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Abstract Effective management of operating room
resources relies on accurate predictions of surgical case dura-
tions. This prediction problem is known to be particularly
difficult in pediatric hospitals due to the extreme variation
in pediatric patient populations. We pursue two supervised
learning approaches: (1) We directly predict the surgical
case durations using features derived from electronic medical
records and from hospital operational information. For this
regression problem, we propose a novel metric for measuring
accuracy of predictions which captures key issues relevant
to hospital operations. We evaluate several prediction mod-
els; some are automated (they do not require input from
surgeons) while others are semi-automated (they do require
input from surgeons). We see that many of our automated
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methods generally outperform currently used algorithms and
our semi-automated methods can outperform surgeons by a
substantial margin. (2) We consider a classification problem
in which each prediction provided by a surgeon is predicted
to be correct, an overestimate, or an underestimate. This clas-
sification mechanism builds on the metric mentioned above
and could potentially be useful for detecting human errors.
Both supervised learning approaches give insights into the
feature engineering process while creating the basis for deci-
sion support tools.

Keywords Supervised learning - Predictive modeling -
Pediatric surgery - Surgical scheduling

1 Introduction

Operating rooms are a critical hospital resource that must
be managed effectively in order to deliver high-quality care
at a reasonable cost. Because of the expensive equipment
and highly trained staff, operating rooms are very expen-
sive with the average cost of operating room time in the
US being roughly $4000 per hour [18,26]. In addition, mis-
managed operating rooms lead to cancelled surgeries with
each cancellation decreasing revenue by roughly $1500 per
hour [11,12,19]. The management process is complicated
and must account for heterogeneity of patient needs, uncer-
tainty in patient recovery times, and uncertainty in surgical
durations. In this paper, we aim to design statistical models
that can be used to improve the accuracy of predictions of sur-
gical durations. The motivating idea is that better predictions
enable better operational decisions.

Specifically, we consider the problem of predicting pedi-
atric surgical durations. Currently, many pediatric hospitals
rely on surgeons to provide predictions and this alone
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increases costs. Not only is a surgeon’s individual time
expensive, a surgeon may depend on the help of their staff
to make the predictions. Each of these contributions may
seem insignificant on its own, but these man-hours add up
to increased costs. Consequently, although our primary goal
is to increase prediction accuracy, automating the prediction
process even without increasing accuracy can help reduce
costs and improve efficiency.

A major reason that pediatric hospitals rely on surgeons’
medical expertise is that accurately predicting pediatric sur-
gical case lengths is a very difficult problem. It is considered
to be a more difficult problem than predicting adult surgi-
cal durations because compared to patient populations at
adult hospitals, patient populations at pediatric hospitals are
characterized by extreme variation in patient age, size, and
developmental level. This has been discussed in the aca-
demic medical literature for specific procedures [27] and is
also supported by anecdotal evidence at Lucile Packard Chil-
dren’s Hospital (LPCH) Stanford. Although we use data from
LPCH, our goal is to design models that apply to all pediatric
hospitals. In particular, none of the features used by our mod-
els are specific to LPCH. Moreover, even though we consider
amultitude of different procedure types, we only use features
that are relevant to all kinds of surgical procedures. In this
sense, we aim to provide a “one-size-fits-most” solution that
is broadly applicable to pediatric hospitals regardless of size
or case load profile.

Given this broad motivation, there are several papers
on the topic of predicting surgical durations. However, the
majority are focused on adult patient populations (e.g. [29,
31,34]) with pediatric populations only being of very recent
interest, e.g. [4, 16]. In addition, many of these studies rely on
simple methods like linear regression [16,29,31,34]; regres-
sion trees are the most “modern” technique considered in the
literature [4]. For adult surgeries, researchers typically see
“modest improvements in accuracy” [34] over human experts
(e.g. surgeons and nurses). In contrast, for pediatric surgeries,
the difficulty of the problem leads to negative conclusions
with [4] reporting that “none of the variables previously asso-
ciated with case time in adults were generally correlated with
case time in our pediatric population.” These papers demon-
strate that compared to predicting adult surgical durations,
predicting pediatric surgical durations is still a difficult open
problem.

In light of the difficulty of the problem, rather than
attempting to build a predictive model that fully replaces
predictions provided by medical staff, there is also value in
building a model that can provide guidance to human experts.
Decision support tools can take many forms [20] and so we
focus on the following specific problem: Given an expert
prediction, can we reliably identify overestimates and under-
estimates? This classification problem is a “meta-prediction”
problem in the sense that it makes a prediction about a pre-
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diction. Since the goal is to detect inaccurate predictions,
we will refer to this as the detection problem and the orig-
inal regression problem as the prediction problem. Though
clearly related to the prediction problem, the detection prob-
lem is distinct and to our knowledge not previously studied
in the academic literature.!

The remainder of our paper is organized as follows. In
Sect. 2, we discuss how surgical duration predictions are
made and used at LPCH. We also discuss current research on
predictive models for pediatric surgical durations. In Sect. 3,
we motivate and define a performance metric for prediction
accuracy that models operational concerns in a hospital set-
ting. This metric motivates a nonlinear data transformation
for addressing the prediction problem and also allows us to
present a concrete formulation of the detection problem. In
Sect. 4, we present some empirical results on the prediction
problem: We define some benchmark prediction methods,
propose our own prediction models, and present a compari-
son. In Sect. 5, we present an empirical characterization of
some models that address the detection problem. We discuss
future avenues of work in Sect. 6 and conclude in Sect. 7.

2 The importance of accurate predictions and the
state of the art

In this section, we provide background into the problems at
hand. First we explain how predictions influence the schedul-
ing of surgical environments at hospitals like LPCH. We then
explain the methods that are currently used to make these
predictions. We discuss the academic literature on the topic.

2.1 The state of practice

Scheduling a surgical procedure can be a very complicated
process for the patient as well as for the hospital. Depending
on the type of procedure, the scheduling process may begin
several weeks before the procedure actually takes place. The
patient and primary physician will coordinate with the appro-
priate surgical service to meet the clinical needs of the patient.
Because patient preferences and hospital policies play a big
role in determining these coarse-grained scheduling deci-
sions, we will not describe them in detail. The most important
feature of the coarse-grained scheduling is that operating
rooms are shared across different surgical services with block
scheduling. This means that a particular surgical service will
have an operating room for a large block of time; at LPCH,
a single block constitutes the entire day. Different block
scheduling strategies can be used, e.g. [35], but regardless
of how blocks are allocated across the week or month, block

! This paper is an extended version of results presented in a conference
publication [36] and an unpublished technical report [21].
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scheduling causes many similar procedures to be scheduled
back-to-back.

The fine-grained scheduling decisions are made in the
days immediately preceding a surgery. The two-step pro-
cess we describe is somewhat specific to LPCH, but similar
systems exist at other pediatric surgical hospitals. The first
step is the prediction: Surgeons (with varying levels of assis-
tance from their administrative staff) will need to predict
the duration of each surgical procedure. The second step is
the scheduling: A group of nurses and physicians use the
predictions to schedule the operating rooms (ORs) and the
Ambulatory Procedure Unit (APU).2

Although the scheduling is done manually rather than by
an optimization algorithm, the nurses and physicians who
make the scheduling decisions have several objectives in
mind. One is to have all procedures completed by the end
of the day; it is possible to run overtime but this is inconve-
nient and incurs additional staffing costs. Another objective
is to have patients released to the recovery units at a regular
rate so that recovery beds are available and the nursing staff
is able to provide care.

The predictions impact all of these objectives and more.
Consider a scenario in which some surgeries finish earlier
than predicted and other surgeries finish later than predicted.
Suddenly there is an unexpected spike in demand for recovery
beds that the nursing staff is unable to accommodate. Patients
will need to wait (in the ORs) for beds, and this delays other
surgeries. If these delays are acute, surgeries will need to be
rescheduled. This operational inefficiency reduces quality of
care for patients and increases costs for the hospital. Patients
whose surgeries have been cancelled may opt to have their
procedures done at other hospitals. Thus, inaccurate predic-
tions not only increase costs but also reduce revenue.

