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Abstract This paper proposes a depth measurement
error model for consumer depth cameras such as
the Microsoft Kinect, and a corresponding calibration
method. These devices were originally designed as
video game interfaces, and their output depth maps
usually lack sufficient accuracy for 3D measurement.
Models have been proposed to reduce these depth
errors, but they only consider camera-related causes.
Since the depth sensors are based on projector-
camera systems, we should also consider projector-
related causes. Also, previous models require disparity
observations, which are usually not output by such
sensors, so cannot be employed in practice. We
give an alternative error model for projector-camera
based consumer depth cameras, based on their depth
measurement algorithm, and intrinsic parameters of the
camera and the projector; it does not need disparity
values. We also give a corresponding new parameter
estimation method which simply needs observation of
a planar board. Our calibrated error model allows use
of a consumer depth sensor as a 3D measuring device.
Experimental results show the validity and effectiveness
of the error model and calibration procedure.
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1 Introduction
Recently, various consumer depth cameras such as
the Microsoft Kinect V1/V2, Asus Xtion, etc. have
been released. Since such consumer depth sensors
are inexpensive and easy to use, these devices are
widely deployed in various fields for a wide variety
of applications [1, 2].

These consumer depth cameras can be divided into
two categories: (i) projector-camera based systems
in which a projector casts a structured pattern onto
the surface of a target object, and (ii) time-of-flight
(ToF) sensors that measure the time taken for light
to travel from a source to an object and back to a
sensor. ToF sensors generally give more accurate
depths than projector-camera based ones, which are,
however, still useful because of their simplicity and
low cost.

Since projector-camera based devices include
cameras and a projector, output errors may
be caused in errors in determining the intrinsic
parameters. As long as such devices are used as
human interfaces for video games, such errors are
unimportant. For example, even when a Kinect
V1 captures a planar object, the resultant depth
maps have errors (see Fig. 1, left) as also reported
elsewhere [3, 4]. Thus, in this paper, we focus
on projector-camera based consumer depth cameras
and propose a depth error correction method based
on their depth measurement algorithm. Various
intrinsic calibration methods have already been
proposed for Kinect and other projector-camera
based depth cameras [3–11]. Smisek et al. [3] and
Herrera et al. [4] proposed calibration and depth
correction methods for Kinect that reduce the depth
observation errors. Raposo et al. [6] extended
Herrera et al.’s method to improve stability and
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Fig. 1 Left: observation errors in Kinect output. Right:
compensated values using our method.

speed. However, their methods only considered
distortion due to the infrared (IR) cameras.
Since projector-camera based depth sensors include
cameras and a projector, we should also consider
projector-related sources of error.

We previously proposed a depth error model
for Kinect including projector-related distortion [5].
Darwish et al. [8] also proposed a calibration
algorithm that considers both camera and projector-
related parameters for Kinect. However, these
methods as well as other previous methods require
disparity observations, and these are not generally
provided by such sensors. Thus, methods that
require disparity observations cannot be employed
in practice for error compensation for data from
existing commercial sensors.

Some researchers employ non-parametric models
for depth correction but a calibration board needs
to be shown perpendicular to the sensor [9, 11],
or ground truth data obtained by simultaneous
localization and mapping (SLAM) are required [12,
13]. Jin et al. [10] proposed a calibration method
using cuboids, but, their method is also based on
disparity observations. Other researchers proposed
error distribution models for Kinect [14, 15], but this
research did not focus on error compensation.

To provide straightforward procedures for
calibration and error compensation for depth data,
including previously captured data, our method
introduces a parametric error model that considers
(i) both camera and projector distortion, and (ii)
errors in the parameters used to convert disparity
observations to actual disparity. To estimate the
parameters in the error model, we propose a simple
method that resembles the common color camera
calibration method [16]. Having placed a planar
calibration board in front of the depth camera and
captured a set of images, our method efficiently

optimizes the parameters allowing us to reduce
the depth measurement errors (see Fig. 1, right).
Our compensation model only requires depth data,
without the need for disparity observations. Thus
we can apply our error compensation to any depth
data captured by projector-camera based depth
cameras.

