu et al. 2018). There is, however, debate on the extent these assets follow
GBM dynamics. While GBM operates using Gaussian noise, there is evidence that the
noise distribution of stocks such as the S&P 500 has curvature different than a normal
distribution (Mantegna and Stanly 2000). Implication of this difference is most prominent
in the frequency of rare events as a result of heavy-tailed noise, also possibly present
for cryptocurrencies (Kreuser and Sornette 2018; Wu et al. 2018; Fry 2018). For small
sample sizes, this difference is small enough that many continue to use GBM and other
variants for modeling. In this paper, we will employ the GBM to model the dynamics of
cryptocurrencies.
In general, stocks can influence each other and determining the mechanism for these

influences is the focus of many areas of economics (Bouchaud and Potters 2000).
There is also reasonable evidence to suggest that two (Teng et al. 2016) or multiple
(Plerou et al. 2002) stocks can be correlated via their stochastic terms. The difficulty with
these approaches is tackling parameter estimation.
Parameters of a GBM process can vary both with time and value of the function in

non-linear ways (Bassler et al. 2007; Cretarola and Figà-Talamanca 2019a). This dif-
ficulty is compounded due to the introduction of noise, which makes disentangling
complex parameters estimation, even from Gaussian noise, non-trivial. These considera-
tions also apply to time variations in the correlation of multiple stocks (Teng et al. 2016).
Another interesting consequence is that correlation can artificially arise due to random
chance, which becomes important when a large number of time series are considered
(Plerou et al. 2002).
Attempts have been made to include the role of social media (Rosati et al. 2018), such

as studying the impact of “silent majority" vs. “vocal minority" (Mai et al. 2018)) and
contextual or sentiment information from media sources (Lamon et al. 2017; Kim et al.
2016; Bollen et al. 2011; Phillips and Gorse 2017). The latter attempts have mostly utilized
machine learning in some fashion, where coefficients are optimized to best fit the data.
The trade off is the possibility of over-fitting causing predictions to become inaccurate.
We instead model social media activity volumes by SDEs as well, where the correla-
tions to cryptocurrencies are introduced via correlated noise. We can then invert this



Dipple et al. Applied Network Science            (2020) 5:17 Page 3 of 30

method in order to predict social media activity using information about cryptocurrency
markets. Various predictive methods have been developed for predicting activity in social
media (Yao et al. 2018), and augmenting them with auxiliary information such as the
cryptocurrency market can improve those methods. A related approach has also been
developed in Cretarola and Figà-Talamanca (2019b); Cretarola et al. (2019); Cretarola
and Figà-Talamanca (2019) using “market attention" as a relevant correlated stochastic
variable.
Naturally, social media activity dynamics (referencing cryptocurrencies) and daily

trading volumes exhibit significantly different features from those of the underlying cryp-
tocurrencies. In particular, in these processes, after some possibly large spikes or drops (in
response to some external “random" events) the corresponding stochastic variables have
a tendency to return to some long-run mean. We hypothesize that these processes can
be approximated by the Geometric Ornstein-Uhlenbeck (GOU) process (Schwartz 1997;
Mejía Vega 2018).
In this paper, we expand applications of SDEs and provide a framework on how to use

correlations between time series in a data set. This is demonstrated by generating syn-
thetic data and testing our method’s predictive power when the ground truth is known.
We then model the cryptocurrency market, where we show our method’s predictive
power, most notably at correctly identifying increases and decreases in market value. Nat-
urally, we also model social media using SDEs and examine our prediction’s accuracy in
this area.

Theory and background
In this work, we begin with a Markovian SDE with a solution of the type,

S(ti) = f (S(ti−1),ψ(ti),
−→
β ), (1)

where S(ti) is the function value at time ti,ψ(ti) is an independent, identically distributed,
normal random variable realization at time ti with mean zero and variance unity, and −→

β

is the relevant parameter space. It is important to note that for the derivation of these
equations, there is no correlation between time steps ∀i, j ∈ Z, 〈ψ(ti),ψ(tj)〉 = δij. While
this may be true in theory, in practice there is typically some level of temporal correlation.
In addition, we also restrict this family of solutions to one where ψ can easily be isolated
as seen in the following equation,

ψ(ti) = g(S(ti), S(ti−1),
−→
β ). (2)

While our framework can be applied to more general equations of the above forms, in
this work we will exclusively use the GBM (Wilmott et al. 1995; Reddy and Clinton 2016)
and the GOU process (Schwartz 1997; Mejía Vega 2018).

The Geometric Brownian Motion

The GBM has been the simplest model to describe stock- or asset-price dynamics. In this
work, we model cryptocurrency closing price as a GBM. The essence of this asset price
dynamics is that the relative price change dS/S can be split into a deterministic and a
random component (Wilmott et al. 1995),

dS(t) = S(t)μdt + S(t)σdW (t), (3)
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where μ is the expected rate of return over time, σ is the volatility (the amplitude of the
noise), and dW (t) = W (t + dt) −W (t) is the infinitesimal Wiener Process (〈dW (t)〉 = 0
and 〈dW 2(t)〉 = dt). Defining U(t) ≡ ln S(t) and using Itô’s Lemma (Wilmott et al. 1995;
Gardiner 1985; Itô 1944) one arrives at

dU(t) = μ̄dt + σdW (t) , (4)

with μ̄ = μ − σ 2

2 . Ito’s stochastic calculus yields the exact solution (Wilmott et al. 1995;
Gardiner 1985; Itô 1944)

U(t) = U(0) + μ̄t + σψ(t)
√
t, (5)

where ψ(t) is a normal random variable with zero mean and unit variance. Equation (5)
implies that the transition probability distribution for the variable U can be written as

P(U(t)|U(0)) = 1
σ
√
2π t

exp
(

− (U(t) − U(0) − μ̄t)2

2σ 2t

)
. (6)

Further, we can solve Eq. (5) for ψ ,

ψ(t) = 1
σ
√
t
(U(t) − U(0) − μ̄t) . (7)

The above expression can be used to extract andmeasure the “noise" from the empirical
data where the underlying process is hypothesized to be a GBM.