The prediction process is essential to delivering high-
quality care while maintaining efficiency, but the current
prediction methods are somewhat primitive. There are two
competing methods available to most pediatric surgical hos-
pitals. The first is historical averaging which predicts that
the duration of a scheduled surgery is the average (arith-
metic mean) of the past durations recorded of when that
particular surgeon performed that particular procedure. If the
particular surgeon has performed the procedure fewer than a
certain number of times, say five times, then historical aver-
aging will predict with the average across all surgeons’ past
performances. This method does not take into account the
substantial variation in the patients and can be quite inac-
curate. The second method is to rely on expert opinions.
Surgeons (potentially with the assistance of their staff) can
provide an estimate of how much time they need to com-
plete a given procedure. This is the system currently used at
LPCH. Although surgeons have extensive experience, their

2 At LPCH, there are currently seven ORs and two APUs.

predictions are not necessarily accurate. One reason is that
physicians are not using quantitative models so their pre-
dictions are merely “guesstimates.” Another reason is that
physicians may have financial incentives that cause them to
systematically misestimate the surgical durations. For exam-
ple, surgeons do not necessarily bear the overtime costs of
surgeries running past the end of the day. As a result, in an
effort to maximize the number of surgeries scheduled in a
block (and hence maximize their personal compensation),
surgeons may underestimate the amount of time required to
complete a procedure.

Given the inadequacies of both historical averaging and
expert predictions, it is not clear which method is supe-
rior. Not only does this comparison depend on the types of
procedures and the population of patients, it also depends
significantly on the surgical teams. At LPCH, expert predic-
tion is currently used but this might not be the best choice for
other hospitals. As we develop and evaluate our predictive
models, we will need to compare our performance to both of
these existing benchmark practices.

2.2 Literature review

Much of the applied statistics and academic medical liter-
ature on surgical procedure durations focuses on modeling
problems rather than on prediction problems. For example,
in [30] it was shown that lognormal distributions model the
uncertainty of surgical procedure times better than normal
distributions. A consequent line of research explores differ-
ent methods for fitting lognormal distributions, e.g. [22,28].
Although this work does not directly address the prediction
problem and is not focused on pediatrics, it does point out
that surgical times tend to follow heavy-tailed distributions.
This insight is valuable when designing predictive models
and is discussed more in Sect. 3.

The literature on predictive modeling for pediatric surg-
eries is somewhat sparse. In the management science liter-
ature, LPCH has been previously used as a case study [16].
This previous work at LPCH focused on using features
related to staff experience. The resulting linear model
decreased the mean absolute error by 1.98 4+ 0.28 min; an
amount with limited practical significance. In the pediatric
medical literature, the most relevant paper is based on data
from Boston Children’s Hospital [4]. This work identifies
improving predictions of pediatric surgical durations® as a

3 We note that in [4], surgical durations are measured from “wheels in”
to “wheels out,” i.e. patient entry to the OR to patient exit from the OR.
In our work, we focus on predicting the time from when the surgeon
enters the OR to when the surgeon exits the OR. Although slightly
different, we note that the dominant source of variability is the surgery.
At LPCH, surgeons are asked to predict the amount of time they spend
in the OR and this allows us to directly compare our methods to expert
predictions.

@ Springer



38

Int J Data Sci Anal (2017) 4:35-52

key avenue of research. However, the paper is pessimistic:
The authors find that “for most procedure types, no useful
predictive factors were identified and, most notably, surgeon
identity was unimportant.” They use surgeon identity, inten-
sive care unit bed request, ASA status (explained in Sect. 4),
patient age, and patient weight as features and conclude that
“until better predictors can be identified, scheduling inaccu-
racy will persist.”

The negative results in [4] demonstrate that building
predictive models for pediatric surgical durations is very dif-
ficult but we must raise some concerns with their statistical
approach. Our primary criticisms are that the authors rely on
a single learning algorithm and that they impose restrictions
on this algorithm in a way that inhibits it’s performance.
Specifically, the authors rely on the CART algorithm [7].
However, the authors opt to learn a separate tree for each
procedure. This essentially forces the tree to split until each
node has only one procedure type and then CART is used
to learn the remainder of the tree. The motivating idea is
that the procedure name is a very important feature but
this model restriction unnecessarily fragments the data. A
related issue is that for many procedures the authors had
only 30 observations, creating training sets of 20 observa-
tions and testing sets of 10 observations. Given these small
sample sizes, the authors restrict the learned trees to have
depths of at most three. Although this model restriction
may be appropriate for procedures with small sample sizes,
for some procedures the authors had hundreds of obser-
vations and with larger sample sizes, deeper trees can be
learned.

We also note that CART is inherently unstable, i.e. the
learned tree is very sensitive to the training data [5]. As
a result, although it is easy to draw conclusions from the
topology of a learned decision tree, it is difficult to have con-
fidence in these conclusions. This is exacerbated by small
sample sizes. Consequently, the conclusions presented in [4]
should be viewed with skepticism.

Despite our concerns with the statistical methodology
of [4], we think that a more fundamental issue is the
modeling methodology. The authors use root-mean-square
error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) as performance met-
rics. Although these metrics are statistically meaningful,
they are not necessarily operationally meaningful. Given
that scheduling decisions are made by human experts, we
feel that performance metrics should be more easily inter-
pretable by physicians and nurses. We address this concern
in the following section by proposing a performance metric
that is more tightly related hospital operations. Moreover,
we see that this performance metric naturally leads to
the aforementioned detection problem, a problem formu-
lation that has been completely overlooked other academic
researchers.
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3 Operational and statistical performance metrics

Our study is motivated primarily by operational concerns,
so we focus a performance metric that is operationally
meaningful. Although RMSE and MAE each have a natural
statistical meaning, neither has an obvious operational mean-
ing. For example, it is unlikely that a physician would ask
for the empirical root-mean-square prediction error of a pro-
posed prediction model. On the other hand, consider another
commonly used prediction metric, prediction R?, which is
defined as follows:

Prediction MSE
Variance of the response

ey

The variance of the response variable (i.e. Y) is essentially
the prediction MSE from a model that predicted with the
mean of Y. Hence, prediction R? is the reduction in MSE
relative to a constant model. Prediction R? is a bit more
interpretable than prediction RMSE: A value of 1.0 indicates
perfect prediction while smaller values indicate lower pre-
dictive performance. However, the “gray area” of prediction
R? values below 1.0 is still not easy to connect to operational
impacts. For instance, suppose prediction errors are consis-
tently equal to 5 min and the standard deviation of the surgical
durations is also 5 min. An error of 5 min is unlikely to have
major operational impacts, but the prediction R? could still
be equal to zero. Moreover, it can be difficult to compare the
performance across different procedure types because the
variances for different procedures can differ substantially.

With this in mind, we consider a deceivingly simple ques-
tion posed by a physician: How often is the predictive model
correct? The nuance now is quantifying what it means for
a prediction to be “correct.” Understanding the meaning of
“correct” requires that we explore the operational impact of
an “incorrect” prediction.

In the remainder of this section, we outline some hypothet-
ical outcomes that illustrate how different kinds of prediction
errors impact the hospital. We use these insights to propose
a novel performance metric for the prediction problem. We
also discuss how to leverage existing machine learning imple-
mentations to tailor our models to this performance metric.
In particular, we will see that this performance metric moti-
vates a particular nonlinear transformation of the data. We
also use the insights from these hypotheticals to formulate
the detection problem.

3.1 The operational impact of prediction errors

The predictions are used to set daily schedules; surgeries
will be delayed or cancelled if the outcomes are suffi-
ciently dissimilar from the predictions. Since similar kinds
of procedures tend to be scheduled back-to-back within the



Int J Data Sci Anal (2017) 4:35-52

same block, the threshold at which schedules “break down”
depends on how long the procedures are predicted to take.
We demonstrate this with the following hypotheticals. First
suppose a particular procedure is predicted to take 150 min.
If the procedure actually takes 165 min, then it is reasonable
to say that the prediction was correct—the procedure only
took 10% longer than was predicted and this will not signif-
icantly impact subsequent procedures which are scheduled
for comparable amounts of time. Now suppose a different
procedure in a different block is predicted to take 20 min. If
the procedure actually takes 35 min, then it is not reasonable
to claim that the prediction was correct. Short procedures
are typically scheduled back-to-back and so if the procedure
takes 75% longer than predicted, then this will undoubtedly
cause operational problems. Note that in both cases the out-
come was 15 min longer than the prediction but in one case
the prediction was deemed correct and in the other case the
prediction is incorrect. This demonstrates that the difference
between the outcome and the prediction needs to be less than
some percentage of the prediction in order for the prediction
to be deemed accurate.

