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Abstract It has been widely acknowledged that
learning-based super-resolution (SR) methods are
effective to recover a high resolution (HR) image from
a single low resolution (LR) input image. However,
there exist two main challenges in learning-based SR
methods currently: the quality of training samples
and the demand for computation. We proposed a
novel framework for single image SR tasks aiming at
these issues, which consists of blind blurring kernel
estimation (BKE) and SR recovery with anchored space
mapping (ASM). BKE is realized via minimizing the
cross-scale dissimilarity of the image iteratively, and SR
recovery with ASM is performed based on iterative least
square dictionary learning algorithm (ILS-DLA). BKE
is capable of improving the compatibility of training
samples and testing samples effectively and ASM can
reduce consumed time during SR recovery radically.
Moreover, a selective patch processing (SPP) strategy
measured by average gradient amplitude |grad| of a
patch is adopted to accelerate the BKE process. The
experimental results show that our method outruns
several typical blind and non-blind algorithms on equal
conditions.
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1 Introduction

Single image super-resolution has been becoming the
hotspot of super-resolution area for digital images
because it generally is not easy to obtain an adequate
number of LR observations for SR recovery in many
practical applications. In order to improve image
SR performance and reduce time consumption so
that it can be applied in practical applications more
effectively, this kind of technology has attracted
great attentions in recent years.

Single image super-resolution is essentially a
severe ill-posed problem, which needs adequate
priors to be solved. Existing super-resolution
technologies can be roughly divided into three
categories: traditional interpolation methods,
reconstruction methods, and machine-learning (ML)
based methods. Interpolation methods usually
assume that image data is continuous and band-
limited smooth signal. However, there are many
discontinuous features in natural images such
as edges and corners etc., which usually makes
the recovered images by traditional interpolation
methods suffer from low quality [1]. Reconstruction
based methods apply a certain prior knowledge,
such as total variation (TV) prior [2–4] and gradient
profile (GP) prior [5] etc., to well pose the SR
problem. The reconstructed image is required to be
consistent with LR input via back-projection. But a
certain prior is typically only propitious to specific
images. Besides, these methods will produce worse
results with larger magnification factor.

Relatively speaking, machine-learning based
method is a promising technology and it has become
the most popular topic in single image SR field.
The first ML method was proposed by Freeman
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et al. [6], which is called example-based learning
method. This method predicts HR patches from
LR patches by solving markov random field (MRF)
model by belief propagation algorithm. Then, Sun
et al. [7] enhanced discontinuous features (such as
edges and corners etc.) by primal sketch priors.
These methods need an external database which
consists of abundant HR/LR patch pairs, and time
consumption hinders the application of this kind
of methods. Chang et al. [8] proposed a nearest
neighbor embedding (NNE) method motivated by
the philosophy of locally linear embedding (LLE)
[9]. They assumed LR patches and HR patches have
similar space structure, and LR patch coefficients
can be solved through least square problem for the
fixed number of nearest neighbors (NNs). These
coefficients are then used for HR patch NNs directly.
However, the fixed number of NNs could cause
over-fitting and/or under-fitting phenomena easily
[10]. Yang et al. [11] proposed an effective sparse
representation approach and addressed the fitting
problems through selecting the number of NNs
adaptively.

However, ML methods are still exposed to two
main issues: the compatibility between training and
testing samples (caused by light condition, defocus,
noise etc.), and the mapping relation between
LR and HR feature spaces (requiring numerous
calculations). Glasner et al. [12] exploited image
patch non-local self-similarity (i.e., patch recurrence)
within image scale and cross-scale for single image
SR tasks, which makes an effective solution for
the compatibility problem. The mapping relation
involves the learning process of LR/HR dictionaries.
Actually, LR and HR feature spaces are tied by
some mapping function, which could be unknown
and not necessarily linear [13]. Therefore, the
originally direct mapping mode [11] may not reflect
this unknown non-linear relation correctly. Yang et
al. [14] proposed another joint dictionary training
approach to learn the duality relation between
LR/HR patch spaces. The method essentially
concatenates the two feature spaces and converts
the problem to the standard sparse representation.
Further, they explicitly learned the sparse coding
problem across different feature spaces in Ref. [13],
which is so-called coupled dictionary learning
(CDL) algorithm. He et al. [15] proposed another

beta process joint dictionary learning (BPJDL)
for CDL based on a Bayesian method through
using a beta process prior. But, above-mentioned
dictionary learning approaches did not take the
feature of training samples into account for better
performance. Actually, it is not an easy work to find
the complicated relation between LR and HR feature
spaces directly.