The Geometric Ornstein-Uhlenbeck process

In this paper, we will model relevant social-media activity volumes and daily trading vol-
umes of cryptocurrencies as GOU processes (Schwartz 1997;Mejía Vega 2018). The GOU
process (also referred to as the exponential Ornstein-Uhlenbeck process) has been used
to model commodity prices. While the fluctuations here too can exhibit large spikes or
drops, they have a tendency to revert to the some long-run mean,

dS(t) = S(t)κ(θ − ln S(t))dt + S(t)σdW (t), (8)

where κ is the relaxation rate to the long-run mean of the logarithmic variable. Again, by
defining the logarithmic variable U(t) ≡ ln S(t) and using Ito’s lemma, one obtains

dU(t) = κ(θ̄ − U(t))dt + σdW (t) , (9)

with θ̄ = θ − σ 2

2κ , which is the standard Ornstein-Uhlenbeck (OU) process (Gardiner
1985). Employing Itô’s isometry (Øksendal 2003; Gardiner 1985; Itô 1944; Franco 2003),
this can be integrated exactly,

U(t) = U(0)e−κt + θ̄ (1 − e−κt) + σψ(t)

√
1 − e−2κt

2κ
, (10)

where ψ(t) is a normal random variable with zero mean and unit variance. For the
transition probability density, one then has,

P(U(t)|U(0)) =
(

πσ 2

κ

(
1 − e−2κt))− 1

2
×

exp
(

−
(
U(t) − θ̄ − (U(0) − θ̄ )e−κt)2

σ 2
κ

(1 − e−2κt)

)
. (11)
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Further, from Eq. (10), we find,

ψ(t) = U(t) − U(0)e−κt − θ̄ (1 − e−κt)

σ

√
1−e−2κt

2κ

. (12)

which can be utilized to extract and measure the “noise" from the empirical data where
the underlying process is hypothesized to be a GOU process.

Time-Series generation, transition probability distributions, and noise reconstruction

Both the GBM and the GOU processes are Markovian. Further, the above solutions for
U(t) = ln S(t) and the corresponding transition probability densities are valid for an
arbitrary time interval (0, t). Due to time homogeneity, the above equations are valid for
any initial starting value and can be applied beginning at time step ti−1 and ending at ti.
We assume that these time steps are evenly spaced such that ∀i ∈ Z+, ti − ti−1 = 	t > 0.
Next at each time step, we will redefine initial conditions such that the initial time value
at each time step is ti−1. Therefore, for the GBM, for an arbitrary finite time difference	t,

S(ti) = S(ti−1)exp
(
μ̄	t + σψ(ti)

√
	t

)
, (13)

P(S(ti)|S(ti−1)) = 1
S(ti)σ

√
2π	t

exp

⎛
⎜⎝−

(
ln

(
S(ti)

S(ti−1)

)
− μ̄	t

)2
2σ 2	t

⎞
⎟⎠ , (14)

ψ(ti) = 1
σ
√

	t

(
ln

(
S(ti)
S(ti−1)

)
− μ̄	t

)
. (15)

Similarly, for GOU process we have,

S(ti) = exp

⎛
⎝ln (S(ti−1)) e−κ	t + θ̄ (1 − e−κ	t) + σψ(ti)

√
1 − e−2κ	t

2κ

⎞
⎠ , (16)

P(S(ti)|S(ti−1)) = 1
S(ti)

(
π

σ 2

κ

(
1 − e−2κ	t))− 1

2
×

exp
(

−
(
ln S(ti) − θ̄ − (ln S(ti−1) − θ̄ )e−κ	t)2

σ 2
κ

(
1 − e−2κ	t)

)
, (17)

ψ(ti) = ln S(ti) − θ̄ − (ln S(ti−1) − θ̄ )e−κ	t

σ

√
1−e−2κ	t

2κ

. (18)

Note that the above equations for S(ti) and ψ(ti) are precisely of the form of Eqs. (1)
and (2).

Maxim likelihood parameter estimation for single-variable GBM and GOU processes

Here, we attempt to find parameters that maximize the likelihood that the given time
series is a realization of our governing equation. Our maximization function (the log like-
lihood) is then, L(

−→
β ) = ln

(∏N
i=1 P(Ui|Ui−1;

−→
β )

)
, where we use our previous definition

of Ui = ln S(ti) and our parameter space of −→
β . Full details on MLE and how we use

it to recover parameters can be seen in Appendix 1 (Franco 2003; Tang and Chen 2009;
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Johnson andWichern 2002; Rayner 1985). Whenmaximizing L for the GBM process, one
easily finds (Hurn et al. 2003) (Appendix 1.1),

ˆ̄μ = 1
N	t

N∑
i=1

(Ui − Ui−1), (19)

σ̂ 2 = 1
N	t

N∑
i=1

(
Ui − Ui−1 − ˆ̄μ	t

)2
. (20)

For the GOUprocess, parameters thatmaximize L areMejía Vega (2018); Franco (2003);
Tang and Chen (2009) (Appendix 1.2),

e−κ̂	t =
(

1
N

∑N
i=1 UiUi−1

)
−

(
1
N

∑N
i=1 Ui−1

)(
1
N

∑N
i=1 Ui

)
(

1
N

∑N
i=1 U2

i−1

)
−

(
1
N

∑N
i=1 Ui−1

)2
=

1
N

∑N
i=1

(
Ui− 1

N
∑N

j=1 Uj
)(

Ui−1− 1
N

∑N
j=1 Uj−1

)
1
N

∑N
i=1

(
Ui−1− 1

N
∑N

j=1 Uj−1
)2 ,

(21)

ˆ̄θ = 1
N(1−e−κ̂	t)

∑N
i=1(Ui − Ui−1e−κ̂	t), (22)

σ̂ 2 = 2κ̂
N

∑N
i=1

(
Ui− ˆ̄θ−(Ui−1− ˆ̄θ)e−κ̂	t

)2
1−e−2κ̂	t . (23)

It is interesting to note that the parameter estimation for e−κ̂	t is precisely the normal-
ized autocorrelation of U with time difference 	t (Gardiner 1985; Tang and Chen 2009).
This parameter estimation scheme allows one to extract the noise from the individual
time series via Eqs. (15) and (18) , and conversely, generate and forecast the individual
time series using Eqs. (13) and (16), for the GBM and the GOU process, respectively

Noise-Correlated stochastic differential equations and application of the cholesky

decomposition

For multiple time series, each stochastic variable is modeled by a proper correspond-
ing SDE (with its specific parameters). We will use the indices of the Sj(t) variables
to distinguish between the GBM or GOU processes, such that of a total number of
d = nGBM + nGOU stochastic variables, the first nGBM are GBM variables, while the
remaining nGOU are GOU variables. Then for j = 1, . . . , nGBM (j ∈ GBM for short),

dSj(t) = Sj(t)μjdt + Sj(t)σjdWj(t), (24)

While for j = nGBM + 1, . . . , d (j ∈ GOU for short),

dSj(t) = Sj(t)κj(θj − ln Sj(t))dt + Sj(t)σjdWj(t). (25)

Most importantly, we consider the above system of SDEs where correlations are possibly
present among the infinitesimal Wiener processes (and in turn, across the various time
series),

〈dWj(t)dWk(t)〉 = dt ρjk (26)

(ρjj = 1 for all j). Analogously to the single-variable cases (withUj(t) = ln Sj(t)), we define
the (finite) normalized noise variables (	t = ti − ti−1 > 0),

ψj(ti) = 1
σj

√
	t

(
Uj(ti) − Uj(ti−1) − μ̄j	t

)
(27)
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for j ∈ GBM, and

ψj(ti) = Uj(ti) − Uj(ti−1)e−κj	t − θ̄j(1 − e−κj	t)

σj

√
1−e−2κj	t

2κj

(28)

for j ∈ GOU. The correlations between these finite-time normalized noise variables,