We note that the calibration method introduced
in this paper is designed for Kinect because it is the
most common projector-camera based depth sensor.
However, it potentially generally more useful because
it is based on a principle common to other projector-
camera based depth sensors.

Section 2 describes the measurement algorithm
used by Kinect, and Section 3 describes our
parametric error model and parameter estimation.
Section 4 shows experimental results demonstrating
the effectiveness of our proposed method, while
Section 5 summarizes our paper.

2 Depth error model
2.1 Depth measurement by Kinect
Since our method is based on the measurement
algorithm used by the Kinect, we first outline this
algorithm and this depth sensor, which consists of
an IR camera and an IR projector. The IR projector
projects special fixed patterns (speckle patterns) on
the target observed by the IR camera. By comparing
the observed and reference patterns captured in
advance, Kinect estimates depth information for the
target. The reference patterns are observations made
by the IR camera when the IR projector casts the
speckle pattern on the reference plane Π0 [17] (see
Fig. 2).

Here, we assume pattern P (xpi) is projected in the
direction of point xpi = [xpi, ypi]T onto the reference
plane Π0, and pattern P (xpi) on Π0 is projected onto
the 2D position x

(Π0)
ci = [x(Π0)

ci , y
(Π0)
ci ]T for the IR

camera. We obtain the following relationship:
x

(Π0)
ci = xpi + fw/Z0 (1)

where w is the baseline distance between the camera
and the projector, f is the focal length of the IR
camera (and the IR projector), and Z0 is the distance
between the reference plane Π0 and the Kinect.

Next, we consider the target observation measured
at point Qi and assume that pattern P (xpi) is
observed at xci using the IR camera. By considering
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Fig. 2 Depth measurement by Kinect.

the reference patterns, the pattern’s observed
position when it is projected onto reference plane
Π0, x

(Π0)
ci , can be obtained. We calculate disparity δi

from the reference plane observation at xci as follows:
δi = xci − x

(Π0)
ci = xci − xpi − fw/Z0 (2)

Then Xi, which is the 3D position of point Qi,
can be calculated as

Xi =[
(xci − xcc)Zi

f
,
(yci − ycc)Zi

f
,

fw

fw/Z0 + δi

]T

(3)

where xcc and ycc are the IR camera’s principal
points and Zi is the depth of point Qi.

Kinect does not output disparity values, but only
normalized observations δ′

i from 0 to 2047 (in Kinect
disparity units: kdu) [17], where δi = mδ′

i + n.
The driver software for Kinect (Kinect for Windows
SDK and OpenNI) uses these to calculate and output
depth values Zi based on the following equation:

Zi =
fw

fw/Z0 + mδ′
i + n

=
fw

di
(4)

The disparity between the camera and projector di

can be expressed as follows:
di = fw/Z0 + mδ′

i + n (5)

Note that recent versions of the driver software
do not support output of disparities δ′

i, so these
are generally unobtainable. Instead, we propose a
method to calibrate and compensate the depth data
obtained by Kinect that does not require either the
disparity or normalized disparity observations.

2.2 Depth error model
The depth measurement model described above
holds only in an ideal case. In practice, when Kinect

observes a planar target, the output depth maps have
errors, as previously noted [3, 4] (see Fig. 1). To be
able to compensate for them, we consider not only
camera distortion but also the projector distortion in
our model.
2.2.1 Distortion parameters
A well-known lens distortion model is
x̆ci =⎡
⎣ xci + (xci − xcc)

[
kc1uci

Tuci + kc2(uci
Tuci)2]

yci + (yci − ycc)
[
kc1uci

Tuci + kc2(uci
Tuci)2]

⎤
⎦

(6)
where xci = [xci, yci]T and x̆ci are the ideal and
observed, distorted 2D positions, and uci gives the
normalized coordinates of xci. kc1 and kc2 are the
distortion parameters of the IR camera.