We present a novel single image super-resolution
method considering both SR result and the
acceleration of execution in the paper. The proposed
approach firstly estimated the true blur kernel based
on the philosophy of minimizing the dissimilarity
between cross-scale patches [16]. LR/HR dictionaries
then were trained via input image itself down-
sampled by the estimated blur kernel. The BKE
processing was adopted for improving the quality
of training samples. Then, L2 norm regularization
was used to substitute L0/L1 norm constraint so
that latent HR patch can be mapped on LR patch
directly through a mapping matrix computed by
LR/HR dictionaries. This strategy is similar with
ANR [17], but we employed a different dictionary
learning approach, i.e., ILS-DLA, to train LR/HR
dictionaries. In fact, ILS-DLA unified the principle
of optimization of the whole SR process and
produced better results with regard to K-SVD used
by ANR.

The remainder of the paper is organized as follows:
Section 2 briefly reviews the related work about
this paper. The proposed approach is described
in Section 3 detailedly. Section 4 presents the
experimental results and comparison with other
typical blind and non-blind SR methods. Section
5 concludes the paper.

2 Related work

2.1 Internal statistics in natural images

Glasner et al. [12] exploited an important internal
statistical attributes of natural image patches named
the patch recurrence, which is also known as
image patch redundancy or non-local self-similarity
(NLSS). NLSS has been employed in a lot of
computer vision fields such as super resolution [12,
18–21], denoising [22], deblurring [23], and inpainting
[24] etc. Further, Zontak and Irani [18] quantified this
property by relating it to the spatial distance from
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the patch and the mean gradient magnitude |grad| of
a patch. The three main conclusions can be perceived
according to Ref. [18]: (i) smooth patches recur very
frequently, whereas highly structured patches recur
much less frequently; (ii) a small patch tends to
recur densely in its vicinity and the frequency of
recurrence decays rapidly as the distance from the
patch increases; (iii) patches of different gradient
content need to search for nearest neighbors at
different distances. These conclusions consist of
the theoretical basis of using the mean gradient
magnitude |grad| as the metric of discriminatively
choosing different patches when estimating the
blurring kernels.

2.2 Cross-scale blur kernel estimation

For more detailed elaboration, we still need to
briefly review the cross-scale BKE and introduce our
previous work [16] on this issue despite a part of
it is the same as previous one. We will illustrate
the detailed differences in Section 3.1. Because of
camera shake, defocus, and various kinds of noises,
the blur kernel of different images may be entirely
and totally different. Michaeli and Irani [25] utilized
the non-local self-similarity property to estimate
the optimal blur kernel by maximizing the cross-
scale patch redundancy iteratively depending on the
observation that HR images possess more patch
recurrence than LR images. They assumed the initial
kernel is a delta function used to down-sample the
input image. A few NNs of each small patch were
found in the down-sampled version of input image.
Each NN corresponds to a large patch in the original
scale image, and these patch pairs construct a set
of linear equations which could be solved by using
weighted least squares. The root mean squared error
(RMSE) between cross-scale patches was employed
as the iteration criterion. Figure 1 shows the main
process of cross BKE of Ref. [25]. We follow the same
idea with more careful observation: the effect of the
convolution on smooth patches is obviously smaller
than that on structured patches (refer to Fig. 2).
This phenomenon can be explained easily according
to the definition of convolution. Moreover, the mean
gradient magnitude |grad| is more expressive than
the variance of a patch on the basis of the conclusions
in Ref. [18].