〈ψj(t)ψk(t)〉 = ρ
ψ

jk (29)

(ρψ
jj = 1 for all j), can be obtained using Ito’s calculus and can be expressed in terms of the

correlations between the corresponding underlying infinitesimal Wiener processes (see
Appendix 2). In what follows, we will use the correlations between the finite-time noise
variables as our numerical scheme directly utilizes those. By construction, these nor-
mal variables have zero mean and unit variance. The empirically measured covariances
between these variables are

ρ
ψ

jk = Cor(ψj,ψk) = 〈ψjψk〉 = 1
N

N∑
i=1

ψj(ti)ψk(ti) (30)

Note that these empirical correlations precisely correspond to the MLE for these param-
eters. This follows from the fact that the MLE for multivariate normal variables again are
equal to the sample means and sample covariances (Johnson and Wichern 2002; Rayner
1985) (see also Appendix 3 for some details). Further, for the two-point correlation func-
tions of the scaled GOU processes in the stationary regime one has (Gardiner 1985; Singh
et al. 2018)

e−κj	t = 〈(Uj(t + 	t) − 〈U〉)(Uk(t) − 〈U〉)〉
〈(Uj(t) − 〈U〉)(Uk(t) − 〈U〉)〉 , (31)

j, k ∈ GOU. Setting k = j, this becomes the normalized autocorrelation function, and we
can utilize the above expression as an empirical estimate for κ̂j (equivalent to the single-
variable MLE Eq. (21)).
Next, we decompose the original, possibly correlated noise variables into a linear

combination of independent ones (Sauer 2013),

ψj =
∑
k

Cjkψ
′
k , (32)

whereψ ′ variables are independent normal random variables
(〈

ψ ′
jψ

′
k

〉
= δjk

)
. The matrix

C can be determined from the covariance matrix of the original noise variables,

ρψ = CCT . (33)

There is, of course, a family ofCmatrices that satisfies Eq. (33). In this paper, we employ
the Cholesky decomposition (Cox and Hammarling 1990), allowing us to generate cor-
related noise variables producing “prescribed" (empirically observed) correlations across
time series. The Cholesky decomposition is advantageous as it provides a lower triangle
matrix, which minimizes the number of non-zero elements and is computationally effi-
cient to invert. Assuming ρψ is full rank, C is invertible (which is the case if each time
series considered is unique).
Given complete information on ψ , we are also able to obtain complete information

on ψ ′. Let us now assume that at some time tl a time series is masked. Without loss of
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generality, we take that time series to be last in the index set. As we will see next, it is
useful to solve Eq. (32) for ψ ′,∑

j
(C−1)kjψj = ψ ′

k . (34)

If we have n time series, the last row equation is,
n∑

j=1
(C−1)n,jψj = ψ ′

n. (35)

Solving for ψn, we obtain

ψn = ψ ′
n − ∑n−1

j=1 (C−1)n,jψj

(C−1)n,n
. (36)

Because ψn is masked at time tl, we can not determine ψ ′
n. While sufficient information

for an exact prediction of ψn is unavailable, we can still produce an educated guess for ψn
using Eq. (36) by generating a realization ofψ ′

n. Because in this equation the left hand side
is a normal random variable with unit variance, the sum of the variances for the variables
on the right hand side of the equation must sum to unity. Due to this requirement as
|(C−1)n,n| becomes large, ψ ′

n’s contributions to the prediction become smaller relative to
the summation. This reduces the uncertainty in ψn. In the limiting case of |(C−1)n,n| →
∞, our prediction method becomes deterministic.
Given a sufficient initial period of complete information, we can estimate the SDE

equation parameter space using our describedMLEmethod (Franco 2003; Tang and Chen
2009; Johnson andWichern 2002; Rayner 1985) assuming the parameters are time invari-
ant. We then use Eq. (2) to convert our sets of time series into series of normal random
variables, which we can then use to determine ρ and C. In order to predict information
we are lacking in Eq. (36), we generate a realization of ψ ′

n. Once we have estimated ψn(ti),
we can get the corresponding Sn(ti) from Eq. (1) and then average our estimation over
many realizations.

Results
To test the models posed, we have two testing environments. The first is a synthetic (or
simulated) environment where the underlying process is known precisely (GBMorGOU).
Hence, parameters and correlations are easily controlled in order to test the feasibility
robustness of the prediction scheme. In this environment, we are able to use multiple
realizations to average results and obtain important observations that can not be seen in
one realization.
The second environment is application on a cryptocurrency market and social media

containing several major cryptocurrencies including Bitcoin, Ethereum, Litecoin, Mon-
ero and XRP. (Data was provided as part of the DARPA SocialSim Project (DARPA).) The
trends of these time series can be seen in Fig. 1. While cryptocurrencies have no restric-
tions on when a trade can be placed, we find it useful to define two daily metrics to use
as a daily time series. We define the closing price of a cryptocurrency as the market price
at 22:00 GMT each day and the daily volume as the amount of currency traded in terms
of USD in the 24 hours prior to 22:00 GMT. Hence, we use 	t = 1 day in our numerical
scheme presented in this paper.
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Fig. 1 Time series details for (a) activity levels on social media and (b) market price at 14:00 GMT. Here all
time series have been normalized such that their mean is unity

Our social media data sets contain tweets from Twitter, comments from Reddit, and
events from GitHub that all pertain to any cryptocurrency, including minor, less traded
cryptocurrencies. While the minor coins are included in the data set, they have relatively
low number of tweets, comments, or events. We define daily statistics, even though this
approach is generalizable to hour or even minute resolution. If a given time step returns
zero due to the increased resolution, this becomes an absorbing state for both stochastic
equations and parameters can not be estimated. For these reasons, we only use the total
number of daily tweets/comments/events for each media to compose three time series to
add to our data set. While increased resolution is possible, a sufficient density of activity
at the increased resolution is required from a technical standpoint.
While we use GBM and GOU as our governing equations, we use them only as approxi-

mations. Indeed, the underlying equations which best describe these time series are likely
more complex than what we have posed here. However, at the lowest order of improve-
ment, any unaccounted effects for interactions could be simply cast as a more complex
noise term. If these interactions persist between sets of time series, our correlated noise
will allow these interactions to take place, even though we have not explicitly engineered
these interactions in our underlying equation.
The duration of these data sets spans from January 1st 2017 to August 31st 2017. An

important assumption was that the parameters can be approximated as time independent.
Indeed, the parameters do have some time variance over long periods (Bassler et al. 2007).
For this reason, we limit the training window for estimating correlations and parameters
to the previous 120 days. Examples of the parameter estimation over time can be seen in
Appendix 4.
In both synthetic and empirical data environments, we tested how well the method pre-

forms at predicting market value and social media activity levels. We measured this in
three ways. For the first, we used a sliding window approach where a single day at a time
will be predicted using the previous 120 days. For the second method, we measured the
accuracy for increased prediction duration. Here, we selected evenly spaced initial times
and predicted the time series 14 days into the future. This will test how much uncertainty
builds up as we extend our prediction further in time. Finally, we test our method’s accu-
racy at predicting increases or decreases of the following day without considering the
resulting values.
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In order to test our predictions, we employ the Mean Absolute Percentage Error
(MAPE) (Reddy and Clinton 2016; Maruddani and Trimono 2018),

ε = 1
N

N∑
i=1

∣∣∣∣∣S(ti) − Ŝ(ti)
Ŝ(ti)

∣∣∣∣∣ , (37)

where S(ti) is the forecast value and Ŝ(ti) is the actual (ground-truth) value. This provides
an estimate for how much the prediction deviates from the ground truth.