We assume the same distortion model can be used
for the projector:
x̆pi =⎡
⎣ xpi + (xpi − xpc)

[
kp1upi

Tupi + kp2(upi
Tupi)2]

ypi + (ypi − ypc)
[
kp1upi

Tupi + kp2(upi
Tupi)2]

⎤
⎦

(7)
where xpi and x̆pi are the ideal and distorted 2D
positions, and upi gives the normalized coordinates
of xpi. [xpc, ypc]T is the principal point of the
projector, and kp1 and kp2 are the distortion
parameters of the IR projector.

We now consider pattern P (xpi) projected in
the direction of point xpi (see Fig. 3). However,
because of projector distortion, pattern P (xpi) is
actually projected in the direction of point x̆pi,
and is projected onto point Q′

i. In the camera,
pattern P (xpi) is actually projected onto position
x̆ci because of the camera distortion. Let d̆i be the
observed (distorted) disparity at x̆ci and

d̆i = x̆ci − xpi (8)
On the other hand, considering Q′

i in Fig. 3, the
ideal disparity di corresponding to point Q′

i should
be

di = xci − x̆pi = d̆i − εc − εp (9)

where εc = x̆ci − xci and εp = x̆pi − xpi.
2.2.2 Proposed error model
Equation (9) expresses the relation between the
ideal disparity di and the observed disparity d̆i.
In practice, since the parameters in Eq. (5), i.e.,
f , w, Z0, m, and n include errors, we need to
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Fig. 3 Proposed error model.

compensate for them. Here, let d̆′
i and d̆i be the ideal

values and the values calculated by Eq. (5) based
on the error parameters and the observed disparity.
Considering the errors in the parameters in Eq. (5)
and collecting the coefficients, the following relations
can be obtained:

d̆′
i = αd̆i + β (10)

where α and β are parameters for compensating
errors in f , w, Z0, m, and n. A detailed derivation
of Eq. (10) is shown in Appendix A. Thus, the ideal
disparity di can be expressed as follows:

di = d̆′
i − εc − εp

= (αd̆i + β) − εc − εp (11)
By introducing α and β, we can compensate

for errors in the parameters in Eq. (5) without
observing the normalized disparity itself. Therefore,
we calibrate not only the distortion parameters of the
camera and the projector but also α and β allowing
us to compensate for errors in these values. In the
next section, we describe parameter estimation for
this error model.

3 Algorithm
3.1 Overview
In consumer depth sensors, since the projection
patterns cannot be controlled, we cannot directly
estimate the projector’s distortion parameters.
Instead, we estimate the error model parameters
using the process flow shown in Fig. 4.

First, we obtain N IR images and corresponding
depth data for a calibration board (of known size and
pattern) in arbitrary poses and positions. This lets
us perform intrinsic calibration of the IR camera by

Fig. 4 Process flow.

Zhang’s method [16]. As described in the previous
section, we model the depth errors based on Eq. (11),
and ideal disparity di and observed disparity d̆i

are required. Here, we assume that the poses and
positions of the board estimated by intrinsic camera
calibration are ideal depth values, and calculate ideal
disparity di from these poses and positions. The
observed disparity values can be calculated from the
observed depth values. Next we estimate the error
model parameters by minimizing Eq. (11) based on
di and d̆i. Table 1 summarizes the notation used in
the following.

