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Abstract Multilayer elastomeric isolation can be consid-

ered a well-known solution with many applications in the

last 20 years in the infrastructure arena. In particular, iso-

lation has been extensively applied for pier and abutment

protection, in order to strengthen bridges against earth-

quakes. Elastomeric bearings can be subjected to large

axial loads and lateral displacements during strong earth-

quakes, which induce potentially buckling effects. The

recent Forcellini and Kelly (J Eng Mech 140(6):04014036,

2014) model allows to take into account large deformation

response of a bearing when buckling occurs. This paper

aims at verifying this theory using experimental results and

numerical simulations. First of all, test results are taken

from Nagarajaiah and Ferrell (J Struct Eng 125:946–954,

1999) and compared with the developed theory. Then,

numerical simulations have been performed by applying

OpenSees.

Keywords Elastomeric bearings � Bridges � Isolation �
OpenSees � Buckling

Introduction

Past earthquakes all over the world have shown that the

piers are the most sensitive parts of a bridge and their

damage can be responsible for the collapse of the bridge

spans. Therefore, pier protection should be considered as

one of the most important goals for bridge protection and

strengthening against earthquakes. As shown by Makris

and Zhang [19] and Morgan and Mahin [21], seismic iso-

lation is conceivably one of the most promising alternatives

especially in post-earthquake rehabilitation. Several studies

by Vlassis and Spyrakos [28] and Tongaonkar and Jangid

[26] show the benefic effects of the isolation technique on

bridge safety and design costs. Other studies by Ucak and

Tsopelas [27] and Forcellini [10], analyzed the importance

of considering non-linear hysteretic behaviors for the iso-

lation systems.

This paper aims at modelling multilayered elastomeric

bearings, widely used in civil engineering as seismic iso-

lators for bridges. Generally, the bearings are used in the

case of compression and somewhere in presence of shear

force. Therefore, it is necessary to have an accurate

knowledge of the behavior of such devices under these

kinds of load conditions. In this regard, buckling has been

widely investigated with experimental tests, such as

[1–7, 15, 16, 24, 31] and numerical simulations

[22, 25, 29, 30, 32].

Recently Forcellini and Kelly [12] described the buck-

ling phenomenon extending the original two-spring model

of the bearing, developed by Kelly [13] and [17] to large

deformations. The model is used to illustrate the influence

of large deformations on the interaction between horizontal

and vertical loads and assessing the post-buckling behavior

of these bearings. In particular, the previous study was

conducted with the aim to extend the original linear theory

of multilayered elastomeric bearings by replacing the dif-

ferential equations by the algebraic ones. The model has

been recently performed in order to study some applica-

tions [10].

This paper aims firstly at comparing several test results

with the developed theory. In particular, results (under

compression and shear loads) from Nagarajaiah and Ferrell
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1 Università di San Marino, Via Salita alla Rocca 44,

Montegiardino, San Marino

123

Innov. Infrastruct. Solut. (2016) 1:45

DOI 10.1007/s41062-016-0045-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s41062-016-0045-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41062-016-0045-4&amp;domain=pdf


[22] were considered and compared with the theoretical

approach. In this regard, the actual state of mechanical

computations, allows investigating high non-linear behav-

iors with sophisticated numerical tools.

The paper aims at calibrating a 3D finite element (FE)

model able to reproduce elastomeric bearings complex

behavior. In particular, OpenSees (Open System for

Earthquake Engineering simulations) by the Pacific

Earthquake Engineering Research (PEER) center has been

applied here in order to reproduce elastomeric bearings’

three-dimensional behavior. The finite element (FE) model

has been reproduced with a layered system able to repre-

sent the alternating steel and rubber layers and the bolted

connections. OpenSees is able to simulate realistic lateral

boundaries built up by assuming shear beam conditions in

order to reproduce the shear effect between the two

materials. During lab tests, non-linear behaviors have been

registered, as shown by Nagarajaiah and Ferrell [22]. In

order to take into account such behavior, calibrated finite

element models can be used as powerful tools.