Fig. 1 Description of cross-scale patch redundancy. For each small
patch pi in Y , finding its NNs qs

ij in Y s which corresponds to a
large patch qij in Y , qs

ij and qij constitute a patch pair, and all
patch pairs of NNs construct a set of linear equations which is solved
using weighted least squares to obtain an updated kernel.

(a) Clean patches (b) Blurred patches

Fig. 2 Blurring effect on non-smooth and smooth areas. Black
boxes indicate structured areas, and red boxes indicate smooth areas.
(a) Clean patches. It can be clearly seen that the structure of non-
smooth patch is distinct. (b) Blurred patches corresponding to (a).
The detail of non-smooth patch is obviously blurry.

2.3 ILS-DLA and ANR

ILS-DLA is a typical dictionary learning method.
It adopts an overall optimization strategy based on
least square (LS) to update the dictionary when
the weight matrix is fixed so that ILS-DLA [26] is
usually faster than K-SVD [17, 27]. Besides, ANR
just adjusts the objective function slightly and the
SR reconstruction process is theoretically based on
least square method.

Supposing we have two coupled feature sets FL and
FH with size nL × L and nH × L, and the number of
the atoms in LR dictionary DL and HR dictionary
DH is K. The training process for DL can be
described as

{D̂L, Ŵ } = argmin
DL,W

L∑
i=1
‖wi‖p + λ‖FL −DLW ‖2

2,

s.t. ‖di
L‖

2
2 = 1 (1)

where di
L is an atom in DL, wi is a column vector

in W . p ∈ {0, 1} is the constrain of the coefficient
vector wi, and λ is a tradeoff parameter. Equation
(1) is usually resolved by optimizing one variable
while keeping the other one fixed. In ILS-DLA case,
least square method is used to update DL while W is
fixed. Once DL and W were obtained then we could
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compute the DH according to the same LS rule:
DH = FHW T(W W T)−1 (2)

According to the philosophy of ANR, a mapping
matrix can be calculated through the weight matrix
and the both dictionaries. Then, it is used to project
LR feature patches to HR feature patches directly.
Thus, L0/L1 norm constrained optimization problem
degenerates to an issue of matrix multiplication.

3 Proposed approach

3.1 Improved blur kernel estimation

Referring to Fig. 1, we use Y to represent the input
LR image, and X to be latent HR image. Michaeli
and Irani [25] estimated the blur kernel through
maximizing the cross-scale NLSS directly, while
we minimized the dissimilarity between cross-scale
patches. Despite these two ideas look like the same
with each other intuitively, they are slightly different
and lead to severely different performance [16]. While
Ref. [16] has introduced this part of content in
detail, we need to present the key component of
the improved blur kernel estimation for integrated
elaboration. The following objective function has
reflected the idea of minimizing the dissimilarity
between cross-scale patches:

argmin
k

N∑
i=1
‖pi −

Mi∑
j=1

zijRijk‖2
2 + η‖Ck‖2

2 (3)

where N is the number of query patches in
Y . Matrix Rij corresponds to the operation of
convolving with qij and down-sampling by s. C is
a matrix used as the penalty of non-smooth kernel.
The second term of Eq. (3) is kernel prior and η is
the balance parameter as the tradeoff between the
error term and kernel prior. For the calculation of
the weight zij , we can find Mi NNs in down-sampled
version Y s for each small patch pi (i = 1,2,· · · ,N) in
the input image Y . The “parent” patches qij right
above qs

ij are viewed as the candidate parent patches
of pi. Then the weight zij can be calculated as follow:

zij =
exp(−‖pi − qs

ij‖
2
/σ2)

Mi∑
j=1

exp(−‖pi − qs
ij‖

2
/σ2)

(4)

where Mi is the number of NNs in Y s of each small
patch pi in Y , and σ is the standard deviation
of noise added on pi. s is the scale factor (see

