
Int J Data Sci Anal (2016) 2:107–117
DOI 10.1007/s41060-016-0014-1

ORIGINAL ARTICLE

Classifying spatial trajectories using representation learning

Yuki Endo1 · Hiroyuki Toda1 · Kyosuke Nishida1 · Jotaro Ikedo1

Received: 29 May 2016 / Accepted: 28 June 2016 / Published online: 12 July 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract This paper addresses the problem of feature
extraction for estimating users’ transportation modes from
their movement trajectories. Previous studies have adopted
supervised learning approaches and used engineers’ skills
to find effective features for accurate estimation. However,
such handcrafted features cannot always work well because
human behaviors are diverse and trajectories include noise
due to measurement error. To compensate for the short-
comings of handcrafted features, we propose a method that
automatically extracts additional features using a deep neural
network (DNN). In order that a DNN can easily handle input
trajectories, our method converts a raw trajectory data struc-
ture into an image data structure while maintaining effective
spatiotemporal information. A classification model is con-
structed in a supervised manner using both of the deep
features and handcrafted features. We demonstrate the effec-
tiveness of the proposedmethod through several experiments
using two real datasets, such as accuracy comparisons with
previous methods and feature visualization.

Keywords Movement trajectory · Representation learning ·
Deep learning · Transportation mode

This paper is an extension version of the PAKDD2016 Long
Presentation paper “Deep Feature Extraction from Trajectories for
Transportation Mode Estimation” [5].

B Yuki Endo
endo.yuki@lab.ntt.co.jp; endo-wop@hotmail.co.jp

1 NTT Service Evolution Laboratories, 1-1 Hikarinooka,
Yokosuka-shi, Kanagawa-ken 239-0847, Japan

1 Introduction

Estimating users’ contexts from their movement trajectories
obtained from devices such as mobile phones with GPS is
crucial for location-based services (e.g., Google Now1 and
Moves2) This paper focuses on a specific aspect of human
movement, the transportation mode of individual users when
they move. The ability to accurately determine the trans-
portationmode onmobile devices will have a positive impact
on many research and industrial fields, such as personalized
navigation routing services [8] and geographic information
retrieval [18]. According to previous studies [23–25], trans-
portation mode estimation involves two steps: extraction of
segments of the same transportation modes and estimation
of transportation modes on each segment (see also Fig. 1a).

In estimating transportationmodes, researchers haveman-
ually discovered effective features for supervised classifica-
tion (e.g., movement distance, velocities, acceleration, and
heading change rate [23–25]) using their skills. While this
heuristic approach is basically important for discriminat-
ing between transportation modes, handcrafted features do
not always work well because human behaviors are diverse,
and movement trajectories also include various aspects.
For example, movement distance and velocity, which are
especially fundamental and effective features, depend on
users’ contexts even when they are using the same trans-
portation mode. Such features are also susceptible to GPS
measurement error which becomes larger especially in urban
environments.

To compensate for the above shortcomings, we utilize
additional features automatically extracted by representation
learning. Deep learning [2,7] is a well-known example of

1 http://www.google.com/landing/now/.
2 https://play.google.com/store/apps/details?id=com.protogeo.moves.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-016-0014-1&domain=pdf
http://orcid.org/0000-0002-7591-4400
http://www.google.com/landing/now/
https://play.google.com/store/apps/details?id=com.protogeo.moves

108 Int J Data Sci Anal (2016) 2:107–117

Fig. 1 Transportation mode estimation and our contributions

this, which learns a deep neural network (DNN) model with
multiple intermediate layers and can automatically extracts
effective higher-level features for tasks from lower-level fea-
tures of input data. Recently, this technique fundamentally
improved performance in some fields including image recog-
nition [9] and speech recognition [4].

The effectiveness of deep features for a task depends on an
input data structure. For example, while raw pixel values are
often used as input of a DNN for image data [7,9], spectro-
grams are calculated from raw signals for audio data so that
a DNN can easily handle them [4]. These approaches cannot
be directly adapted to the locational information which has
a different data structure (a series of latitude, longitude, and
timestamp) from image and audio data. Consequently, how
to apply deep learning to locational information has not been
properly studied.

We propose a method that extracts features from raw GPS
trajectories using deep learning. Our key idea is to represent
GPS trajectories as 2D image data structures (called trajec-
tory images) and use these trajectory images as input of deep
learning. This is based on the knowledge that deep learning
works well in the field of image recognition. For example, a
DNN can detect local semantic attributes of images, such as
skin patterns and tail shapes of animals, as human can under-
stand by looking them. This is because a DNN has a structure
that approximates the operation of the neocortex of a human
brain, which is associated with many cognitive abilities [1].
Our assumption is that a DNN can suitably detect particular
attributes from the trajectory images: Movement trajectories
inherently contain 2D spatial information that is more natu-
rally perceivable for a human brain (i.e., a DNN) rather than
simple latitude, longitude, and timestamp values.