However, there are limits to this reasoning. Consider the
same hypotheticals as above. If we have a procedure that is
predicted to take 150 min, then having the outcome be within
10% (15 min) of this predicted time is reasonable. However, if
we consider a procedure that is predicted to take 20 min, then
requiring that the outcome be within 10% (now just 2 min) is
no longer reasonable. Clearly, using a simple percentage is
too restrictive for surgeries that are typically short. Similarly,
using a simple percentage is too lax for surgeries that are
typically quite long.

3.2 The prediction problem

To formalize the insights from these hypotheticals, we first
consider the prediction problem. Consider the model

Y= f(X)+e€ (2

where X is a vector of features describing a particular surgical
case, Y is the amount of time required for the surgeon to
perform this procedure, f(-) is the target function, and € is
noise. We can use a learning procedure to predict ¥ with
Y = f (X) where f (+) is an approximation to f(-). Given
the discussion above, we propose the following metric for
quantifying if this prediction is accurate. We say that the
prediction is accurate (i.e. “correct”) if

Y — Y| < 7(¥) 3)
where
r(?):min {max {p?,m},M}, “4)
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Fig. 1 A depiction of the 7(¥)

p € (0,1),and M > m > 0. We see that r(?) encapsu-
lates the issues raised by our hypothetical examples from the
previous section: T(¥) is essentially a fraction p of Y that is
restricted to being within [m, M]. Consider three examples
with p = 0.2, m = 15 min, and M = 60 min. If ¥ = 50 min,
then we see that pl} = 10 min while r(l?) = 15 min; 20%
of ¥ yields too stringent a threshold so the threshold become
m = 15min. If ¥ = 350 min, then we see that p? = 70 min
while T (? ) = 60 min; 20% of Y yields too lax a threshold so
the threshold become M = 60 min. Finally, if Y = 100 min,
then the threshold is simply pf’ = 10 min. This is depicted
in Fig. 1.

One drawback of this metric is that it is binary and hence
treats all incorrect predictions as equally incorrect. This is
an artifact of our focus on quantifying accuracy rather than
error. Given the critical nature of the patient scheduling, all
inaccurate predictions should be avoided regardless of the
magnitude of inaccuracy. A benefit of this approach is that
we can easily measure accuracy on the unit interval. This is
particularly helpful when presenting results to non-technical
healthcare professionals.

Another drawback of this performance metric is the
induced loss function:

1L, Y = Y| >t(Y)

(YY) = . .
( ) 0,Y =Y <t

&)

The discontinuous nature of the loss function leads to sev-
eral problems. Not only is the loss function non-differentiable
but on the regions where it is differentiable, the derivative is
zero. This makes it difficult to apply gradient-based learn-
ing techniques. Furthermore, because the loss function takes
discrete values, it is not suitable as an information criterion
for building trees: when searching for the best split there
will typically be many splits that maximize the information
gain. Moreover, the discontinuity is sensitive to p, m, and M.

@ Springer



40

Int J Data Sci Anal (2017) 4:35-52

Although we developed 1:()?) [and hence £(Y, I?)] based on
expert input from healthcare professionals, translating these
qualitative insights into precise parameter values is fraught
with difficulties. Methods like the Delphi technique could be
used to translate expert input into parameter values, but such
methods are not always reliable [24].

To alleviate these issues, we would like to “massage” this
loss function into a form that is less sensitive to p, m, and M.
We sketch the idea as follows. Suppose that m is sufficiently
small and M is sufficiently large so that t(¥) = pf’. Then
(Y, 17) = 0 when

Y — Y| <t(¥)=pY. (6)
Dividing by Y gives us that

Y/¥ =1 <p (7
which is equivalent to

l—p<Y/Y <1+p ®)
and taking logarithm shows that this is equivalent to

log(1 = p) < log(¥) —log(¥) < log(1 + p). ©)

If we let €(p) = min{—log(1 — p), log(1 + p)}, then this
shows that

(log(Y) —log(¥))? < e(p)> = £(¥,Y) =0. (10)

So if we aim to minimize (log(Y) — log(?))z, then we will
likely also have £(Y, Y) equal to zero.* Although taking the
logarithm of Y is not quite the same as estimating log(Y),
this sketch suggests that given our operational performance
metric, it is reasonable to perform the prediction in log-space
under mean-square loss. Specifically, if we let Z = log(Y),
then we can use the model

Z=gX)+n (12)

where g(-) is the target function and 7 is the error. We can
then learn g(-) to get Z = g(X). We can then use exp(Z) as
a prediction for Y.

4 Technical note: One might think that because the logarithm is contin-
uous, we can find some §(p) > 0 such that

Y — Y| <8(p) = |log(Y) —log(Y)| < e(p) (11)

which would suggest that minimizing (Y — ¥)2 will also likely give
us £(Y, ¥ ) = 0. However, no such §(p) exists that is independent of
both ¥ and Y. This is because x — log(x) is not uniformly continu-
ous on (0, 00). See [25, Chapter 4] for more details regarding uniform
continuity.
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We note that this sketch merely suggests that using a loga-
rithmic transformation is appropriate, but it does not provide
any guarantees regarding £(-, -). In particular, we see that by
doing the learning in log-space under mean-square loss, we
are not taking into account the asymmetry of the original loss
function. Our sketch suggests that when m is small and M
is large this approach is reasonable but it by no means opti-
mal. Though we sacrifice optimality (with respect to the loss
criterion), there are several practical benefits to this transfor-
mation. As mentioned earlier, a key benefit is that our models
are no longer sensitive to the parameters p, m, and M. These
parameters are necessarily subjective but our model training
procedures are not. Furthermore, by transforming the data
and relying on mean-square loss, we can now apply existing
implementations of a variety of machine learning algorithms.
This is useful not only for research and prototyping but for
eventual deployment as well.

The logarithmic transformation can also be motivated with
more traditional applied statistics methodology. For exam-
ple, consider the histograms in Fig. 2. The original quantity
has a heavy right tail (i.e. a positive skew), but after the log-
arithmic transformation the histogram is fairly symmetric.
This also agrees with the lognormal models discussed in
Sect. 2.2. Although logarithmic transformations are com-
mon, they are not always acceptable; see [14] for some
examples of when logarithmic transformations can actually
introduce skew. However, as noted in [3], for many practical
problems logarithmic transformations can be very useful.

With this discussion in mind, we will train our predic-
tion models in log-space under mean-square loss to learn
2(-). When evaluating a prediction model on a test set
{(X;,7Y i)}fV: |» the average prediction error will be defined as

N
%;E(Yi,e‘é(x"» (13)

and the average prediction accuracy will be defined as

VL)),
i=l

It is important to note that p, m, and M reflect opera-
tional concerns and hence can vary from hospital to hospital.
We are using these parameters to quantitatively answer the
question posed above: How often is the predictive model
correct? Since the term “correct” is necessarily subjective,
there is no “optimal” choice for these parameters. Based on
input from nurses and physicians at LPCH, we have chosen
p = 0.2, m = 15 min, and M = 60 min. Most procedures
are LPCH; the operational management team can typically
adapt to a 20% error in predicted surgical duration. We have
m = 15 min because at LPCH, delays that are less than
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Fig. 2 A demonstration of the effect of a logarithmic transformation
on surgical procedure durations. a A histogram of the durations (in
minutes) of lumbar punctures (with intrathecal chemotherapy). Note
the heavy tail and the positive skew. b A histogram of the natural log-
arithm of durations (in minutes) of lumbar punctures (with intrathecal
chemotherapy). Note that the histogram is fairly symmetric

15 min are generally acceptable. We have M = 60 min
because there are some procedures that take several hours
(e.g. organ transplants) and in these cases a 20% predic-
tion error could be well over an hour and would lead to
delays. These parameter choices are subjective so we will
later explore how sensitive our empirical results are to these
parameters.