Fig. 1). Note that we apply the same symbol to
express column vector corresponding to the patch
here. Setting the gradient of the objective function
in Eq. (3) to zero can get the update formula of k:

k̂ =

 N∑
i=1

Mi∑
j=1

zijRT
ijRij + ηCTC

−1
N∑

i=1

Mi∑
j=1

zijRT
ijpi

(5)
Equation (5) is very similar to the result of

Ref. [25], which can be interpreted as maximum
a posteriori (MAP) estimation on k. However,
there are at least three essential differentials with
respect to Ref. [25]. Firstly, the motivation is
different so that Ref. [25] tends to maximize the
cross-scale similarity according to NLSS [12] while
we minimize the dissimilarity directly according to
Ref. [18]. This may not be easy to understand.
However, the former leads Michaeli and Irani [25]
to form their kernel update formula from physical
analysis and interpretation of “optimal kernel”. The
latter leads us to obtain kernel update formula
from quantitating cross-scale patch dissimilarity and
directly minimizing it according to ridge regression
[16]. Secondly, selective patch processing measured
by the average gradient amplitude |grad| was
adopted to improve the result of blind BKE. Finally,
the number of NNs of each small patch pi is not fixed
which provides more flexibility during solving least
square problem. Accordingly, the terminal criterion
cannot be the totality of NNs. We use the average
patch dissimilarity (APD) as terminal condition of
iteration:

APD =
N∑

i=1

Mi∑
j=1
‖pi − qs

ij‖
2
2 ·
(

N∑
i=1

Mi

)−1

(6)

It is worth to note that selective patch processing
is used to eliminate the effect on BKE caused by
smooth patches; we selectively employ structured
patches to calculate blur kernel. Specifically, if the
average gradient magnitude |grad| of each query
patch is smaller than a threshold, then we abandon
it. Otherwise, we use it to estimate blur kernel
according to Eq. (5). We typically perform search
in the entire image according to Ref. [18] but this
could not consume too much time because of a lot of
smooth patches being filtered out.
3.2 Feature extraction strategy

There is a data preparation stage before dictionary
learning when using sparse representation to do SR



Single image super-resolution via blind blurring estimation and anchored space mapping 75

task, it is necessary to extract training features
from the given input data because different feature
extraction strategies will cause very different SR
results. The mainstream feature extraction strategies
include raw data of an image patch, the gradient of
an image patch in x and y directions, and mean-
removed patch etc. We adopt the back-projection
residuals (BPR) model presented in Ref. [28] for
feature extraction (see Fig. 3).

Firstly, we convolve Y with estimated kernel k,
and dowm-sample it with s. From the view of
minimizing the cross-scale patch dissimilarity, the
estimated blur kernel gives us a more accurate down-
sampling version of Y . In order to make the feature
extraction more accurate, we consider the enhanced
interpolation of Y ′, which forms the source of LR
feature space FL. The enhanced interpolation is the
result of an iterative back-projection (IBP) operation
[29, 30]:

Ŷ ′t+1 = Ŷ ′t + [(Y s − Ŷ s
t ) ↑ s] ∗ k′ (7)

where Ŷ s
t = (Ŷ ′t ∗ k) ↓ s, k′ is a back-projection

filter that spreads the differential error locally. It
is usually replaced by a Gaussian function. The
IBP starts with the bicubic interpolation, and down-
sampling operation is performed by convolving with
estimated blur kernel k. After a certain number
of iterations, the error between Y s and Ŷ s

t will be
sufficiently small so that the enhanced version of Y ′

is adequately consistent with Y s. The HR feature
space FH is obtained by extracting raw patches from
residuals image Y −Y ′. In fact, the back-projection
residual image represents the high-pass filtered
version of Y . It contains essential high frequencies

H

L

Fig. 3 Feature extraction strategy. e(·) represents the enhanced
interpolation operation. The down-sampled version Y s is obtained
by convolving with estimated kernel k̂ and down-sampling with s.
LR feature set consists of normalized gradient feature patch extracted
from Y ′, HR feature set is made up with the raw patches extracted
from BPR image Y − Y ′.