We also propose a supervised framework for transporta-
tion mode estimation, which includes our feature extraction
method from trajectory images. As illustrated in Fig. 1b, the
framework first generates trajectory images from given GPS
trajectory segments. After trajectory images are generated,
higher-level features are extracted using a fully connected

DNNwith stacked denoising autoencoder (SDA) [21], which
is a representative method of deep learning. Intuitively,
higher-level features are obtained by appropriately filtering
trajectory images for picking up discriminative parts of the
images. Finally, transportation modes are estimated using a
classifier that is learned from the higher-level features and
transportation mode annotations.

Our main contributions are summarized as follows:

– We propose a method for generating informative trajec-
tory images for deep learning from raw GPS trajectories
(Sect. 3).

– We propose a supervised framework for trajectory clas-
sification including feature extraction from trajectory
images using deep learning (Sect. 4).

– Extensive evaluations are provided to confirm the effec-
tiveness of our method using two real datasets (Sect. 5).

2 Related work

GPS trajectory mining An overview of trajectory data min-
ing is outlined in a survey [22]. In particular, there have
been many studies on trajectory mining tasks such as user
activity estimation [6,13], transportation mode estimation
[11,14,15,23–25], and movement destination estimation
[17]. Several methods [6,13] use not only GPS trajectories
as features, but also body temperature, heart rate, humidity,
and light intensity obtained from other sensors, and construct
a model for predicting user activities such as walking, run-
ning, cycling, and rowing. While these methods can estimate
various user activities, users need to carrymany devices. Esti-
mating a user’s context with few sensors is ideal to lighten
his/her burden. Therefore, using sensor information other
than GPS trajectories is out of the scope of this paper.

Liao et al. [11], Patterson et al. [14], and Shah et al. [15]
reported on methods for estimating transportation modes,
such as walking, bus, and car, using only GPS trajectories as
sensor data. However, their methods require external infor-
mation including a street map. Static information, such as a
street map, might not be applied to the task because struc-
tures of cities dynamically change over time. We therefore
do not target methods that require external information.

For an approach that does not use external information,
Zheng et al. [25] proposed a method that can estimate trans-
portationmodes using only GPS trajectories. They describe a
method for segmenting GPS trajectories by detecting change
points of transportation modes on the basis of velocity and
acceleration. Transportation modes are then estimated from
features of segments using a classifier. Zheng et al. first
presented basic features such as moving distance, velocity,
and acceleration [23]. They also introduced advanced fea-
tures including velocity change rate (VCR), stop rate (SR),

123

Int J Data Sci Anal (2016) 2:107–117 109

and heading change rate (HCR), which achieved more accu-
rate estimation [24]. While their method uses handcrafted
features, our method tackles the problem of automatically
extracting effective features from trajectory images.
Deep learning One of the major goals of deep learning is to
obtain effective higher-level features from signal-level input
using a DNN. For example, while traditional approaches for
image recognition use handcrafted features such as scale-
invariant feature transform [19], a DNN can automatically
extract effective features from raw image pixels. In fact, it
has been reported supervised learning with deep features can
achieve high recognition accuracy [7].

Although aDNNhas high expressiveness, learning aDNN
model efficiently using conventional approaches is difficult
due to a vanishing gradient problem. Specifically, back-
propagation used to optimize a DNN does not sufficiently
propagate a reconstruction error to deep layers, and the error
vanishes midway through an intermediate layer. To solve
this problem, greedy layer-wise training was proposed [2,7],
and it has allowed the topic of deep learning to gain sig-
nificant attention. This technique pre-trains parameters of
intermediate layers layer by layer in an unsupervised man-
ner before fine-tuning for the entire network. This enables
error information to be efficiently propagated to deep layers
and consequently improved performance in many tasks.

There are several techniques for deep learning such as
deep belief nets (DBN) [7], deepBoltzmannmachine (DBM)
[3], and SDA [21] for pre-training. These and other tech-
niques are outlined in a survey [3] that can be referred to for
more information. In this paper, we adopt fully connected
DNN with SDA for transportation mode estimation for the
first time and demonstrate its effectiveness.

3 Trajectory image generation

There are several difficulties for generating informative tra-
jectory images so that DNNs can discriminate between
transportation modes. First, most of the DNNs must fix the
dimensions of input vectors. That is, input images must be

the same size when the pixel values are directly used as the
input vectors. However, different-sized images are obtained
by simply clipping an entire GPS segment when a spatial
length of one pixel is fixed. The reason is that topographic
ranges of the GPS segments differ, especially depending on
transportationmodes (walking is often narrowwhile a train is
broad). Although one straightforward approach to solve this
problem is to resize different-sized images to the same size,
distance information in a trajectory is lost since each scale
differs. Second, DNNs require sufficient as well as informa-
tive training data to improve its performance. If images are
of high resolution (number of pixels is large), detailed move-
ment can be obtained; however, the trajectory pixels (nonzero
pixels) in the images become sparse, and such sparse images
degrade the generalization capability of a DNN. As a result,
many trajectory images are required in order to overcome this
sparsity problem. If images are of low resolution (number of
pixels is small), the sparsity problem is alleviated, but much
information of GPS points corresponding to the same pixel
is lost.