We will also empirically evaluate the impact of the log-
arithmic transformation by considering the effect of not
applying the transformation. In this case, the average pre-
diction accuracy is given by

%i(l—ﬁ(&f@ﬁ)))- (15)

i=1

3.3 The detection problem

The loss function proposed above also gives us a natural for-
mulation for the detection problem. Suppose Yisa prediction
provided by a surgeon and Y is the realized outcome. We can
provide a label W that indicates overestimates, underesti-
mates, and correct prediction as follows:

underestimate, Y <Y -— r(f )
overestimate, Y >Y 4+ t(Y)
correct, otherwise

W =

If we have a data set {(X;, Yi)}lN:1 , we can label the observa-
tions so that we have {(X;, W;) }zN=1 . We can use the labels for
the purposes of building a classifier that will detect underes-
timates and overestimates.

There are a variety of ways of comparing different clas-
sifiers. The misclassification rate is an important metric but
because of the different operational impacts of each class,
we also consider the following metrics:

— Forthe “correct” class, we want to know the true negative
rate (TNR) and the negative predictive value (NPV). TNR
gives us an estimate of the probability that an inaccurate
prediction is detected. NPV gives us an estimate of the
probability that a prediction is inaccurate given that it is
classified as such. We want both TNR and NPV to be
high. These two values allow us to assess how well a
classifier can inform decisions regarding with the expert
prediction is correct versus incorrect.

— For the “underestimate” class and the “overestimate”
class, we want to know the rrue positive rate (TPR)
and the positive predictive value (PPV). TPR gives
us an estimate of the probability that an underesti-
mate/overestimate is detected and classified as an under-
estimate/overestimate. PPV gives an estimate of the prob-
ability that a prediction is an underestimate/overestimate
given that it is classified as such. While the previous met-
rics focus on a classifiers performance with respect to
correct predictions, TPR and PPV highlight performance
with respect to underestimates and overestimates.

4 Predicting surgical durations

In this section, we focus on the prediction problem. We
describe two benchmark methods that model the current state
of practice (i.e. historical averaging by surgeon and expert
prediction) and propose several tree-based prediction mod-
els. Some of these models provide an automated prediction:
they use features that are available in electronic records and
they do not require input from surgeons. Other models pro-
vide what we refer to as a “semi-automated” prediction: they

@ Springer
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Table 1 Definition of the
American Society of
Anesthesiologists (ASA)
physical status classification
system as described in [1]

ASA classification

Definition

Examples

ASAT

ASATI

ASA III

ASA TV

ASAV

ASA VI

A normal healthy patient

A patient with mild systemic
disease

A patient with severe systemic
disease

A patient with severe systemic
disease that is a constant
threat to life

A moribund patient who is not
expected to survive without
the operation

A declared brain-dead patient
whose organs are being
removed for donor purposes

Healthy, non-smoking,
no/minimal alcohol use

Smoking, social alcohol
drinker, obesity

Active hepatitis, alcohol
dependence/abuse, morbid
obesity

Ongoing cardiac ischemia or
severe valve dysfunction,
sepsis

A ruptured abdominal/thoracic
aneurysm, massive trauma,
intracranial bleed with mass
effect

use features that are available in electronic records but they
also take advantage of input from surgeons. We causally
divide our data into a training set and a testing set to com-
pare the performance of these models for several pediatric
surgical procedure types. Averaged over all procedures, the
automated ensemble methods outperform expert prediction.
Given the fact that surgeons have extensive medical expertise
and can potentially use a patient’s entire medical record, it
is remarkable that we can achieve this high level of perfor-
mance without relying on complicated features. Augmenting
these ensemble methods with input from surgeons further
improves performance.

4.1 Benchmark prediction methods

As described in Sect. 2.1, there are currently two options for
predicting surgical case durations:

1. Historical averaging If a surgeon is planning on perform-
ing a particular surgical procedure, we take the average
(arithmetic mean) time the surgeon took to perform that
particular procedure in the training set and use this value
as the prediction. In the case that a surgeon has not per-
formed this particular surgery at least five times, we use
the average of all surgeons’ past times as the prediction.
We refer to this prediction method as AVG.

2. Expert predictions A surgeon (perhaps with the assis-
tance of his staff) gives an expert prediction of how long
a surgical procedure will last. This amount of time is
recorded in the data set. Since these are the predictions
that were used to make actual scheduling decisions, we
refer to this prediction method as SCH.
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4.2 Tree-based prediction methods

Given our critique in Sect. 2.2 of the regression tree method
used in [4], we propose three tree-based automated prediction
methods. Motivated by the discussion in Sect. 3, for each of
these methods, we perform the prediction in log-space and
transform the result back to a linear scale by exponentiating.

Each of the proposed models uses the following features:

— Gender of the patient (male vs. female)

— Weight of the patient (in kilograms)

— Age of the patient (in years)

— American Society of Anesthesiologists (ASA) physical
status/score of the patient as described in Table 1°

— Primary surgeon identity

— Location (in an OR vs. in the APU)

— Patient class (in-patient vs. out-patient)

— Procedure name

We did not “mine” our data to choose these features; each of
these features is motivated by our domain knowledge. For
example, the first four features (gender, weight, age, and
ASA score) provide a crude summary of the patient’s clin-
ical state. Although previous studies [4] reported that the
surgeon identity was not useful, conventional wisdom sug-
gests that surgeon identity is useful and so we opt to include
it as a feature. The location and patient classification provide
some basic information about the expected complexity of the
procedure—procedures performed in the APU are typically
shorter and simpler; out-patient procedures also tend to be
less complex.

5 In our data set, there were no patients with ASA VL.



Int J Data Sci Anal (2017) 4:35-52

43

The procedure name has obvious predictive power but is
actually quite nuanced. The procedure display names that are
currently used for operational purposes do not necessarily
fully distinguish different procedures. For example, several
cases in our data set were scheduled with the procedure name
“Radiation Treatment.” This name does not include the type
of radiation treatment (i.e. internal vs. external) or the part
of the body. Current Procedural Terminology (CPT) codes
provide a detailed and standardized way of describing pro-
cedures. Although a set of potential CPT codes is known to
the surgeon ex ante, the particular CPT code used is only
recorded ex poste. Consequently, we rely on the procedure
display name rather than CPT code as a feature.

Each of the proposed models is based on regression trees.
The simplest model is a single decision tree regressor [7],
denoted DTR. We also consider ensembles of trees. In par-
ticular, we use a random forest regressor [6], denoted RFR,
and an ensemble of gradient boosted regression trees [15],
denoted GBR. For each of these methods, we rely on the
implementations provided by the scikit-learn pack-
age [23].° Note that while DTR may seem like the same
method that was used (unsuccessfully) in [4], recall that we
are fitting our trees in log-space and we are also measuring
performance according to an alternative criterion.

DTR, RFR, and GBR each provide an automated predic-
tion method: The aforementioned features are easily pulled
from electronic medical records and can be plugged into the
learned models. However, we can also use these methods
in a semi-automated fashion. In addition to the aforemen-
tioned features, we can also use the prediction provided by
the surgeon as a feature. The idea is that the surgeon can still
provide expert input and the model can use the other features
to adjust the expert prediction. Since the expert prediction
is the output of SCH, we refer to DTR-SCH, RFR-SCH,
and GBR-SCH as DTR, RFR, and GBR with the addi-
tional feature of the expert prediction. The potential benefit
of this approach is improved prediction accuracy, but we
immediately lose the benefits of automation. Another down-
side of this approach is that surgeon behavior may adapt and
the model may need to be more frequently re-trained. This
semi-automated approach is just one way of incorporating
expert information into a statistical model; we discuss other
approaches in Sect. 6.

6 To use these implementations we apply a “one-hot” encoding to
all categorical features. By embedding the categorical variables into
Euclidean space, we implicitly restrict categorical splits but note that
the CART [7] algorithm still does not impose a metric on the feature
space. Other methods (e.g. kernel regression) require a metric which
can be somewhat artificial for categorical features. We discuss this issue
more in Sect. 7.