of Y , and this is substantially helpful for dictionary
training. Besides, the directly down-sampled version
Y s with the estimated kernel usually is inconsistent
with Y . The enhanced interpolation process gives
an effective adjustment via reducing local projection
error. When both LR and HR feature patches get
prepared, we use ILS-DLA algorithm to train our
coupled dictionaries presented in Ref. [26] for fast
training and unified optimization rule, see Section
2.3.
3.3 SR recovery via ASM

Yang et al. [13] accelerated the SR process from
two directions: reducing the number of patches
and finding a fast solver for L1 norm minimization
problem. We adopt a similar manner for the first
optimization direction, i.e., a selective patch process
(SPP) strategy. However, in order to be consistent
with BKE, the criterion of selecting patches is the
gradient magnitude |grad| instead of the variance.
The second direction Yang et al. headed to is
learning a feed-forward neural network model to
find an approximated solution for L1 norm sparse
encoding. We employ ASM to accelerate the
algorithm similar with Ref. [17]. It requires us to
reformulate the L1 norm minimization problem as
a least square regression regularized by L2 norm
of sparse representation coefficients, and adopt the
ridge regression (RR) to relieve the computationally
demanding problem of L1 norm optimization. The
problem then comes to be

argmin
w

‖y −DLw‖2
2 + µ‖w‖2 (8)

where the parameter µ allows alleviating the
ill-posed problem and stabilizes the solution. y

corresponds to a testing patch extracted from
enhanced interpolation version of input image. DL
is the LR dictionary trained by ILS-DLA. The
algebraic solution of Eq. (8) is given by setting the
gradient of objective function to zero, which gives:

w = (DT
L DL + µI )−1

DT
L y (9)

where I is a identity matrix. Then, the same
coefficients are used on the HR feature space to
compute the latent HR patches, i.e., x = DHw.
Combined with Eq. (9):

x = DH(DT
L DL + µI )−1

DT
L y = PMy (10)

where mapping matrix PM can be computed offline
and DH is computed by Eq. (2). Equation (10)
means HR feature patch can be obtained by LR
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patch multiplying with a projection matrix directly,
which reduces the time consumption tremendously
in practice. Moreover, the feature patches needed to
be mapped to HR features via PM will be further
reduced due to SPP. Though the optimization
problem constrained by L2 norm usually leads to a
more relaxative solution, it still yields very accurate
SR results because of cross-scale BKE.

4 Experimental results

All the following experiments are performed on
the same platform, i.e., a Philips 64 bit PC with
8.0 GB memory and running a single core of
Intel Xeon 2.53 GHz CPU. The core differences
between the proposed method and Ref. [16] are the
feature extraction and SR recovery. The former
is mainly aiming at reducing local projection error
and improving the quality of the training samples
further. The latter is primarily used to accelerate
the reconstruction of the latent HR image.

4.1 Experiment settings

We quintessentially perform ×2 and ×3 SR in our
experiments on blind BKE. The parameter settings
in BKE stage are partially the same with Refs. [16]
and [25], i.e., when scale factor s = 2, the size
of small query patches pi and candidate patches
qs

ij of NNs are typically set to 5 × 5, while the
sizes of “parent” patches qij are set to 9× 9 and
11× 11; when performing ×3 SR, query patches and
candidate patches do not change size but “parent”
patches are set to be 13 × 13 patches. Noise standard
deviation σ is assumed to be 5. Parameter η in
Eq. (3) is set to be 0.25, and matrix C is chosen
to be the derivative matrix corresponding to x and
y direction of “parent” patches. The threshold of
gradient magnitude |grad| for selecting query patches
varies in 10–30 according to the different images. In
the processing of feature extraction, the enhanced
interpolation starts with the bicubic interpolation
and down-sampling operation is performed by
convolving with estimated blur kernel k, and the
back-projection filter k′ is set to be a Gaussian kernel
with the same size of k. The tradeoff parameter µ in
Eq. (8) is set to be 0.01 and the number of iteration
for dictionary training is 20.