Theoretical model

The two-spring model (shown in Fig. 1) consists of two

rigid elements in the shape of tees, connected by moment

springs across hinges at the top and bottom and by shear

springs and frictionless rollers at midheight [12]. The

deformation variables shown are the shear displacement

(s), the relative rotation (h) and the horizontal displacement

(v). The vertical load is P while the horizontal load at the

top of the column is F. Following the formulation by

Forcellini and Kelly [12], the kinematic at the top of the

column in terms of horizontal displacement is defined by

Eq. (1), where h is the height of the model. Equilibrium

conditions allow calculating h from Eq. (2). The horizontal

displacement can be evaluated by applying Eq. (3), fixing k
and p and solving for f as a function of the calculated h.

v ¼ h � sin hþ s � cos h ð1Þ
ðp � cos hþ kÞ � p � sin hþ f � cos hð Þ ¼ 0 ð2Þ
v

h
¼ sin hþ 1

k
p � sin hþ f � cos hð Þ ð3Þ

where:

PE ¼ p2 � E � IS
h2

EIS bending stiffnessð Þ ð4Þ

PS ¼ G � As GAS effective shear stiffnessð Þ ð5Þ

p ¼ P
ffiffiffiffiffiffiffiffiffiffiffi

PEPS

p ; f ¼ F
ffiffiffiffiffiffiffiffiffiffiffi

PEPS

p ; k2

¼ PS

PE

usually between 0:001 and 0:05ð Þ ð6Þ

In this paper, the multilayer elastomeric bearing has

been taken from the ones tested by Nagarajaiah and Ferrell

[22] and named 302 (square: width B = 5 in (127 mm),

h = 4.385 in (111.4 mm), shape factor S = 5, 8 rubber

layers (thickness: 0.25 in, 6.35 mm total) and 7 steel shims

(thickness: 0.055 in, 1.397 mm total), as shown in Fig. 2.

The bearing has a rubber cover of 0.125 in. (3.18 mm) and

1 in. (25.4 mm) thick end plates. The axial load was varied:

20 kip (89 kN), 30 kip (133 kN) and 40 kip (188 kN), 50

kip (222 kN). The mechanical characteristics (shear mod-

ulus G and bulk modulus K) of the rubber have been taken

as 1.4 and 2000 MPa, respectively, in according with the

values considered by Nagarajaiah and Ferrell [22]. Table 1

shows the characteristics of the bearings. Figure 3 shows

the shear force–displacement relationship as a function of

axial load, as calculated by the theoretical model. It is

Fig. 1 Two-spring model [12]
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possible to see that the displacements increase linearly with

the lateral shear force. The axial load affects the stiffness

that decreases with increasing axial load.

Lab test model

Shear force–horizontal displacement (F-v curves) from

Nagarajaiah and Ferrell [22] have been here reproduced

and compared first with the theoretical approach and then

with numerical simulations. In particular, the F-v rela-

tionship has been calculated as a function of axial load for

the specific type of bearing (named 302). The axial load

was varied in the study: 20 kip (89 kN), 30 kip (133 kN)

and 40 kip (188 kN), 50 kip (222 kN).

The results show that the force increases with the dis-

placement but after a certain level of deformation, the force

starts decreasing. Secondly, the shear force and horizontal

displacement at which the maximum occurs decrease with

increasing axial load. This non-linear behavior has been

compared with the analytical results predicted by Forcellini

and Kelly [12] in Fig. 4. Several considerations can be

taken. First of all, the theory is able to catch the influence

of the axial load. In particular, when the axial load

increases, the stiffness decrease, as resulted from the tests.

Secondly, in the first part of the curve, the theoretical

approach can predict lab tests with good correspondence.

The comparison generally shows that analytical solu-

tions have a satisfactory agreement with the test results for

small values of force and displacements, at least when the

relationship can be considered linear. After the peak value

is reached, the theory loses its representativeness and is not

able to describe the tested behavior because the structural

parts such as hinges and beams start to register non-linear

behaviors. In order to consider non-linear effects,

Nagarajaiah and Ferrell [22] introduce a formulation to

vary G as a function of the displacement. In particular, this

variation was estimated empirically from the horizontal

tangential stiffness, resulting from quasi-static tests. This

paper, instead, aims at performing the tested behavior, by

applying a highly non-linear software such as OpenSees

(Open System for Earthquake Engineering Simulation) by

Mazzoni et al. [20]. In this regard, the next paragraph

details the finite 3D model applied in the study.

Numerical simulations

This paragraph aims at reproducing lab test responses of

the selected elastomeric bearings with a 3D numerical

model. The finite element model (Fig. 5) was built with

OpenSees [20], by the Pacific Earthquake Engineering

Research (PEER) Center. This platform allows high level

of advanced capabilities for modelling and analyzing non-

linear responses of systems using a wide range of material

models, elements and solution algorithms. The paper

applies the interface named OpenSeesPL (http://soilquake.

net/openseespl/) that was developed at University of Cali-

fornia, San Diego, by Lu et al. [18]. It consists of a

framework originally calibrated for soil analyses. Here it

has been modified by considering a layered bearing instead

of a layered soil.