Each of these methods has a handful of parameters that could be tuned.
Because of our relatively small sample size, we opt to be less aggressive
with parameter tuning and simply use the default settings.

4.3 Prediction results

Our data set includes all surgical procedures performed at
LPCH from May 5, 2014, through January 11, 2016. This
data set includes 4898 unique procedure names, but to avoid
the small sample problems in previous work [4] we consider
only the 10 most common. Although this limits the breadth
of our study, it also focuses our study on procedure types
with the most significant operational impact. We causally
split the data into a training set and a testing set: observa-
tions that precede April 5, 2015, are used for training and the
remaining observations are used for testing. This cutoff was
chosen so that the training and testing sets are roughly equal
in size while having a nontrivial number of observations of
each procedure in both the training set and the testing set.
Our previous work [21,36] used k-fold cross-validation to
evaluate our different methods. This removed the possibil-
ity of concept drift and hence was an optimistic view. By
causally splitting the data, we present a more realistic view
of our proposed models.

Descriptive statistics (of the entire data set) are given in
Table 2. Note that for each procedure (and also overall), the
sample median is less than the sample mean. This is con-
sistent with the discussion above regarding the heavy-tailed
distributions that are typically used to model surgical dura-
tions. This further motivates the logarithmic transformation
used in our predictive models.

We use the testing set to estimate the average prediction
accuracy for each method and also provide a breakdown
based on each procedure name; the results are shown in
Table 3. We use the shorthand Acc(Method 1) to denote
the estimated mean prediction accuracy of Method 1. When
Acc(Method 2) > Acc(Method 1), we say that Method 2
outperforms Method 1. Overall, we see that

Acc (DTR) < Acc (AVG) = Acc (DTR-SCH)
< Acc (SCH) < Acc (RFR)
< Acc (RFR-SCH)
< Acc (GBR) = Acc (GBR-SCH). (16)

Although DTR does not outperform either benchmark, RFR
and GBR both outperform the benchmarks. By includ-
ing expert predictions as a feature to these methods, we
increase prediction accuracy with the semi-automated pre-
diction models DTR-SCH and RFR-SCH outperforming
their automated counterparts. GBR-SCH and GBR have the
same overall performance which suggests that the additional
expert information is not necessary for achieving high pre-
diction accuracy.

Given that GBR and GBR-SCH are the two best per-
forming prediction methods overall, let us now consider how
they compare to AVG and SCH on each individual proce-
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Table 2 Descriptive statistics for each procedure

Sample size (training/testing) Mean Standard deviation Median IQR

Overall 1713 (820/893) 44.13 37.06 31.00 36.00
Lumbar puncture (LP) with 90 (51/39) 38.50 31.16 26.50 24.75

intrathecal chemotherapy
Esophagogastroduedenoscopy 281 (142/139) 47.83 34.80 33.00 49.00

(EGD) diagnostic with biopsy
Tonsillectomy and adenoidectomy 455 (189/266) 30.32 17.55 26.00 15.00
Dental rehabilitation 114 (72/42) 119.04 42.48 115.00 52.75
Laparoscopic appendectomy 146 (74/72) 54.52 15.82 52.00 17.00
Myringotomy with tubes 104 (94/10) 38.96 44.71 21.00 30.50
Adenoidectomy 96 (38/58) 25.78 21.55 20.00 18.50
Bilateral myringotomy with tubes 212 (51/161) 28.33 35.81 16.00 18.25
Colonoscopy with biopsy 112 (62/50) 68.42 27.27 65.00 32.25
Portacath removal 103 (47/56) 30.82 11.40 29.00 11.00
Table 3 Estimated average prediction accuracy (based on accuracy metric discussed in Sect. 3)

AVG SCH DTR RFR GBR DTR-SCH RFR-SCH GBR-SCH

Overall 0.61 0.64 0.58 0.66 0.73 0.61 0.69 0.73
Lumbar puncture (LP) with 0.26 0.67 0.67 0.64 0.62 0.51 0.62 0.64

intrathecal chemotherapy
Esophagogastroduedenoscopy 0.27 0.58 0.42 0.47 0.53 0.55 0.58 0.60

(EGD) diagnostic with biopsy
Tonsillectomy and adenoidectomy 0.86 0.71 0.67 0.81 0.86 0.66 0.80 0.83
Dental rehabilitation 0.38 0.36 0.36 0.36 0.33 0.33 0.29 0.40
Laparoscopic appendectomy 0.75 0.19 0.50 0.60 0.79 0.60 0.57 0.67
Myringotomy with tubes 0.80 0.90 0.30 0.80 0.80 0.60 0.90 0.90
Adenoidectomy 0.76 0.74 0.76 0.84 0.86 0.60 0.81 0.83
Bilateral myringotomy with tubes 0.48 0.81 0.58 0.65 0.78 0.71 0.79 0.86
Colonoscopy with biopsy 0.36 0.42 0.34 0.30 0.50 0.52 0.40 0.44
Portacath removal 0.93 0.79 0.79 0.80 0.93 0.59 0.70 0.77

dure. First note that for each for 9 of the 10 procedures, GBR
outperforms AVG. For the one procedure that AVG outper-
forms GBR, the difference is small (0.05). Moreover, when
GBR outperforms AVG, the difference is often substantial:
For both LPs and EGDs the accuracy of GBR is roughly dou-
ble the accuracy of AVG. Consequently, it seems that GBR
could serve as a useful automated alternative to AVG. Simi-
larly, we see that GBR-SCH outperforms SCH for 8 out of
10 procedures. For the two procedures that SCH outperforms
GBR-SCH, the difference is again quite small (<0.03). As
a result, it seems that GBR-SCH could plausibly be used to
augment expert predictions.

We also note that while SCH outperforms AVG overall
and one might think that an expert would always outperform a
strategy as simple as historical averaging, Table 3 shows that
this is not the case. Laparoscopic appendectomies provide
an extreme example of this: AVG accurately predicts the
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durations more than 3 times as often as SCH. As a more
modest example, we see that AVG also outperforms SCH
for portacath removals. Of course there are procedures for
which SCH drastically outperforms AVG: For EGDs, SCH
is more than twice as accurate as AVG.

Now instead of considering prediction accuracy as defined
in Sect. 3, consider the estimated prediction R? (in linear pre-
diction space) and recall our reasoning for why R? was an
imperfect performance metric. The results in Table 4 demon-
strate why this is the case. Let R*?(Method 1) denote the
estimated prediction R? for Method 1. Overall we see that

R*(DTR) < R*(AVG) < R*(RFR)
< R>(DTR-SCH) < R*(GBR)
< R*(SCH)

< R’>(RFR-SCH) < R?>(GBR-SCH). (17)
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Table 4 Estimated prediction R>

AVG SCH DTR RFR GBR DTR-SCH RFR-SCH GBR-SCH

Overall 0.34 0.46 0.28 0.38 0.44 0.42 0.57 0.61
Lumbar puncture (LP) with —0.05 0.33 —0.01 0.09 —0.09 0.03 0.25 0.34

intrathecal chemotherapy
Esophagogastroduedenoscopy —0.04 0.42 —0.62 —0.06 —0.03 0.18 0.38 0.43

(EGD) diagnostic with biopsy
Tonsillectomy and adenoidectomy 0.05 0.17 —0.30 —0.03 0.09 0.17 0.38 0.34
Dental rehabilitation 0.04 —0.35 —0.58 —0.41 —0.14 —0.39 —0.14 0.06
Laparoscopic appendectomy —0.03 —7.20 —1.98 —0.50 0.00 —1.91 —1.39 —0.90
Myringotomy with tubes —0.06 0.89 0.74 0.73 0.81 0.83 0.96 0.96
Adenoidectomy —0.01 0.49 0.43 0.01 0.38 0.13 0.53 0.50
Bilateral myringotomy with tubes —0.03 0.78 0.35 0.50 0.50 0.64 0.79 0.77
Colonoscopy with biopsy —0.10 —0.50 —0.30 —0.59 —0.21 —0.53 -0.33 —0.17
Portacath removal —0.30 —1.13 —-1.79 —0.66 —0.06 —9.46 —4.08 —1.58

Qualitatively, this ordering has some similarities with the
ordering for Acc(-): DTR and AVG perform poorly; the
semi-automated methods outperform their automated coun-
terparts; GBR-SCH is the best performing prediction meth-
ods. However, the story becomes less clear when we break-
down the performance by procedure. For example, although
R?*(AVG) > 0, the prediction R> when conditioned on pro-
cedure is negative or close to zero for most procedures. Recall
that prediction R? is defined as

{ Prediction MSE (18)
Variance of the response

Because the variance conditioned on the procedure type can
vary drastically, it is difficult to use R? to compare perfor-
mance per procedure. More importantly, it is not clear what
different values of R? indicate operationally.