4.2 Analysis of the metric in blind BKE

Comparisons for blind BKE usually include the
accuracy of the estimated kernels and the efficiency,
and these two elaborations have been presented in
our previous work [16] in detail. We intend to analyze
the impact on blind BKE through discriminating
the query patches instead of simply comparing the
final results with some related works. The repeated
conclusions will be ignored here. We collected
patches from three natural image sets (Set2, Set5,
and Set14) and found that the values of |grad| and
variance mostly fall into the range of [0, 100]. So the
entire statistical range is set to be [0, 100] and the
statistical interval for |grad| and variance is typically
set to be 10.

We sampled the 500 × 400 “baboon” image and
got 236,096 query patches, and 235,928 patches
from 540× 300 “high-street” (dense sampling). It is
distinctly observed that the statistical characteristics
of |grad| and variance are very similar with each
other in Fig. 4. The query patches with threshold
6 30 account for the most proportion for both |grad|
and variance, and we could get similar conclusion
from other images. However, the relative relation
between them reverses around 30 (value may be
different from images but the reverse determinately
exists). This is an intuitive presentation that why
we adopt the |grad| instead of variance as the metric
of selecting patches based on the philosophy of
dropping the useless smooth patches as many as
possible and keeping the structured patches as far as
possible. More systemically theoretical explanations
could be found in Ref. [18].

Moreover, the performance of blind BKE is
obviously affected by the threshold on |grad|. The
optimal kernel was pinned beside the threshold in
Fig. 4. We can see that the estimated kernel by
our method is not close to the ground-truth one
infinitely as the threshold increasing because the
useful structured patches reduce as well. Usually, the
estimated kernel at the threshold of “turning point”
is closest to the ground-truth. When the threshold is
set to be 0, it actually degenerates to the algorithm of
Ref. [25], which does not give the best result in most
instances. In general case, the quality of recovery
declines with the increase of |grad| like the second
illustration in Fig. 4. But there indeed exist special
cases like the first illustration in Fig. 4 for the PSNRs
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(a) |grad| vs. variance in “baboon” (b) |grad| vs. variance in “high-street”

Fig. 4 Comparisons between statistical characteristics and threshold effect on estimated kernels. The testing images are “baboon” from Set14
and “high-street” from Set2, and the blur kernels are a Gaussian with hsize = 5 and sigma = 1.0 (9×9) and a motion kernel with length = 5,

theta = 135 (11×11) respectively. We only display estimated kernels when threshold on |grad| 6 50.

of recovered images rise firstly and then fell with the
threshold increasing.

4.3 Comparisons for SR recovery

Compared with several currently proposed methods
(such as A+ ANR [27] and SRCNN [31] etc.), the
reconstruction efficiency of our method sometimes
is slightly low but almost in the same magnitude.
Due to the anchored space mapping, the proposed
method was accelerated substantially with regard
to some typical sparse representation algorithms
like Refs. [11] and [32]. Table 1 and Table 2
present the quantitative comparisons using PSNRs
and SR recovery time to compare objective
index and SR efficiency. Four recent proposed
methods including Ref. [32], A+ ANR (adjusted
anchored neighborhood regression) [27], SRCNN
(super-resolution convolutional neural network)
[31], and JOR (jointly optimized regressors) [33]
are picked out as the representative of non-
blind methods (presented in Table 1), and three
blind methods, NBS (nonparametric blind super-
resolution) [25], SAR-NBS (simple, accurate, and
robust nonparametric blind super-resolution) [34],
and Ref. [16] are concurrently listed in Table 2
with the proposed method. It’s worth noting that
PSNR needs reference images as base line. Because
the input images are blurred by different blurring
kernels so that the observation data is seriously
degenerated and non-blind methods usually give very
bad results in this case, we referred the recovered

images to the blurred input images. The average
PSNRs and running time are collected (×2 and ×3)
over four image sets (Set2, Set5, Set14, and B100).
Besides, we set the threshold on |grad| around to
the “turning point” adaptively for the best BKE
estimation instead of pinning it to a fixed number
(e.g., 10 in Ref. [16]). The methods listed in Table 1
and Table 2 are identical to the methods presented
in Figs. 5 – 8.