Synthetic data from GBM and GOU processes

A large part of our results relies on predicting a given realization. In principle, all real-
izations are technically valid, even though some are increasingly unlikely. We show this
in Fig. 2, where a particular realization can deviate outside the 1 σ (STD) bounds pro-
duced from parameter estimation. Parameters from MLE and correlation estimation can
be seen in Table 4 (Appendix 1). The ground truth can also deviate outside the 1 σ (STD)
bounds for the prediction using the correlated time series even for strong correlations.
Because of the nature of these stochastic equations and that we only have one realization
to work with in our data set, we expect some significant variations in the accuracy of our
predictions.
To properly test our model, we use many realizations to show its robustness under ideal

conditions. In this case, we generate data using known equations with set parameters.
While our algorithm will estimate the parameters, the equation used will be known. This
produces an idealization over our cryptocurrency data, where we can not say for certain
what their underlying equation actually is. We also define the correlations and parameters
to be constant in time, another idealization. We choose our parameters to produce signif-
icant variance in signal, but so that we do not lose accuracy due to our time step size. For
our correlation matrix, we define all off-diagonal elements to be equal. We also explore
the case where we add an exception to our correlation definition to observe its impact.
Figure 3 shows the accuracy of our prediction methods using various combinations of

inputs and compares their result to a prediction assuming the time series is uncorre-
lated with the other time series. Figure 3a explores predicting the sign of the slope of the
data. This shows a fairly linear trend towards 100% accuracy in predicting the sign of the
slope with only small increases in correlation yielding significant improvements over the
prediction without correlation.
Figure 3b shows the MAPE value when a single data point is masked. As expected, our

prediction greatly exceeds the prediction without correlation. A more important obser-
vation is a small decrease as the number of time series increase. One would expect as
the number of time series increase that the unaccounted noise in the prediction method
would decrease, however we see a less significant decrease in MAPE value than expected.
This may be a result of the homogeneity of our definition of correlations. To minimize the
amount of unaccounted noise, each time series must be highly correlated with the time
series intended to be predicted, but relatively uncorrelated with other time series used in
the predictionmethod. In this way, each time series provides information that is as unique
as possible. This of course produces some difficulties as, if one chooses to try to predict a
different time series, all other time series are uncorrelated and do not contribute much to
the prediction method.
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Fig. 2 Predictions of simulated data using various models and correlations by masking the last 14 data
points. Our prediction with correlation uses 11 other correlated time series, and we made a prediction
assuming no correlation with those time series. A training window of 120 time steps was used in each case.
(a, c, e) use GBM and (b, d, f) use GOU. (a, b) use a correlation matrix with all off-diagonal elements of the
correlation matrix equal to .4 with (c, d) using .6 and (e, f) using .8. Estimated parameters and correlations for
these examples can be seen in Table 4 (Appendix 4)

Figure 3c masks multiple time steps and the prediction method operates recursively to
predict each subsequent time step using the previous time step’s prediction starting with
the last known value of the time series. As expected, the MAPE value increases as the
number of time steps predicted increases as small inaccuracies in each prediction begin to
accumulate. Figure 3d shows the decrease in MAPE value when an additional time series
is added with similar correlations, but with a significantly increased correlation to the
predicted time series. This increase in performance is significant, but not substantial as it
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Fig. 3 a Shows the accuracy in predicting whether the time series will increase or decrease for a training
period of 120 time steps before the prediction. This is compared to a prediction without using correlated
time series. b Here, we show the MAPE (ε) for predicting the value of the time series one time step into the
future for 90 and 120 time step training periods. After a small decrease in the MAPE value, there is not a
significant change in MAPE as the number of time series increase. c shows the MAPE for predicting a variety
of time steps into the future using correlations of 0.4, 0.6, 0.8. d shows the change in MAPE value (	ε) when a
time series is added with improved correlation is added. This is done by setting the correlation of the added
time series and the predicted time series to the square root of the original correlation

only provides a small increase. This indicates that adding additional time series in hopes
of a better predictions is more complex and non-trivial than finding a well correlated time
series.

As can be seen from the results of our simulation, our prediction algorithm performs
well when the presented idealizations are in place. As we move to studying the cryp-
tocurrency data, we expect our accuracy to decrease. In addition because our data is a
single realization, we expect our prediction method to have various examples of poor
performance.

Empirical data: forecasting cryptocurrency rates and social media activities

As we noted earlier, the dynamics of cryptocurrencies shares similarities to those of
stocks. Hence, for cryptocurrency prices we employ the standard GBM. The tendency
to “drift" in this process correspond to the expected rate of return, while the stochastic
effects and fluctuations are captured by the appropriate noise term. Because of the drift,
the price need not return to a baseline level.
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On the other hand, to capture the dynamics of social media activities and trading vol-
umes of cryptocurrencies, we need to make some observations and further hypotheses.
For example, in the case of Twitter, a large volume of tweets can be produced in response
to an event. After sufficient time, the activity around that event decays and the environ-
ment on the whole returns to a base-level activity until another event triggers an increase.
The same observations can be made of the daily volumes traded. Hence, we use the GOU
process for the social media activity and volume traded as when a fluctuation happens,
they typically cannot be sustained for extended periods of time, and in time they return to
some long-runmean. The geometric nature of the process ensures that the corresponding
stochastic variable is non-negative, and fluctuations in the OU process have a tendency
to revert to the mean in the long run.
For our prediction method we utilize only the previous 120 days before starting our

prediction. In this way, we attempt to limit the effects of our approximation of time invari-
ant parameters and correlations. This also includes a sufficient number of data points to
have confidence in our parameter and correlation estimation. Other training periods were
examined, but our choice performs best in most cases. Appendix 5 shows the analysis of
the noise measured for each time series. Here, we see some deviations from a normal dis-
tribution and some temporal correlations which suggests the equations are not strictly
Markovian.
Figure 4 shows two methods for predicting the masked time step. The current time

prediction is fairly straight forward with concurrent information being used to generate
predictions for a time series. However, it is not very useful to predict the value of Bitcoin
after already knowing the value of other time series such as the closing price of other
cryptocurrencies and the volume of Bitcoin traded. Instead, we give as inputs a similar
time series and go forward with a similar prediction as the current time prediction, but
with one important modification. We include in the data set a copy of the target time
series, but time-shifted in such a way that the value of each time series at time ti is now
coinciding with the copied time series’ value at ti+1. We now predict this copied time
series which uses the known values of the various time series at time ti to predict the
value of the copied and shifted time series at time ti+1. This essentially allows us to make a
future time prediction without any knowledge of other time series at ti+1. This obviously
holds only if the time-shifted copy is still correlated with other time series, which is true
for some cases (See Appendix 5).
Table 1 shows the averageMAPE over time for each subfigure in Fig. 4. Interestingly, the