Finally, we will consider the impact of the logarithmic
transformation. For each of the six prediction methods, we
use the suffix “-LIN” to denote the corresponding method
without the logarithmic transformation. The results are given
in Tables 5 and 6. First consider the performance using the
performance metric from Sect. 3. If we compare the results
in Table 5 to the results in Table 3, we see that while the
logarithmic transformation generally increases performance
across the board, it is most useful for the automated meth-
ods. As discussed earlier, the logarithmic transformation is
useful not only for addressing the operational metric but also
for handling the skew of the underlying distribution. Our
results show that the expert information used by the semi-
automated methods is equally useful for handling the tail
behavior. Now consider R? as a performance metric. If we
compare Table 6 to Table 4, we see that the logarithmic trans-
formation degrades the performance measured by R”. This
is not surprising since R? corresponds to mean-squared loss.

4.4 Feature importance

Because we are using tree-based methods, we can also use
the mean decrease in risk across splits as a heuristic for rel-
ative feature importance [7]. For each method, this heuristic
provides a non-negative score for each feature with these
scores summing to one (although there are some round-off
errors). The results are shown in Table 7. Note that because
the semi-automated methods have an additional feature, the
relative importance scores of the automated methods should
not be compared directly to the relative importance scores of
the semi-automated methods.

First consider the automated methods. For DTR, RFR,
and GBR, the procedure name, patient weight, and primary
surgeon identity are the most important features. Procedure
name and primary surgeon identity are basic pieces of infor-
mation that have obvious predictive value; indeed, this is
why historical averaging is currently so common. This con-
tradicts the conclusion in [4] that surgeon identity is not a
useful feature.

It may be surprising that patient weight is such an impor-
tant feature, but we offer two explanations. We first note that
age is typically used to indicate developmental status in chil-
dren and weight correlates strongly with age; in our data
the Pearson correlation coefficient between weight and age
is 0.84. This also explains why age does not have as high
an importance score. Secondly, we note that childhood obe-
sity is an increasingly pervasive public-health issue [13] and
obesity is known to lead to complications during surgery [9].
These ideas are supported by Fig. 3 which shows patient
weight as a function of age.” Figure 3 shows a strong cor-

7 It may seem that the oldest patients are too old for a pediatric hos-
pital but it actually common for patients to continue seeing the same
physicians into early adulthood.
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Table 5 Estimated average prediction accuracy (based on accuracy metric discussed in Sect. 3) for each method without the logarithmic transfor-

mation
DTR-LIN RFR-LIN GBR-LIN DTR-SCH-LIN RFR-SCH-LIN GBR-SCH-LIN
Overall 0.56 0.63 0.64 0.62 0.71 0.72
Lumbar puncture (LP) with 0.49 0.56 0.46 0.56 0.62 0.56
intrathecal chemotherapy
Esophagogastroduedenoscopy 0.47 0.40 0.39 0.57 0.60 0.61
(EGD) diagnostic with biopsy
Tonsillectomy and adenoidectomy 0.62 0.75 0.85 0.69 0.81 0.83
Dental rehabilitation 0.40 0.33 0.40 0.36 0.48 0.52
Laparoscopic appendectomy 0.53 0.74 0.81 0.56 0.57 0.64
Myringotomy with tubes 0.80 0.80 0.80 0.70 0.80 0.90
Adenoidectomy 0.69 0.74 0.78 0.72 0.79 0.83
Bilateral myringotomy with tubes 0.58 0.64 0.46 0.73 0.80 0.78
Colonoscopy with biopsy 0.34 0.38 0.44 0.32 0.52 0.42
Portacath removal 0.64 0.73 0.88 0.61 0.71 0.75
Table 6 Estimated prediction R? for each method without the logarithmic transformation
DTR-LIN RFR-LIN GBR-LIN DTR-SCH-LIN RFR-SCH-LIN GBR-SCH-LIN
Overall 0.19 0.42 0.48 0.43 0.60 0.63
Lumbar puncture (LP) with —0.05 0.17 0.09 0.07 0.36 0.42
intrathecal chemotherapy
Esophagogastroduedenoscopy —0.53 —0.06 0.04 0.20 0.42 0.47
(EGD) diagnostic with biopsy
Tonsillectomy and adenoidectomy —0.61 —0.06 0.13 0.24 0.36 0.43
Dental rehabilitation —0.45 —0.11 0.03 —0.53 0.19 0.13
Laparoscopic appendectomy —1.10 —0.31 0.07 —1.31 —1.53 —1.06
Myringotomy with tubes 0.87 0.97 0.96 0.89 0.93 0.97
Adenoidectomy —0.60 —0.01 0.17 0.25 0.46 0.51
Bilateral myringotomy with tubes 0.34 0.53 0.50 0.65 0.75 0.75
Colonoscopy with biopsy —0.51 —0.38 0.00 —-0.59 —0.17 —0.07
Portacath removal —3.75 —1.32 —0.75 -9.71 —4.57 —-2.59
ﬁ;’(‘)‘;;niilg?fg:;i‘giiﬁon DTR RFR  GBR  DTRSCH  RFR-SCH  GBR-SCH
models Gender 0.02 0.02 0.00 0.01 0.01 0.00
Weight 0.20 0.18 0.16 0.09 0.08 0.13
Age 0.08 0.08 0.07 0.05 0.04 0.09
ASA score 0.04 0.03 0.03 0.02 0.02 0.03
Primary surgeon 0.18 0.17 0.35 0.09 0.09 0.33
Location 0.02 0.02 0.04 0.02 0.01 0.01
Patient class 0.12 0.12 0.05 0.04 0.04 0.04
Procedure name 0.36 0.37 0.30 0.06 0.07 0.12
Expert prediction N/A N/A N/A 0.63 0.63 0.29

relation between age and weight, but it also shows that the
distribution of weights is positively skewed, particularly for

teenage patients.
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We can also gain insights about the features with low rel-
ative importance. Recall that location and patient class are
included as features because they contain some information
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Fig. 3 Weight versus age. A scatter plot along with the ordinary least
squares regression line

about the complexity of the operation. Although each of these
features has fairly low importance, for RFR and DTR the
combined importance of these features is comparable to the
importance of patient weight. This suggests that location and
patient class are fairly effective proxies for procedure com-
plexity. We see that the patient ASA score has a low relative
importance. We conjecture that this is because information
encoded in the ASA score is better represented by other fea-
tures. In particular, Table 1 shows that obesity is part of the
ASA score, but this information is better represented by the
patient weight. We also see that patient gender has low predic-
tive power. Patient gender is typically not a useful predictor
for surgical times; in fact, patient gender was not used in [4].

Now consider the semi-automated methods. We see that
expert prediction is by far the most important feature to
DTR-SCH and RFR-SCH. However, the next three most
important features for DTR-SCH and RFR-SCH are pro-
cedure name, primary surgeon, and weight. GBR-SCH is
qualitatively different in that expert prediction has roughly
the same importance as primary surgeon identity. Procedure
name and patient weight are the next most important fea-
tures. We note that for all semi-automated methods gender
and ASA score are not very important features.