As shown in Table 1 and Table 2, the proposed
algorithm obtained higher objective evaluation than
other blind or non-blind algorithms in both s = 2
and/or s = 3 case. For fairness, it excludes the
time of preparing data and training dictionaries
for all of these methods. Firstly, four non-blind
methods in Table 1 fail to recover real images when
the inputs are degraded seriously though some of
them provided very high speed. And, both the
accuracy and efficiency of estimating kernels via
Michaeli et al. [25] are not high enough which
has been illustrated in Ref. [16], and SR recovery
performed by Ref. [11] is very time-consuming.
While the same process of BKE with us was executed
in Ref. [16] (fixed threshold on |grad|), the SR
reconstruction with SPP is essentially still low-
efficiency. The proposed method adopted adaptive
|grad| threshold to improve the quality of BKE and
the enhanced interpolation on input images reduced
the mapping errors brought by estimated kernels
further. On the other hand, ASM increased the
speed of the algorithm in essence. This is mainly
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Table 1 Performance of several non-blind methods (without estimating blur kernel)

Image set Scale Zeyde et al. ([32]) A+ ANR ([27]) SRCNN ([31]) JOR ([33])
PSNR (dB) Time (s) PSNR (dB) Time (s) PSNR (dB) Time (s) PSNR (dB) Time (s)

Set2
Set5
Set14
B100

×2

30.4314 9.0178 30.6207 2.2749 30.5952 2.0517 30.6334 8.3200
30.4607 7.1648 31.1095 1.3894 31.1021 1.2044 31.1252 7.8399
30.8179 11.4795 31.1023 2.3714 31.0683 2.1742 31.1214 9.2874
30.5784 8.4876 31.1007 1.5497 31.0271 1.4263 31.1098 8.1431

Set2
Set5
Set14
B100

×3

28.0296 6.1883 28.2544 1.7831 28.2527 1.6397 28.2605 8.4166
28.1548 4.1546 28.3327 1.1173 28.3314 0.8564 28.3397 7.4879
28.4706 8.6470 28.6147 1.9406 28.6107 1.7867 28.6244 8.8371
28.2381 6.0365 28.5836 1.5733 28.5694 1.5049 28.6042 8.2165

Table 2 Performance of several blind methods (adaptive threshold on |grad|)

Image set Scale NBS ([11] + [25]) SAR-NBS ([34]) Zhao et al. ([13] + [16]) Ours
PSNR (dB) Time (s) PSNR (dB) Time (s) PSNR (dB) Time (s) PSNR (dB) Time (s)

Set2
Set5
Set14
B100

×2

31.1417 126.7434 31.4371 — 31.8745 25.8316 32.1795 2.0476
31.4734 97.4641 31.7217 — 32.0146 19.7842 32.3914 1.2078
31.3043 108.7918 31.5841 — 31.9243 26.7849 31.9167 2.1607
31.4971 102.4352 31.7638 — 31.9673 22.4876 32.2671 1.3844

Set2
Set5
Set14
B100

×3

29.2549 98.4870 29.8749 — 30.3498 21.4876 30.6648 1.5743
29.3631 86.9237 29.8379 — 30.4716 15.9829 30.5176 1.0748
29.2461 95.4881 29.6477 — 29.9831 24.9573 30.2472 1.8476
28.9771 91.4877 29.6942 — 30.2752 19.7481 30.3317 1.4977

due to the adjustment of the objective function and
the constraint conversion from L0/L1 norm to L2
norm. Actually, the improvement of our method is
not only reflected in SR recovery stage, but also
reflected in BKE (through SPP) and dictionary
training (through ILS-DLA) which are not usually
mainly concerned by most of researchers. But these
preprocessing procedures are still very different when
big data need to be processed.