3.2 Camera calibration
First, intrinsic calibration of the IR camera is
performed using the N images captured by the IR
cameras, using Zhang’s method [16]. For camera
calibration, Xk, x

(j)
bk , the size of the chessboard, and

the number of checker patterns on the chessboard
should be given. Zhang’s method can estimate the
focal length (f), the principal point (ucc, vcc), and
the camera distortion parameters (kc = {kc1, kc2}).
The disparity differences caused by the camera lens

Table 1 Notation

i index of points
j index of observations, j = 1, . . . , N

k index of chessboard corner points
x̆

(j)
ci 2D positions in image j

X̆
(j)
ci 3D positions at x̆

(j)
ci obtained by sensor

Xk 3D positions of chessboard corners (Zbk = 0)
x

(j)
bk 2D positions of corners in image j

X̆
(j)
bk 3D positions at x

(j)
bk obtained by sensor
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distortion may be considered. Let k′
c be camera

the distortion parameter, and ε′
c be disparity error

caused by k′
c. Then kc and εc can be expressed as

follows: {
kc = k′

c + Δkc

εc = ε′
c + Δεc

(12)

and Eq. (11) can be rewritten as follows:
di = (αd̆i + β) − Δεc − εp (13)

In addition, we can obtain the board’s poses and
positions in each image j: (R(j), t(j)). This
information is used in the following processes.

3.3 Projector calibration and disparity com-
pensation parameter estimation

Next, we estimate the distortion parameters for the
projector and the disparity conversion parameters.
To do so, we use the relations in Eq. (13) to give the
following equation:∑

j

∑
i

{d
(j)
i − (αd̆

(j)
i + β − Δε

(j)
ci − ε

(j)
pi )} = 0 (14)

The ideal disparities d
(j)
i can be calculated from

the estimated poses and positions R(j), t(j) as
follows:

d
(j)
i =

wf

Zb(x(j)
ci )

(15)

where X
(j)
b (x(j)

ci ) gives the 3D position on the board
corresponding to direction x

(j)
i (see Fig. 5), and

Z
(j)
b (x(j)

ci ) is the Z component of X
(j)
b (x(j)

ci ).
The observed disparity values d̆i can be estimated

using:

d̆
(j)
i =

wfo

Z̆
(j)
ci

(16)

Fig. 5 Relationship between 2D and 3D observations.

where Z̆
(j)
ci is the observed depth value at position

x
(j)
ci . fo is the focal length for the depth sensor used

for calculating observed disparity values d̆
(j)
i , and can

be estimated from X̆
(j)
ci .

ε
(j)
ci can be expressed as follows:

ε
(j)
ci = x̆

(j)
ci − x

(j)
ci

= −(x̆(j)
i − xcc)

[
kc1(ŭ(j)

ci )Tŭ
(j)
ci + kc2((ŭ(j)

ci )Tŭ
(j)
ci )2

]
(17)

where
x

(j)
ci =

x̆
(j)
ci −

(
x̆

(j)
ci −

[
xcc

ycc

])[
kc1(ŭ(j)

ci )Tŭ
(j)
ci + kc2((ŭ(j)

ci )Tŭ
(j)
ci )2

]
(18)

and we employ the approximate undistorted
model [18].

Based on the above equations, we can estimate
Δkc, kp, α, and β by minimization as below:[

k̂p, α̂, β̂
]

=

arg min
Δkc,kp,α,β

∑
j

∑
i

{d
(j)
i −(αd̆

(j)
i +β−Δε

(j)
ci −ε

(j)
pi )}

(19)
In our experiments, we employed the multi-start
algorithm in the MATLAB and Global Optimization
Toolbox (version 2017b) for optimization. Since it
requires initial values, they were determined as
follows. Note that w is not included in the parameters
to be calibrated, because w and disparities di and d̆i

are proportional. Instead, we employ w = 75 mm
based on Ref. [19].

We first consider the initial values of conversion
parameters α̂ and β̂. From Eqs. (15) and (16), we
obtain the following relations by substituting 0 for
ε

(j)
ci and ε

(j)
pi into Eq. (11):

di = α̂d̆i + β̂ (20)
allowing α̂ and β̂ to be determined by least-squares
fitting.