4.5 Sensitivity to the performance metric

Finally, we make a brief comment regarding the performance
metric. As noted in Sect. 3, the choice of p, m, and M is
inherently subjective and the estimated prediction accuracy
of each method is sensitive to these parameters. In Fig. 4, we
plot the estimated prediction accuracy as p varies with m =
15 and M = 60 fixed. We only concern ourselves with p <
0.5 because prediction errors of more than 50% would never
be considered acceptable in a patient scheduling scenario.

o DTR
090 — —— RFR  —o

—=— GBR

—v— DTR-SCH
RFR-SCH
—— GBR-SCH

—— AVG
—— SCH

0.851
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Estimated Average Prediction Accuracy

0.55

0.50 L— ‘ ‘ ‘ ‘
0.1 0.2 0.3 0.4 0.5
P
Fig. 4 Estimated overall prediction accuracy versus p. We vary p

while holding m = 15 and M = 60

As p increases, the performance requirements become more
lax and the estimated accuracies of all methods increase. We
note the following trends that hold for all p:

— DTR is by far the least accurate method

AVG, DTR-SCH, and SCH perform comparably and all

outperform DTR

RFR outperforms AVG, DTR-SCH, and SCH

— GBR, RFR-SCH, and GBR-SCH perform comparably
and all outperform RFR

This suggests that although the estimated prediction accuracy
depends on the choice of parameters, the general trends that
we have noted should hold for a wide range of parameter
choices.

5 Detecting inaccurate predictions

In this section, we propose several models for detect-
ing inaccurate predictions including one that directly uses
one of the regression models from the previous section.
Each detection model uses the same features as the semi-
automated prediction models. Observations are labeled as
“correct,” “underestimates,” or “overestimates’ according to
the scheme discussed in Sect. 3.

Before we discuss our detection models, we discuss the
labeling scheme. As before we use p = 0.2, m = 15 (min),
and M = 60 (min). In Fig. 5, we see how the overall class
breakdown is affected by the parameter p. We see that when
p = 0.2, roughly 60% of the expert predictions are cor-
rect and as expected this proportion varies monotonically
with p. We also see that when p = 0.2, roughly 10% of
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Fig. 5 Classification labels versus p. We vary p while holding m = 15
and M = 60

predictions are overestimates while roughly 30% are under-
estimates. This is consistent with our previous remark that
surgeons actually have a financial incentive to underestimate
surgical durations.

5.1 Detection methods

As discussed earlier, the detection problem is intimately
related to the prediction problem and so it is natural to lever-
age the semi-automated prediction models. Suppose Yisa
prediction provided by one of the semi-automated prediction
models and Y is the corresponding expert prediction. We can
define the prediction W as follows:

underestimate, ¥ < Y — t(? )
Y>v + 7:(1} )
otherwise

A

W = { overestimate,

correct,

Since GBR-SCH was the best performing semi-automated
prediction method, we will use GBR-SCH to provide Y.
The resulting classification scheme will be referred to as
GBR-SCH-C.

In addition to GBR-SCH-C, we can use the classification
equivalents to the regression methods used above. Hence,
we consider a decision tree classifier (DTC), a random forest
classifier (RFC), and an ensemble of gradient boosted classi-
fication trees (GBC). We train these models with the labeled
datausing the same training set as the semi-automated predic-
tion methods. As before, these tree-based prediction methods
are well-suited to the categorical features. We will discuss
other methods in Sect. 7.
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5.2 Detection results

We now discuss the metrics outlined in Sect. 3: misclassifi-
cation error, true negative rate (TNR) for the “correct” class,
negative predictive value (NPV) for the “correct” class, true
positive rate (TPR) for the “underestimate” class, TPR for the
“overestimate” class, positive predictive value (PPV) for the
“underestimate” class, and PPV for the “overestimate” class.
We note that when the metrics are broken down by proce-
dure, values are reported as Not A Number (NAN) whenever
the denominator of the expression is zero.

The misclassification error for each detection method is
shown in Table 8. Recall from Table 3 that the predictions
are accurate 64% of the time, so we would like the over-
all misclassification error to be no greater than 0.36. DTC
exactly achieves this baseline error while RFC and GBC are
slightly better. GBR-SCH-C has the lowest misclassification
error and is the only method with a misclassification error that
is less than 0.30. Moreover, GBR-SCH-C is the only detec-
tion method that achieves a misclassification error that is at
most 0.50 for each procedure. For each procedure, we see
that either GBR-SCH-C outperforms the other methods or
is comparable to the best method.

The TNR and NPV for the “correct” class are shown in
Table 9. Recall that the TNR for the “correct” class is the
empirical probability that an inaccurate prediction is detected
while the NPV for the “correct” class is the empirical proba-
bility that a prediction is inaccurate given that it is classified
as such. We want both of these values of be high, but given
the class imbalance, this is difficult to do. Overall, we see that
the detection methods with the lower misclassification error
tend to have higher NPVs and lower TNRs. Hence, when the
more accurate methods detect an inaccurate prediction, we
can be confident that the prediction is indeed inaccurate but
when a prediction is not classified as inaccurate, we should
not be confident that it is necessarily accurate.

The TPRs for the “underestimate” and “overestimate”
classes are shown in Table 10. Recall that TPR is the empiri-
cal probability that an underestimate/overestimate is detected
and classified as an underestimate/overestimate. Overall, we
see that all detection methods have fairly low TPR for both
the “underestimate” as well as the “overestimate” class.
However, we see that for laparoscopic appendectomies all
methods have high TPR for the overestimate class—we can
very reliably detect overestimates for this procedure.

The PPVs for the “underestimate” and “overestimate”
classes are shown in Table 11. Recall that PPV is the
empirical probability that a prediction is an underesti-
mate/overestimate given that it is classified as such. Overall
we see that DTC has the lowest PPVs; RFC outperforms
DTC; GBC outperforms RFC; and GBR-SCH-C outper-
forms GBC. We also see that PPV for the “overestimate”
class is generally higher than the PPV for the “underesti-
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Table 8 Misclassification error

DTC RFC GBC GBR-SCH-C
Overall 0.36 0.33 0.30 0.28
Lumbar puncture (LP) with intrathecal chemotherapy 0.36 0.36 0.31 0.31
Esophagogastroduedenoscopy (EGD) diagnostic with biopsy 0.43 0.40 0.40 0.37
Tonsillectomy and adenoidectomy 0.36 0.30 0.28 0.29
Dental rehabilitation 0.62 0.48 0.43 0.45
Laparoscopic appendectomy 0.28 0.35 0.22 0.15
Myringotomy with tubes 0.20 0.20 0.00 0.10
Adenoidectomy 0.31 0.24 0.24 0.24
Bilateral myringotomy with tubes 0.27 0.29 0.20 0.19
Colonoscopy with biopsy 0.48 0.54 0.62 0.50
Portacath removal 0.32 0.23 0.21 0.21

Table 9 True negative rate (TNR) and the negative predictive value (NPV) for the “correct” class

DTC RFC GBC GBR-SCH-C
Overall 0.50, 0.57 0.41, 0.60 0.33,0.74 0.29, 0.84
Lumbar puncture (LP) with intrathecal chemotherapy 0.23, 0.50 0.08, 0.33 0.23, 1.00 0.08, 1.00
Esophagogastroduedenoscopy (EGD) diagnostic with biopsy 0.55,0.59 0.52, 0.64 0.33,0.59 0.24,0.70
Tonsillectomy and adenoidectomy 0.27,0.38 0.14,0.44 0.09, 0.70 0.04, 0.60
Dental rehabilitation 0.52,0.61 0.59, 0.76 0.56, 0.83 0.56, 0.79
Laparoscopic appendectomy 0.79, 0.88 0.81, 0.81 0.78, 0.94 0.84, 0.96
Myringotomy with tubes 1.00, 0.33 0.00, 0.00 1.00, 1.00 0.00, NAN
Adenoidectomy 0.33,0.42 0.20, 0.60 0.07, 1.00 0.07, 1.00
Bilateral myringotomy with tubes 0.26, 0.30 0.26, 0.28 0.03, 0.50 0.06, 0.67
Colonoscopy with biopsy 0.72, 0.64 0.52, 0.56 0.41,0.48 0.24,0.70
Portacath removal 0.67,0.53 0.00, 0.00 0.08, 0.50 0.00, NAN

Table 10 True positive rate (TPR) for the “underestimate” and “overestimate” classes