Figures 5 – 8 show the visual comparisons between
several typical SR algorithms and our method. For
layout purpose, all images are diminished when
inserted in the paper. Still note that the input
images of all algorithms are obtained through
reference images blurred with different blur kernel.
Namely, input image data is set to be of low
quality in our experiments for the sake of simulating
many actual application scenarios. Though it is
well known that non-blind SR algorithms presented
in the illustrations are efficient for many SR
tasks, they fail to offset the blurring effect in
testing images without a more precise blurring
kernel. There is also significant difference about the
estimated kernels and reconstruction results among
blind algorithms. The BKE process of Ref. [25] is
actually close to our method when the threshold
on |grad| is 0 and the criterion for iteration is

MSE. Shao et al. [34] solved the blur kernel and
HR image simultaneously by minimizing a bi-L0-L2-
norm regularized optimization problem with respect
to both an intermediate super-resolved image and a
blur kernel, which is extraordinarily time-demanding
(so not shown in Table 1). More important is that
the fitting problem caused by useless smooth patches
still exists in these methods. Although the idea
of our method is simple, it could avoid the fitting
problem by dropping the smooth query patches
reasonably according to the internal statistics of a
single natural image.

Figures 9 and 10 present SR recovery results
of other two real images (“fence” and “building”),
which were captured by our cell-phone with slightly
joggle and motion. It is easily noticed that all
blind methods produce a better result than non-
blind methods which even can not offset the motion
deviation basically. Comparing Fig. 9(f) – Fig. 9(i)
and Fig. 10(f) – Fig. 10(i), we can find the visible
difference in estimated kernels and recovered results
produced by different blind methods. Particularly,
SAR-NBS tends to overly sharpen the high frequency
region and gives obvious distortion in final images.
The results of Zhao et al. [16] look more realistic
but the reconstruction accuracy is not high enough
compared with our approach.
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(a) Blurred input and ground-truth kernel (b) Non-blind Zeyde et al. ([32]) (c) Non-blind A+ ANR ([27])

(d) Non-blind SRCNN ([31]) (e) Non-blind JOR ([33]) (f) NBS ([11]+[25])

(g) SAR-NBS ([34]) (h) Zhao et al. ([13]+[16]) (i) The proposed method

Fig. 5 Visual comparisons of SR recovery with low-quality “butterfly” image from Set5 (×2). The ground-truth kernel is a 9×9 Gaussian
kernel with hsize = 5 and sigma = 1.25, and threshold on |grad| is 18.

5 Conclusions

We proposed a novel single image SR processing
framework aiming at improving the SR effect and
reducing SR time consumption in this paper. The
proposed algorithm mainly consists of blind blur

kernel estimation and SR recovery. The former
is based on the idea of minimizing dissimilarity
of cross-scale image patches, which leads us to
obtain kernel update formula by quantitating cross-
scale patch dissimilarity and directly minimizing it
according to least square method. The reduction
of SR time mainly relies on an ASM process
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(a) Blurred input and ground-truth kernel (b) Non-blind Zeyde et al. ([32]) (c) Non-blind A+ ANR ([27])

(d) Non-blind SRCNN ([31]) (e) Non-blind JOR ([33]) (f) NBS ([11]+[25])

(g) SAR-NBS ([34]) (h) Zhao et al. ([13]+[16]) (i) The proposed method

Fig. 6 Visual comparisons of SR recovery with low-quality “high-street” image from Set2 (×3). The ground-truth kernel is a 13×13 motion
kernel with len = 5 and theta = 45, and threshold on |grad| is 24.

with LR/HR dictionaries trained by ILS-DLA
algorithms a selective patch processing strategy
measured by |grad|. Therefore, the SR effect is
mainly guaranteed by improving the quality of
training samples and the efficiency of SR recovery
is mainly guaranteed by anchored space mapping
and selective patch processing. They ensure the
improvement of time performance via reducing
the number of query patches and translating L1
norm constrained optimization problem into L2
norm constrained anchor mapping process. Under
the equal conditions, all above-mentioned processes
make our SR algorithm achieve better results
than several outstanding blind and non-blind SR
approaches proposed previously with a much higher
speed.
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