The adopted 3D (0.127 m 9 0.127 m 9 0.1114 m) FE

mesh is composed of 19,272 brickUP linear isoparametric

8-node elements with 20,202 nodes (Fig. 5). The model base

boundary is set at a depth of 0.1114 m and was considered

with a fixed conditions. Lateral boundaries were set as a

shear type, in order to simulate the typical shear deformation

Fig. 2 Elastomeric bearing

Table 1 Characteristics of the

studied bearing
A [m2] G [MPa] K [MPa] tR [m] S PE

[kN]

PS

[kN]

k2

0.016 1.40 2000 0.0508 5 6000 26.72 0.00445
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Fig. 3 Shear force–displacement curve following Forcellini and

Kelly [12]
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of elastomeric bearings. For all analyses, the Newmark

transient integrator is used (with c = 0.6 and b = 0.3).

Stiffness and mass proportional damping is added with a 2%

equivalent viscous damping at 1 and 6 Hz.

Based on previous studies [11], two materials have been

considered, by applying the defined Pressure Independent

Multiyield model. It consists of a nonlinear hysteretic

material, using a Von Mises multi-surface kinematic

plasticity approach together with an associate flow rule

[23]. It allows controlling the magnitude of permanent

shear strain accumulation [33]. Non-linear shear stress-

strain backbone curve is represented by a hyperbolic rela-

tion, which is defined by low-strain shear modulus and

ultimate shear strength constants.

The performed analysis aims at reproducing the test condi-

tions under which the elastomeric bearings have been originally

tested. In this regards, pushover analyses (displacement-based

method) were performed. In particular, final displacements have

been assigned at the top nodes. All the nodes at the top level were

tied together in order to represent a rigid plate and thus they move

at the same quantity as thefinaldisplacement.Thecorresponding

stress and strain in the various layers have been calculated and

the resultant forces deduced directly from the interface.

Numerical simulations were performed in two steps. In

the first, both materials (rubber and steel) have been

assumed linear. In the second, steel has been still consid-

ered linear while rubber has been modelled with different

non-linear assumptions detailed in 4.2.

Step 1 (linear model)

The first step consists in performing the model with linear

assumptions in order to reproduce the theoretical results

from Forcellini and Kelly [12]. Table 2 details the char-

acteristics for the rubber and the steel shims (in terms of

shear modulus, G and bulk modulus K). The values for the

rubber have been taken from those proposed by Nagara-

jaiah and Ferrell [22]. Figure 6 shows the backbone (linear)

curves considered for the rubber and steel, respectively.

Figure 7 shows shear strain in correspondence with the

rubber and the steel layer. It is possible to verify that the

deformations are concentrated in the rubber, as expected.

The entity of such deformation corresponds to the ratio

between the applied longitudinal displacement and the

height of the rubber (tR in Table 1). This means that the

model is able to represent the imposed deformations.
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Fig. 4 Comparison between test results from Nagarajaiah and Ferrell [22] and theoretical results predicted by Forcellini and Kelly [12]
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Longitudinal displacements are shown in Fig. 7 and they

show a shear-type behavior, as expected.

Figure 8 shows that elastic assumptions allow obtaining

results that are close to the theoretical approach. Therefore,

theoretical formulation in terms of large deformation is

able to represent correctly the behavior (such as shear

deformations) when linear assumptions are made. On the

other side, these numerical simulations (with linear

assumptions) cannot represent the non-linear behavior that

resulted from the tests (Table 2).

Step 2 (non-linear model)

In the second step, the material named Pressure Indepen-

dent Multiyield [20] has been calibrated in order to rep-

resent the non-linear behavior described during lab tests. In

particular, steel material has been maintained with the

same characteristics of the first step. Rubber has been

modelled as a non-linear hysteretic material with a Von

Mises multi-surface kinematic plasticity model. In this

regard, focus is on reproduction of the hysteretic elasto-

plastic shear response (including permanent deformations).

In this material, plasticity is exhibited only in the deviatoric

stress-strain response. The volumetric stress-strain

response is linear-elastic and independent of the deviatoric

response. Plasticity is formulated based on the multi-sur-

face (nested surfaces) concept, with an associative flow

rule. The non-linear shear stress-strain backbone curve is

represented by the hyperbolic relation, defined by two

material constants (low-strain shear modulus and ultimate

shear strength).

The parameters adopted for the rubber were calibrated in

order to take into account the decreasing of the shear forces

with the increasing of the displacements. As it was built up,

the material is able to catch the non-linear increase of force

but not the degradation after the peak value. In particular,

the peak value has been defined as the tension after which

cavitation is supposed to start. This level of stress was set

equal to 3G and maintained constant. Table 3 shows the

values that have been calibrated. In particular, C is the

shear stress peak value that is reached in correspondence

with the shear strain named p. n is the number of yield

surfaces considered. Figure 9 shows the theoretical Von

Mises multi-surface in principal stress space and the shear

stress-strain backbone curve adopted for the rubber.