DTC RFC GBC GBR-SCH-C
Overall 0.28,0.41 0.24,0.38 0.28,0.30 0.31,0.26
Lumbar puncture (LP) with intrathecal chemotherapy 0.50, 0.09 0.00, 0.09 0.00, 0.09 0.00, 0.09
Esophagogastroduedenoscopy (EGD) diagnostic with biopsy 0.10, 0.47 0.05, 0.50 0.10, 0.37 0.05, 0.32
Tonsillectomy and adenoidectomy 0.25,0.21 0.25,0.14 0.50, 0.05 0.25,0.01
Dental rehabilitation 0.50, 0.00 0.55,0.14 0.60, 0.00 0.60, 0.00
Laparoscopic appendectomy 0.32,0.97 0.32,0.97 0.37,0.97 0.58, 0.97
Myringotomy with tubes NAN, 1.00 NAN, 0.00 NAN, 1.00 NAN, 0.00
Adenoidectomy 0.00, 0.36 0.25,0.18 0.25, 0.00 0.25, 0.00
Bilateral myringotomy with tubes 0.00, 0.22 0.00, 0.19 0.00, 0.00 0.25, 0.04
Colonoscopy with biopsy 0.50, 0.61 0.17,0.57 0.00, 0.48 0.00, 0.30
Portacath removal 0.12,0.00 0.00, 0.00 0.00, 0.25 0.00, 0.00

mate” class. In this sense, when a detection method reports 5.3 Feature importance

that a prediction is an “overestimate,” it is more likely to be

correct than when it reports that a prediction is an “underes-  As with the prediction methods, we can discuss the relative
timate.” feature importance for each detection model. The results are
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Table 11 Positive predictive value (PPV) for the “underestimate” and “overestimate” classes

DTC RFC GBC GBR-SCH-C

Overall 0.37,0.45 0.53, 0.50 0.57,0.70 0.63, 0.90
Lumbar puncture (LP) with intrathecal chemotherapy 0.50, 0.25 NAN, 0.33 0.00, 0.50 NAN, 1.00
Esophagogastroduedenoscopy (EGD) diagnostic with biopsy 0.15,0.44 0.33,0.43 0.22, 0.61 0.20, 0.80
Tonsillectomy and adenoidectomy 0.14, 0.31 1.00, 0.42 1.00, 0.50 0.33, 0.50
Dental rehabilitation 0.53, 0.00 0.58, 0.50 0.67, NAN 0.63, NAN
Laparoscopic appendectomy 0.60, 0.90 0.46, 0.84 0.70, 1.00 0.85, 1.00
Myringotomy with tubes NAN, 0.33 NAN, 0.00 NAN, 1.00 NAN, NAN
Adenoidectomy NAN, 0.33 1.00, 0.55 1.00, NAN 1.00, NAN
Bilateral myringotomy with tubes 0.00, 0.24 NAN, 0.17 NAN, 0.00 1.00, 0.50
Colonoscopy with biopsy 0.31, 0.61 0.33,0.54 0.00, 0.46 0.00, 0.78
Portacath removal 0.50, 0.00 NAN, 0.00 NAN, 0.50 NAN, NAN
Table 12 Relative feature importance for the detection models —o— RFC  —=— GBR-SCH-C

05— —— DTC —»— GBC

DTC RFC GBC GBR-SCH-C

Gender 0.03 0.05 0.01 0.00 oal
Weight 0.21 0.21 0.16 0.13 g
Age 012 014 008 009 E
ASA score 0.05 0.04 0.03 0.03 § 031
Primary surgeon 0.20 0.18 0.35 0.33 g
Location 002 003 002 00l £
Patient class 0.03 0.05 0.03 0.04 ?ﬁ;
Procedure name 0.16 0.13 0.08 0.12 %
Expert prediction 0.19 0.18 0.23 0.29 “oaf

0.0 01 0.2 0.3 0.4 0.5

given in Table 12; note that the relative feature importance for
GBR-SCH-C is the same as that for GBR-SCH. In general,
we see that the most important features for all of the methods
are the expert prediction, the procedure name, the primary
surgeon, the patient weight, and the patient age. Based on
the relative feature importance of the prediction models, the
intuition behind these features is clear.

Although all of the detection models heavily rely on these
features, since GBC and GBR-SCH-C outperformed RFC
and DTC, it is interesting to see the differences between
the feature importances. In particular, we see that GBC and
GBR-SCH-C rely more heavily on primary surgeon and the
expert prediction than DTC and RFC. This suggests that
better detection models rely more heavily on idiosyncrasies
of particular surgeons and/or their teams. A downside of this
is that the performance of these detection models may not
be robust to personnel changes in the hospital. On the other
hand, DTC and RFC rely more heavily on patient age and
patient weight. Although these detection models do not per-
form quite as well as GBC and GBR-SCH-C, since they rely
more heavily on patient characteristics, their performance
may be more robust to changes in hospital staff.

@ Springer
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Fig. 6 Misclassification error versus p. We vary p while holding m =
15 and M = 60

5.4 Sensitivity to the performance metric

The labeling scheme outlined in Sect. 3 depends on the
parameters p, m, and M. As a result, these parameters
directly affect the training process for DTC, RFC, and GBC.
In contrast, p, m, and M affected the evaluation of the pre-
diction models but not the training. To demonstrate that our
conclusions are robust to the parameters, we plot the mis-
classification error as a function of p for each detection
method. The results are shown in Fig. 6. We see that for
each p, GBR-SCH-C is typically slightly better than GBC;
GBC outperforms RFC; and RFC generally outperforms
DTC. For the smallest and largest p, this ranking is not pre-
served but we see that the best performing detection method
is always either GBC or GBR-SCH-C while the worst is
always DTC or RFC.
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6 Directions of future work

Our current work suggests some new directions. Although we
chose to focus on tree-based methods because of our cate-
gorical features, there are other nonparametric methods (e.g.
nearest neighbor regression and kernel regression [2] and
support vector machines [10]) that are also worth exploring.
An obstacle for applying these methods is that they rely on
the feature space being endowed with a metric. While we
can heuristically embed categorical features into Euclidean
space with a scheme like one-hot encoding, the resulting met-
ric is not very meaningful. For example, our study considers
both myringotomies and bilateral myringotomies. We would
expect these procedures to be related and hence “closer” than
unrelated procedures, but the Euclidean metric applied to a
one-hot encoded feature space does capture this intuition.
This suggests that metric learning [17] should be applied to
make use of this intuition. Metric learning can often be used
to determine a transformation of the feature space (e.g. [33]),
and studying this transformation can potentially give us addi-
tional insights into the features space. This would allow us
to quantitatively understand what it means for different pro-
cedures (or different surgeons) to be similar.

There are also many other methods of incorporating expert
opinions into our models. We elected to use expert pre-
dictions as a feature for frequentist methods, but Bayesian
methodologies could provide a broader framework for
incorporating expert knowledge from surgeons and nurses.
Bayesian methods can also help us deal with smaller sam-
ples sizes. This can help us broaden the applicability of our
results to procedures that are less common.

In addition to considering different methods, it may also
be useful to consider different features. Our current feature
set is intentionally generic: The features that we consider
can be used at any pediatric hospital and for any procedure,
giving our models broad applicability. However, it may be
worth sacrificing this broad applicability to use more specific
features that yield improved prediction accuracy. For exam-
ple, in teaching hospitals it is known that having a resident
in the OR will lead to longer surgeries [8,32]. For specific
procedures, it may be useful to have more detailed clinical
information about the patient. Feature engineering can be an
open-ended process, but more extensive feature engineering
is likely to improve the predictive power of our models.

7 Conclusions

Motivated by operational problems in hospitals, we have
studied the problem of building prediction models for pedi-
atric surgical case durations. We have proposed a novel
performance metric for prediction in this application. Not
only does this performance metric capture issues relevant to

hospital operations, it also motivates a nonlinear transforma-
tion of the data. We have also proposed a related classification
problem that aims to detect inaccurate expert predictions. We
demonstrate that contrary to the medical literature, our pre-
diction models outperform currently used algorithms and are
often on par with human experts. When we take advantage
of expert opinions, our models can significantly outperform
surgeons. We also present empirical evidence that our detec-
tion models could form the basis for decision support tools
to assist experts when making predictions and scheduling
surgeries. These positive results point to new directions of
research that will ultimately enable automated and semi-
automated prediction methods to be deployed in pediatric
hospitals.
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