future time prediction produces slightly betterMAPE values in comparison to the current
time prediction in some cases. Social Media predictions perform significantly better than
the prediction without correlation on average. This performance is less so for predicting
cryptocurrency prices, but has overall lowMAPE values. This result is slightly misleading
as will discussed shortly when we examine predictions over multiple time steps.
We now discuss our method’s performance for predicting multiple consecutive days. In

this case, we will always use the current time predictionmethod. This methodology works
best for examining a system where a media’s history is available, but current and recent
activity is unavailable. Being able to predict spikes in activity in this hidden media has
many possible applications for information gathering. In the examples shown, our pre-
dictions use the same training period of 120 days and then predict the next 14 days using
the concurrent time series. To reduce variations causing poor results, we examine three
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Fig. 4 Each day in the data set is predicted after collecting a sufficient number of days for prediction. We
measure the accuracy using the MAPE (ε). a Shows the predictions for Twitter, b for Reddit, c for GitHub, d for
Bitcoin, and e for Ethereum. Both methods for predictions are compared against the prediction without
correlation and the average MAPE value can be seen in Table 1

Table 1 Average MAPE of each time series from May 31st 2017 - Aug 30th 2017

Twitter Reddit GitHub BTC ETH

Current Time Prediction 0.369 0.131 0.205 0.0308 0.0481

Future Time Prediction 0.336 0.129 0.231 0.0400 0.0654

Linear Prediction 0.616 0.495 0.488 0.0324 0.0544
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different periods. We evenly space our predictions to ensure sufficient independence in
our measurement accuracy.
Figures 5 and 6 show a suite of predictions for the various time series. The correspond-

ing MAPE values for each of the predictions can be seen in Table 2. Parameters from
MLE and correlation estimation can be seen in Table 5 (Appendix 1). As anticipated,
our prediction method has difficulty matching the accuracy seen in our simulated data.
We believe a likely cause is uncertainty in our measurements of the parameters, par-
ticularly the unaccounted effect of time variance. While this is present in our previous
results, the recursive predictions accumulate uncertainty and amplify the uncertainty of
our prediction.
Many of our prediction do follow the ground truth well. In cases that we do not have

favorable MAPE values, our prediction still shows many of the characteristics present
in the ground truth, such as coinciding peaks. Indeed, some of our predictions appear
to be slightly translated compared to the ground truth. While social media predictions
show fair results, the cryptocurrency predictions struggle significantly more. While the
MAPE values are low for our cryptocurrency results compared to the social media pre-
diction, this is mostly due to low volatility. With smaller volatility, the size of the noise

Fig. 5 Each subfigure shows 14 days of prediction compared to the ground truth with the previous 42 days
of ground truth as reference. (a, b, c) shows the prediction at the end of April 2017. (d, e, f) shows the
prediction at the end of June 2017. (g, h, i) shows the predictions at the end of August 2017. (a, d, g) shows
the predictions for Twitter at the corresponding time ranges, (b, e, h) for Reddit, and (c, f, i) for GitHub. Mape
values for each subfigure can be seen in Table 2. Estimated parameters and correlations for these examples
can be seen in Table 5 (Appendix 4)
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Fig. 6 Each subfigure shows 14 days of prediction compared to the ground truth with the previous 14 days
of ground truth as reference. (a, b) shows the prediction at the end of April 2017. (c, d) shows the prediction
at the end of June 2017. (e, f) shows the predictions at the end of August 2017. (a, c, e) shows the predictions
for Bitcoin at the corresponding time ranges and (b, d, f) for Ethereum. Mape values for each subfigure can be
seen in Table 2. Estimated parameters and correlations for these examples can be seen in Table 5 (Appendix 4)

Table 2 Average MAPE of time series for predictions during the months of April, June, and August in
2017

Twitter Reddit GitHub Bitcoin Ethereum

April 0.0886 0.472 0.580 0.0647 0.107

June 0.0991 0.340 0.110 0.0247 0.406

August 0.1287 0.311 0.235 0.0749 0.226
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also decreases. Because MAPE is a percentage metric, MAPE will typically decrease with
smaller volatility. In addition, GBM is more sensitive to larger prediction periods com-
pared to GOU, which makes the cryptocurrency predictions visually less accurate. In
this way, the underlying equations for how cryptocurrency markets behave may require
modification for more accurate long term predictions.
While cryptocurrencies may not be predicted well over large time ranges, there are

more applications in predicting behavior in the future. Using our method for comput-
ing future time steps as mentioned above, we look to examine how well our prediction
method does at predicting whether markets will increase or decrease into the next day.

Fig. 7 The ground truth for (a) Bitcoin, (b) Ethereum, (c) Litecoin, (d) Monero, and (e) XRP is compared
against the prediction. Each prediction is based off of the previous known data point and each individual line
is a separate prediction. This best shows for each prediction whether the closing price is predicted to
increase or decrease. The number of positive identifications can be seen in Table 3
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This has obvious applications in short term trading and investments. Figure 7 shows how
well our prediction method performs at various time regions. Again, we choose time
regions as evenly spaced as possible to provide as independent results as possible.We also
choose the most obvious cases where our prediction method would be applicable; regions
of high variations, peaks, and dips. Regions with many linear portions are biased due to
the accuracy coming more from parameter estimation than from noise analysis.
Table 3 shows the number of days out of 14 that we correctly predict an increase or

decrease in the following day. To compare, we also measure the number of instances
where the market increased and then increased again on the following day as well as
sequential decreases. If one were to randomly guess changes, we expect them to be correct
7 out of the 14 times. As can be seen, our prediction method performs exceptionally well
with many perfect or close to perfect predictions and always outperforming our repeat
and random measure.