Next, we consider the initial values for distortion
errors ε̂

(j)
pi . Considering the relations between the

camera and the projector and Eq. (8), we can
estimate x

(j)
pi and x̆

(j)
pi as follows:

m

[
x̆

(j)
pi

1

]
= Ap

⎛
⎜⎝X

(j)
b −

⎡
⎢⎣ w

0
0

⎤
⎥⎦

⎞
⎟⎠ (21)

x
(j)
pi = x̆

(c)
ci −

[
αd̆i + β

0

]
(22)
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where Ap are intrinsic parameters of the projector.
Using Eq. (7), we can obtain the following equation:

ε̂
(j)
pi = x̆

(j)
pi − x

(j)
pi

= −
(

x̆
(j)
pi −

[
xpc

ypc

])[
k̂p1(ŭ(j)

pi )Tŭ
(j)
pi + k̂p2((ŭ(j)

pi )Tŭ
(j)
pi )2 ]

(23)
We then estimate the optimal values of εpi (and

kp1, kp2), α, and β by minimizing Eq. (19) from these
initial values.

3.4 Depth compensation using calibration
results

Finally, we describe the compensation process for the
depth data obtained from the depth sensors.

Here, we consider the 3D data X̆
(j)
ci at pixel x̆

(j)
ci .

First, we obtain d̆i and εc from Eqs. (16) and (17).
x̆pi can be calculated from Eq. (22). Next, we
calculate εpi from Eq. (23). Then, the compensated
disparity di can be calculated from Eq. (11), so the
compensated depth Zi can be obtained as

Zi =
fw

di
(24)

and the compensated 3D data Xi is given by

Xi =
[

(xci − xcc)Zi

f
,
(yci − ycc)Zi

f
, Zi

]T

(25)

4 Experiments
We performed the following experiments to confirm
the validity of our proposed error model and error
compensation. In the experiment, we used a Kinect
for Xbox (Device 1, abbreviated Dev.1, etc.), a
Kinect for Windows (Device 2), and an ASUS Xtion
Pro (Device 3); all of these devices are based on
the same Primesense measurement algorithm [20].
We compared the compensated results using the
following three models and the observed raw data:
(a) our proposed method;
(b) model considering camera distortion and

conversion parameters (without εp);
(c) model considering only camera distortion

errors (with Δεc);
(d) no compensation, i.e., observed raw data.

We captured 12 observations of the chessboard
in different arbitrary poses and positions in the
experiments. The distances between the board and
the device were about 500–1300 mm. A leave-one-
out method was used for evaluating the validity
of the proposed error model: one observation was

used for evaluation and the remaining observations
were used for estimating error model parameters.
From the observations, we manually obtained the 2D
positions of the chessboard corners (54 points per
image).

Table 2 shows the residual errors after the
calibration phase, and Table 3 shows the errors in
evaluations. Here, the errors were calculated as
the averaged distances between the compensated (or
observed) positions and ground truth positions of
the chessboard corners. We used the 3D positions
obtained from the color camera observations as the
ground truth positions.

These comparative results show that all three
models can reduce errors compared to the
uncompensated results, in both the calibration
and evaluation phases. The errors compensated by
(a) our proposed model were the lowest, followed
by (b) the model that considered camera distortion
and linear relations, and then (c) the model that
considered only camera distortion. The number of
parameters used in these models also has the same
ordering: (a) has the most, followed by (b) and then
(c). These results suggest that using all parameters
considered in our proposed error model are helpful
in improving the quality of the 3D depth data.

After calibration, we evaluated the flatness of
the compensated observations for the chessboard,
measuring plane fitting errors within the chessboard
regions. Table 4 shows comparative results for these
plane fitting errors.

These results show that the plane fitting errors in
compensated observations from our proposed model

Table 2 Comparison of averaged errors during calibration

(a) (b) (c) (d)
proposed w/o εp w εc w/o comp.

(mm) (mm) (mm) (mm)
Dev.1 2.56 2.79 3.88 10.86
Dev.2 2.20 2.60 6.28 6.98
Dev.3 1.33 1.47 2.33 2.26

Table 3 Comparison of averaged errors in evaluation

(a) (b) (c) (d)
proposed w/o εp w εc w/o comp.