Figure 10 shows the shear force–displacement curves

obtained from the numerical simulations. First of all, it is

Fig. 5 3D FEM model
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Fig. 6 Backbone curve—step 1 [rubber (a), steel (b)]
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possible to see that the curves decrease with increasing

axial load, as shown by Nagarajaiah and Ferrell [22].

Secondly, numerical simulations are not able to perform

the degradation after the peak, even if OpenSees takes into

account non-linear effects such as large displacements and

p-delta effects.

Table 2 Characteristics of the material (step 1)

Grub [MPa] Krub[MPa] Gsteel [MPa] Ksteel [MPa]

1.40 2000 8.04 9 104 1.74 9 104

Fig. 7 Output. a shear strain (last step) and b displacements (last step, scale 1:1)
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Fig. 8 Shear force–displacement curve (linear model)

Table 3 Characteristics of the material (step 2)

Grub [MPa] Krub[MPa] C [MPa] p [%] n

1.40 2000 4.20 0.01 20
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Discussion

Figure 11 shows the comparison between the shear force–

displacement curves obtained by Nagarajaiah and Ferrell

[22], the theoretical approach from Forcellini and Kelly

[12] and OpenSees simulations with the two steps (linear

and non-linear) at various axial loads: 20 kip (89 kN), 30

kip (133 kN) and 40 kip (188 kN), 50 kip (222 kN). In

particular, numerical results show that the material is able

to catch the non-linear increase. Therefore, the parameters

with the numerical simulations built up, are shown to be

correctly assumed. However, the performed behavior is not

able to represent what happens after the peak value.

OpenSees is able to model many non-linear effects such as

large displacements and p-delta effects, but it cannot

properly represent the degradation after the peak. This

behavior is presumably due to some phenomenon (such as

cavitation) that is not described by either the theoretical

approach of large displacements or the OpenSees non-

linearities.

Further development

The stress level registered during the tests is close to the

level at which cavitation is supposed to occur. In particular,

cavitation consists of microvoid formations and causes the

loss of experimentally observed stiffness when rubber is

subjected to hydrostatic tension or dilatant stress [8]. The

authors show that cavitation damage can be associated with

a significant variation of the bulk modulus K. In this

regard, the theoretical approach has to be developed by

introducing a more sophisticated definition that can take

into account this variation (actually, K has been considered

constant). In addition, Dorfmann and Burtscher [8] have

shown that cavitation depends on the dilatational part of the

energy density functional. Dorfmann et al. [9] proposed a

formulation based on a pseudo-elastic model that can be

applied to finite element simulations. In this regard, Kumar

et al. [14] have investigated cavitation with numerical

investigations by implementing the proposed mathematical

model inside OpenSees as two new elements. In particular,
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the next step will be to perform 3D numerical simulations

by applying a material that will allow considering cavita-

tion. This model will be compared with the elements

already implemented by Kumar et al. [14].

Conclusions

This paper performs a comparison between the theoretical

approach proposed by Forcellini and Kelly [12], experi-

mental results from Nagarajaiah and Ferrell [22] and

numerical simulations of an elastomeric bearing. The shear

force–horizontal displacement, F-v curves have been here

reproduced as a function of axial load that has been varied:

20 kip (89 kN), 30 kip (133 kN) and 40 kip (188 kN), 50

kip (222 kN). Several steps have been followed.

The theory based on large displacement assumptions has

been compared with the lab tests. The comparison shows a

good agreement in the first part of the curves where levels of

shear load and displacements are small (and linear assump-

tions can be considered). In particular, it was shown that the

effects of the axial load have been performed properly by

both the analytical solution and numerical simulations.

Then, a 3D finite element model has been modelled by

applying the interface OpenSeesPL. In particular, a selec-

ted device has been modelled. Two subsequent assump-

tions for the material have been considered. First, both

materials (rubber and steel) have been considered linear.

Then, rubber material has been modelled with a highly

hysteretic material, with a Von Mises multi-surface kine-

matic plasticity model (named Pressure Independent

Multiyield).

The comparison between the various results confirms

that numerical results have satisfactory agreement with

the test results and analytical solution. In this regard, the

study does not take into consideration the cavitation

phenomenon that can be the most credited cause for the

degradation of shear stress. Future work will improve the

model in order to take into account cavitation, aiming to

be more representative and catch the decreasing part of

the curve.
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