Future extensions
We have made the assumption through that the correlations and parameters are not time
varying. A natural extension of this work is removing this assumption and creating mod-
els for behavior of the time dependence. There are many technical hurdles to overcome
such as the modifications required to the underlying equations and preventing over fit-
ting of the model. In addition, the underlying equations may be more complex than that
presented here. As the approximation to the actual underlying equations becomes better,
the accuracy of this method will also increase.
In other ways, our model is very generalizable. Our framework makes little assumption

on the type of information given other than the model used for it. For example, it has
been shown that Twitter “mood" or online sentiments are strongly correlated with stock
market or cryptocurrency returns (Kim et al. 2016; Bollen et al. 2011). Hence, one could
perform sentiment analysis on social media activities to separate events into two basic
categories (bullish or bearish comments with respect to cryptocurrencies). It is likely that
after exploiting this separation, the predictive power of our framework would improve. In
addition, one can make a prediction for a cryptocurrency or social media using an inde-
pendent method. This could then be added as a time series for our prediction method.
If the independent prediction method is accurate, there should be a high-level of corre-
lation between the prediction and the ground truth. In this way, the other time series
can be used to fine tune this independent prediction method and increase the overall
accuracy.
There is onemajor drawback to the independent predictionmethod. It would need to be

applied to already known data so that a correlation can be measured between the predic-
tion and ground truth. If the prediction is only one time step into the future, the prediction

Table 3 The prediction shows the number days where whether the market will increase or decrease
is correctly predicted over a 14 day window

Bitcoin Ethereum Litecoin Monero XRP

Prediction 14 10 14 14 12

Repeat 6 5 8 8 9

The Repeat measure shows how well a prediction would work if it simply assumes the behavior of the previous step will hold for
the next step (i.e. an increase in the market on the previous time step will indicate and increase in the next time step.)
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method can be used recursively through the data set in order to achieve this. The difficulty
arises when one intends to predict multiple days. As the duration of prediction increases,
the accuracy of that prediction also decreases, which would in turn cause the corre-
lation to decrease. This violates a key assumption of time invariant correlation, and if
used, the method would require a derivation without the constraint of time invariant
correlations.

Conclusion
In this work, we proposed a method for predicting a time series exploiting stochastic
correlations with other time series. In particular, we showed that the extracted “empir-
ical" noise of each time series is correlated and provides some degree of predictability.
This method is both robust in simulation and easily generalizable. Our framework can be
applied to noise-coupled SDEs where parameter estimation is attainable (either through
MLE or approximate empirical estimates for the means, covariances, and correlation
functions where applicable). Its performance is dependent on using the correct under-
lying equation for each time series (i.e., a good hypothesis for the general forms of
equations). For our synthetic data, where we knew precisely the forms of equations
that generated the data, our method was rather accurate (as the only source of errors
is coming from the parameter estimation). For the empirical data, our equations are
only plausible hypothesis to begin with, which gives rise to more significant deviations
between prediction and the ground truth. Specifically, more complex nonlinearities may
be relevant or off-diagonal couplings may have to be included among the determinis-
tic parts of the various stochastic processes (i.e., coupling may not be merely through
the correlated noise). Also, our assumption of constant parameters, such as for the
volatility, can break down, and one would need a more refined scheme for time-varying
parameters.
Testing this prediction method on empirical data sets of social media relating to cryp-

tocurrency and measures of the stochastic properties of those same cryptocurrencies
shows reasonable results. Testing our method would have also benefited from larger data
sets (longer time series), however, in this current project we only considered what we had
access to as part of the DARPA SocialSim Project (DARPA). We find that the prediction
algorithm is fairly consistent in predicting one day into the future. We also assert that our
prediction method can be extended to predicting data on the next day assuming that time
series are correlated through temporal shifts.
When we predict more than one day into the future, we begin to experience difficulties

arising from growing uncertainty. We perform longer predictions by masking a 14 day
period and using the other time series during themasked time period to estimate the daily
changes. This produces a significant amount of uncertainty associated with recursive pre-
dictions, which in general causes uncertainty to accumulate. The cryptocurrency markets
are particularly susceptible to this accumulation of uncertainty (Wu et al. 2018; Fry 2018).
In spite of this, our prediction has many of the same characteristics as the ground truth
characteristics such as coinciding peaks and troughs. This has particular applications in
areas where a time series can not be directly observed in real time, but its history can be.
This method can allow for an educated guess, especially for peaks, for the unobservable
time series.
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We showed it can be quite difficult for our method to predict the exact value a
cryptocurrency market will assume on the following day. While this is an obvious
shortcoming, the predictions often correctly predict whether the cryptocurrency
markets will increase or decrease. Our method’s performance in predicting increases
and decreases was sufficiently better than a random prediction and our baseline
prediction which assumes trends are likely to continue. These results have sig-
nificant implications for trading and investing in cryptocurrencies. This method
gives investors a reliable and accurate indicator when a currency is to increase or
decrease.

Appendix 1: Maximum likelihood estimation for single-variable GBM and GOU
processes
Here, we provide some details for the maximum likelihood estimation (MLE) method for
recovering the parameters of Eqs. (14) and (17). The probability of the realization of the
time series {S(ti)} with initial condition S(t0) is Hurn et al. (2003),

N∏
i=1

P[ S(ti)|S(ti−1), ..., S(t0);
−→
β ] . (38)

where −→
β is the parameter space. Because both GBM and GOU equations are Markovian,

the transition probability distributions simplify to,

P[ S(ti)|S(ti−1), ..., S(t0);
−→
β ]= P[ S(ti)|S(ti−1);

−→
β ] . (39)

The log likelihood function is then,

L(
−→
β ) =

N∑
i=1

ln
(
P[ S(ti)|S(ti−1);

−→
β ]

)
. (40)

In order to recover the optimal model parameters −→
β , we determine the parameter set

−̂→
β that maximizes L(

−→
β ).

1.1 MLE for GBM

For the GBM, we start with the transition probability distribution (Hurn et al. 2003)
Eq. (14),

P[ S(ti)|S(ti−1); μ̄, σ ]= 1
S(ti)σ

√
2π	t

exp

⎛
⎜⎝−

(
ln

(
S(ti)

S(ti−1)

)
− μ̄	t

)2
2σ 2	t

⎞
⎟⎠ . (41)

Substituting our definition of Ui = ln S(ti), we recover μ̄,
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∂L
∂μ̄

∣∣∣∣ ˆ̄μ
= 0 =

N∑
i=1

∂

∂ ˆ̄μ

(
Ui − Ui−1 − ˆ̄μ	t

)2
2σ̂ 2	t

, (42)

0 =
N∑
i=1

(
Ui − Ui−1 − ˆ̄μ	t

)
, (43)

ˆ̄μ = 1
N	t

N∑
i=1

(Ui − Ui−1) . (44)

Next, we recover σ ,

∂L
∂σ

∣∣∣∣
σ̂

= 0 =
N∑
i=1

∂

∂σ̂

⎛
⎜⎝ln

(
σ̂
√
2π	t

)
+

(
Ui − Ui−1 − ˆ̄μ	t

)2
2σ̂ 2	t

⎞
⎟⎠ , (45)

0 =
N∑
i=1

1
σ̂

−
(
Ui − Ui−1 − ˆ̄μ	t

)2
σ̂ 3	t

, (46)

σ̂ 2 = 1
N	t

N∑
i=1

(
Ui − Ui−1 − ˆ̄μ	t

)2
. (47)

1.2 MLE for the GOU process

Obtaining the MLE parameter estimates from the transition probability distribution for
the GOU process is more involved (Mejía Vega 2018; Franco 2003; Tang and Chen 2009),

P(S(ti)|S(ti−1); θ̄ , σ , κ) = 1
S(ti)

(
2π

σ 2

2κ
(
1 − e−2κ	t))− 1

2
×

exp
(

−
(
ln S(ti) − θ̄ − (ln S(ti−1) − θ̄ )e−κ	t)2

2 σ 2
2κ

(
1 − e−2κ	t)