(mm) (mm) (mm) (mm)
Dev.1 4.36 3.99 4.56 10.13
Dev.2 3.46 3.72 4.59 5.56
Dev.3 1.65 1.75 2.15 2.14
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Table 4 Comparison of plane fitting errors in evaluation

(a) (b) (c) (d)
proposed w/o εp w εc w/o comp.

(mm) (mm) (mm) (mm)
Dev.1 1.84 2.74 2.81 2.67
Dev.2 2.01 2.45 2.45 2.30
Dev.3 1.18 1.23 1.30 1.27

(a) decreased, but on the other hand, typically for
other methods (b) and (c), the plane fitting errors
increased. These results suggest that all parameters
considered in our proposed error model are required
to improve the quality of the 3D depth data.

Next, we evaluated the method’s robustness to
errors in the given baseline length w. Our method
assumes the target device’s baseline length is that
given in such articles as Ref. [19]. However, if it is
not given, we need to measure it ourselves. In such
cases, the measured length may include errors. Thus,
we evaluated the robustness to errors in the baseline
length w of up to ±2 mm.

Table 5 shows the errors when the baseline includes
errors. As can be seen, our proposed model can
reduce errors between the compensated positions
and the ground truth positions even when the given
baseline length includes errors. This is because our
model considers errors in the baseline length w as
one of the parameters in Eq. (5).

These experimental results, confirm that our
proposed model can improve the quality of 3D depth
data obtained by consumer depth cameras such as
Kinect and Xtion.

5 Summary
In this paper, we have proposed and evaluated
a depth error model for projector-camera based
consumer depth cameras such as the Kinect, and

Table 5 Residual errors with varying baseline length errors

Error Dev.1 Dev.2 Dev.3
(mm) (mm) (mm) (mm)

w/o comp. 10.137 5.559 2.144
−2 4.364 3.459 1.659
−1 4.363 3.459 1.665
0 4.361 3.460 1.648

+1 4.359 3.459 1.660
+2 4.357 3.458 1.660

an error compensation method based on calibration
of the parameters involved. Since our method only
requires depth data without disparity observations,
we can apply it to any depth data captured by
projector-camera based depth cameras such as the
Kinect and Xtion. Our error model considers
(i) both camera and projector distortion, and (ii)
errors in the parameters used to convert from
normalized disparity to depth data. The optimal
model parameters can be estimated by showing
a chessboard to the depth sensor using multiple
arbitrary distances and poses. Experimental results
show that the proposed error model can reduce depth
measurement errors for both Kinect and Xtion by
about 70%. Our proposed model has significant
advantages when using a consumer depth camera as
a 3D measuring device.

Future work includes further investigation
of the error model, improvement of the
optimization approach for parameter estimation,
and implementation of a calibration tool based on
the proposed error model for various projector-
camera based depth cameras, such as the Intel
RealSense and Occipital Structure Sensor, as well as
the Microsoft Kinect.

Appendix A Derivation of Eq. (10)
Considering errors in the parameters in Eq. (5), d̆i

can be expressed as follows:
d̆i = f̆ w̆/Z̆0 + m̆δ′

i + n̆ (26)
where f̆ , w̆, Z̆0, m̆, and n̆ denote the parameters
which contain errors. Let Δ(f̆ w̆/Z̆0), Δm̆, and Δn̆

be the errors in these parameters. Then d̆′
i, the ideal

value of the observed disparity, can be obtained as
follows:

d̆′
i =

(
f̆ w̆/Z̆0 + Δ(f̆ w̆/Z̆0)

)
+ (m̆Δm̆) δ′

i + (n̆ + Δn̆) (27)
All parameters except δ′

i are fixed values, so we can
obtain Eq. (10) by collecting coefficients:

d̆′
i = αd̆i + β (28)
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