)
. (48)

For convenience, we make the following definitions,

x = e−κ	t , (49)

z = ˆ̄θ(1 − x), (50)

y2 = σ 2

2κ
(1 − x2). (51)

With these substitutions we can identify that the transition probability density is of
similar form to the GBM process. We then recover the parameters ẑ and ŷ2 in the same
manner as ˆ̄μ and σ̂ 2 for GBM respectively,
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P(Ui|Ui−1; x, y, z) = 1
y
√
2π

exp
(

− (Ui − Ui−1x − z)2

2y2

)
, (52)

∂L
∂z

∣∣∣∣
ẑ

= 0 = −
N∑
i=1

∂

∂ ẑ

(
Ui − Ui−1x̂ − ẑ

)2
2ŷ2

, (53)

0 =
N∑
i=1

(
Ui − Ui−1x̂ − ẑ

)
, (54)

ẑ = 1
N

N∑
i=1

(
Ui − Ui−1x̂

)
, (55)

ˆ̄θ = 1
N(1 − e−κ̂	t)

N∑
i=1

(
ln S(ti) − ln(S(ti−1))e−κ̂	t

)
, (56)

∂L
∂y

∣∣∣∣
ŷ

= 0 =
N∑
i=1

∂

∂ ŷ

(
ln

(
ŷ
√
2π

)
+

(
Ui − Ui−1x̂ − ẑ

)2
2ŷ2

)
, (57)

0 =
N∑
i=1

1
ŷ

−
(
Ui − Ui−1x̂ − ẑ

)2
ŷ3

(58)

ŷ2 = 1
N

N∑
i=1

(
Ui − Ui−1x̂ − ẑ

)2 , (59)

σ̂ 2 = 2κ̂
N(1 − e−2κ̂	t)

N∑
i=1

(
ln S(ti) − ln(S(ti−1))e−κ̂	t − ˆ̄θ(1 − e−κ̂	t)

)2
.

(60)

Further,

∂L
∂x

∣∣∣∣
x̂

= 0 = ∂

∂ x̂

N∑
i=1

(
−1
2
ln(2π) − 1

2
ln(ŷ2) − (Ui − Ui−1x̂ − ẑ)2

2ŷ2

)
(61)

0 = − 1
2ŷ2

∂

∂ x̂

N∑
i=1

(
Ui − Ui−1x̂ − ẑ

)2 = 1
ŷ2

N∑
i=1

(
Ui − Ui−1x̂ − ẑ

)
Ui−1 (62)

Finally, using the expression for ẑ earlier from Eq. (55), we obtain

x̂ =
(

1
N

∑N
i=1UiUi−1

)
−

(
1
N

∑N
i=1Ui−1

) (
1
N

∑N
j=1Uj

)
(

1
N

∑N
i=1U2

i−1

)
−

(
1
N

∑N
i=1Ui−1

) (
1
N

∑N
j=1Uj−1

) (63)

=
1
N

∑N
i=1

(
Ui − 1

N
∑N

j=1Uj
) (

Ui−1 − 1
N

∑N
j=1Uj−1

)
1
N

∑N
i=1

(
Ui−1 − 1

N
∑N

j=1Uj−1
)2 . (64)

Thus the parameter estimation for x̂ = e−κ̂	t is precisely the normalized empirical
auto-correlation of U(ti) with time difference 	t = ti − ti−1 (Gardiner 1985; Tang and
Chen 2009).

Appendix 2: Covariances for themultivariate GBM-GOU system
We will use the indices of the (logarithmic) variables Uj(t) = ln Sj(t) to distinguish
between the GBM or GOU processes, such that of a total of d = nGBM + nGOU stochastic
variables, the first nGBM are GBM variables, while the remaining nGOU are GOU variables.
Then for j = 1, . . . , nGBM (j ∈ GBM for short),
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dUj(t) = μ̄jdt + σjdWj(t) , (65)

which can be formally integrated using stochastic calculus:

Uj(t) = Uj(0) + μ̄jt + σj

∫ t

0
dWj(t′), (66)

Similarly, j = nGBM + 1, . . . , d (j ∈ GOU for short),

dUj(t) = κj(θ̄j − Uj(t))dt + σjdWj(t) . (67)

and by stochastic integration,

Uj(t) = θ̄j + (Uj(0) − θ̄j)e−κjt + σje−κjt
∫ t

0
eκjt

′
dWj(t′) . (68)

Noting that 〈dWj(t)dWk(t)〉 = ρjkdt (with ρjj = 1 for all j), the above expressions
with Ito calculus can be used to obtain the covariances between any two variables (Gar-
diner 1985). The covariances between any two (scaled logarithmic) GBM processes (j, k ∈
GBM),〈

(Uj(t) − Uj(0) − μ̄jt)(Uk(t) − Uk(0) − μ̄kt)
〉 = σjσkρjkt . (69)

The covariances between any two (scaled logarithmic) GOU processes (j, k ∈ GOU),

〈
(Uj(t) − θ̄j − (Uj(0) − θ̄j)e−κjt)(Uk(t) − θ̄k − (Uk(0) − θ̄k)e−κkt)

〉 = σjσkρjk
1 − e−(κj+κk)t

κj + κk
.

(70)

The covariances between a (scaled logarithmic) GBM and GOU process (j ∈ GOU and
k ∈ GBM),

〈
(Uj(t) − Uj(0) − μ̄jt)(Uk(t) − θ̄k − (Uk(0) − θ̄k)e−κkt)

〉 = σjσkρjk
1 − e−κkt

κk
. (71)

Appendix 3: Maximum likelihood estimation for themultivariate GBM-GOU
system
Noting that the above logarithmic variables Uj(t) = ln Sj(t) are coupled nor-
mal variables with the covariances provided above, the transition probability density
P(U(ti)|U(ti−1); θ , σ , ρ, κ) can be written exactly (	t = ti − ti−1). Defining for short,

Vi
j ≡ Uj(ti) − Uj(ti−1) − μ̄j	t (72)

for j ∈ GBM and

Vi
j ≡ Uj(ti)− θ̄j−(Uj(ti−1)− θ̄j)e−κj	t = Uj(ti)−Uj(ti−1)e−κj	t− θ̄j(1−e−κj	t) (73)

for j ∈ GOU, one has

P(U(ti)|U(ti−1); θ , σ , ρ, κ) = P(V i; θ , σ , ρ, κ) = 1√
(2π)d det(�)

e−
1
2V

iT�−1Vi
(74)

where the covariances are given above with t replaced by 	t = ti − ti−1,


jk = σjσkρjk	t . (75)

for j, k ∈ GBM,


jk = σjσkρjk
1 − e−(κj+κk)	t

κj + κk
. (76)
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for j, k ∈ GOU, and


jk = σjσkρjk
1 − e−κk	t

κk
. (77)

for j ∈ GOU and k ∈ GBM.
One then maximizes the log-likelihood function with respect to all parameters.

L(θ , σ , ρ, κ) = ln
( N∏
i=1

P(U(ti)|U(ti−1); θ , σ , ρ, κ)

)
=

N∑
i=1

ln (P(U(ti)|U(ti−1); θ , σ , ρ, κ))

= Nd
2

ln(2π) − N
2
ln (det(�)) − 1

2

N∑
i=1

ViT�−1Vi . (78)

One can show (Johnson and Wichern 2002; Rayner 1985) that for multivariate normal
distribution the MLE parameter estimates will be equal to the sample mean and sam-
ple covariances. Then, treating κj and xj ≡ e−κj	t parametrically for j ∈ GOU, for the
corresponding MLE estimates for our scaled “means" we find

μ̂j	t = 1
N

N∑
i=1

(
Uj(ti) − Uj(ti−1)

)
(79)

for j ∈ GBM, and

ˆ̄θj(1 − e−κ̂j	t) = 1
N

N∑
i=1

(
Uj(ti) − Uj(ti−1)e−κ̂j	t

)
(80)

for j ∈ GOU. Further, the MLE estimates for the covariances one obtains


̂jk ≡ σ̂jσ̂k ρ̂jk	t = 1
N

N∑
i=1

(
Uj(ti) − Uj(ti−1) − ˆ̄μj	t

) (
Uk(ti) − Uk(ti−1) − ˆ̄μk	t

)
(81)

for j, k ∈ GBM,


̂jk ≡ σ̂iσ̂jρ̂jk
1 − e−(κ̂j+κ̂k)	t

κ̂j + κ̂k

= 1
N

N∑
i=1

(
Uj(ti) − Uj(ti−1)e−κ̂jt − ˆ̄θj(1 − e−κ̂jt)

) (
Uk(ti) − Uk(ti−1)e−κ̂k t − ˆ̄θk(1 − e−κ̂k t)

)
(82)

for j, k ∈ GOU, and


̂jk ≡ σ̂iσ̂jρ̂jk
1 − e−κ̂k	t

κ̂k

= 1
N

N∑
i=1

(
Uj(ti) − Uj(ti−1) − ˆ̄μj	t

) (
Uk(ti) − Uk(ti−1)e−κ̂kt − ˆ̄θk(1 − e−κ̂kt)

)
(83)

for j ∈ GBM and k ∈ GOU.
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Table 4 Parameter estimates for the simulated GBM and GOU processes shown in Fig. 2
ˆ̄μ ˆ̄θ σ̂ κ̂ (C−1)n,n

GBM 0.4 -0.00397 0.112 1.296

GOU 0.4 8.89 0.1004 0.0786 1.406

GBM 0.6 0.00381 0.0904 1.352

GOU 0.6 10.31 0.0960 0.0431 1.404

GBM 0.8 0.00391 0.0852 1.950

GOU 0.8 9.88 0.0920 0.0544 2.006

Parameters were set as μ̄ = 0, θ̄ = 10, σ = 0.1, κ = 0.1. For a correlation of matrix with off diagonals 0.4, (C−1)n,n = 1.242. For
0.6, (C−1)n,n = 1.517 and for 0.8, (C−1)n,n = 2.143

Appendix 4: Parameter estimates byMLE
Parameter estimation for synthetic data shown in Fig. 2 can be seen in Table 4. Because
of the nature of these stochastic equations and that we only have one realization to
work with in our data set, we expect some significant variations in the accuracy of
our predictions. In particular, the estimation of parameter κ is known to exhibit very
large relative errors for short sample sizes such as ours (Franco 2003; Tang and Chen
2009). Parameter estimation for the empirical data shown in Figs. 5 and 6 can be seen
in Table 5.

Appendix 5: Noise analysis and correlations in empirical data
In this section, we study the noise variables {ψi(t)} extracted from the original time
series (Fig. 1) by approximating the underlying processes by the SDEs as described
in the main text. Figure 8 shows time series of the noise for the selected empirical
data. Non-surprisingly, there is a periodicity of about seven days for the social media,
indicating most users have a weekly periodicity to their social media usage. It is then
natural to examine the temporal correlations present between the various noise time

Table 5 Parameter estimates for the time series seen in Figs. 5 and 6
ˆ̄θ σ̂ κ̂ (C−1)n,n

Twitter April 19063 0.142 0.0103 1.26

June 22878 0.150 0.0129 1.41

August 24746 0.510 0.140 1.10

Reddit April 2790 0.216 0.0338 1.18

June 3944 0.214 0.0340 1.24

August 4397 0.174 0.0238 1.13

Github April 1337 0.309 0.0879 1.19

June 1660 0.326 0.0947 1.32

August 1651 0.278 0.0758 1.17
ˆ̄μ σ̂ (C−1)n,n

Bitcoin April 0.00223 0.0404 1.18

June 0.00801 0.0393 1.15

August 0.01158 0.0484 1.36

Ethereum April 0.0196 0.0692 1.32

June 0.0308 0.0802 1.34

August 0.0179 0.0802 1.40

Each three rows correspond to a different time series and each row in that subset correspond to the prediction in April, June, and
August of 2017. As can be seen there is typically small changes over time for each parameter
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Fig. 8 The time series of noise variables for (a) Bitcoin, (b) Ethereum, (c) Twitter, (d) Reddit, and (e) GitHub
sampled from 242 days

series. We show the various permutations in Fig. 9. Here, we can see peeks in tempo-
ral correlation for social media at 7, 14, 21, etc. days. Also interesting to note, there
are many instances of correlations being much more extreme than the “coincidental"
correlations for small displacements, indicating a possible correlation for small changes
in time.
While our equations operate on normal random variables, there is evidence to suggest

other distributions may be a more appropriate fit (Mantegna and Stanly 2000). To test
this, we first estimate the parameters using MLE and then extract and measure the noise
variables from each time series. Figure 10 shows the distribution of noise variables for
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Fig. 9 The temporal correlation of noise variables for fixed (a) Bitcoin, (b) Ethereum, (c) Twitter, (d) Reddit,
and (e) GitHub using 242 days. Here, each time series is shifted by a number of days τ and the correlation
coefficient is measured

some of our time series. As can be seen, there are various abnormalities associated with
each distribution. This may be due to time varying parameters, however breaking time
periods into smaller periods to examine this can create a potential subjective bias. Also, a
few outliers [which can be directly observed in the original time series, e.g., for Twitter in
Fig. 1a] give rise to outliers in the time series and histogram of the corresponding noise
[e.g., somewhat visible in Fig. 8c, but not visible in Fig. 10c due to uniform scales used for
all noise data for comparison]. These outliers, in turn, can strongly bias the MLE param-
eter values and produce noticeable deviations between the histogram of the empirical
noise and a standard normal distribution [Fig. 10c].
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Fig. 10 The distribution of noise variables for (a) Bitcoin, (b) Ethereum, (c) Twitter, (d) Reddit, and (e) GitHub
sampled from 242 days of data collection compared against a normal distribution with mean zero and unit
variance
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