Based on the above, our trajectory image generation
methodconsists of two steps: (1) determining the target range
of a segment that is converted into a fixed size image and (2)
determining the number and value of pixels of the image. For
the first step,we simply clip a certain area fromeach segment.
To do this, we define a rectangle region for clipping by ranges
of latitude and longitude. Although information outside the
defined region is lost, we verified that this method outper-
forms the resizing method through our experiments because
distance information in a trajectory is preserved. For the sec-
ond step, we use stay time to determine pixel values; i.e., the
longer a user stays in the same pixel (a rectangular region),
the higher the pixel value becomes. This manner can main-
tain temporal information of a segment with a small number
of pixels and thus can alleviate the sparsity problem rather
than using large binary images that maintain the details of
movements.

An overview of trajectory image generation is shown in
Fig. 2, and a specific procedure is described in Algorithm 1.
We first define some terms used in our method. We refer to

Fig. 2 Overview of trajectory image generation

123

110 Int J Data Sci Anal (2016) 2:107–117

Algorithm 1 TrajectoryImageGeneration

Input: Ps = (p(i))
Ns
i=1, T , Wp , Hp , Wm , Hm

Output: Is
Initialize: Is ∈ R

Wm×Hm ← 0
1: P ′

s = SamplingPoints(Ps , T)

2: centerlng ← 1
|P ′

s |
∑|P ′

s |
j=1 p(j).lng

3: centerlat ← 1
|P ′

s |
∑|P ′

s |
j=1 p

(j).lat

4: minlng ← min j p(j).lng
5: minlat ← min j p(j).lat
6: offsetx ← �Wm

2 � − �(centerlng − minlng)
Wm
Wp

�
7: offsety ← � Hm

2 � − �(centerlat − minlat)
Hm
Hp

�
8: FOR j in 1 to |P ′

s | DO
9: x ←

⌊
(p(j).lng − minlng)

Wm
Wp

⌋
+ offsetx

10: y ←
⌊
(p(j).lat − minlat)

Hm
Hp

⌋
+ offsety

11: IF 0 ≤ x < Wm AND 0 ≤ y < Hm THEN
12: Is(x, y) ← Is(x, y) + 1
13: ENDIF
14: ENDFOR

each data point given a positioning system as a GPS point.
Given segment s as input, let Ps = (p(i))

Ns
i=1 be a sequence

of continuous GPS points, where Ns denotes the number
of GPS points in the segment. Let p(i) represent the i-th
GPS point and each GPS point be represented as a three-
tuple p(i) = (lat, lng, t); latitude lat , longitude lng, and
timestamp t . Let Wp and Hp denote ranges of longitude and
latitude for pixelizing trajectories, respectively, whereasWm

and Hm denote width and height of images, respectively. Let
T be a time interval for sampling GPS points from input
GPS trajectories of Ps . Is ∈ R

Wm×Hm denotes a generated
trajectory image that has one-channel value (intensity) per
pixel like a grayscale image.

To extract a trajectory image from a GPS trajectory in a
segment, we first evenly sample GPS points from Ps . The
GPS points in each segment are not always positioned at
a fixed time interval due to differences in GPS sensors and
signal quality. If sequentialGPSpoints positioned at different
time intervals are converted into trajectory images, short time
intervals result in a long stay in one pixel even if a user stays
in the pixel for a short time. We therefore sample GPS points
from Ps at T intervals on the basis of timestamps p(i).t . If
the next GPS point is not obtained after just T , we sample

the nearest time GPS point. As a result, we obtain a sequence
of the sampled GPS points and denote it as P ′

s .
In the next step, the target range of a GPS trajectory in

a segment is determined. For all segments, we compute the
centroid of the sampled GPS points of P ′

s using p(i).lat and
p(i).lng, and then align the centroid with the center of a
trajectory image to unify the basic geographic coordinates.
We define a clipped region as a rectangular area measuring
Wp and Hp. The rectangular area is divided into Wm × Hm

grids, and each grid corresponds to each pixel of the trajec-
tory image. The number of pixels Wm × Hm is searched for
using grid search, and the range of grid search is empiri-
cally determined as explained in the evaluation section. In
Algorithm 1, offsets for aligning the centroid of a GPS tra-
jectory with the center of an image are calculated on the
basis of the centroid and the southwest-most GPS point in a
segment.

Finally, GPS points of P ′
s are then plotted when the

GPS points exist in a defined grid. In fact, as shown in
Algorithm 1, we calculate image coordinates corresponding
to each GPS point using the offsets calculated previously
and then plot GPS points on the images if those points
are in the specified image size. When plotting GPS points,
we add a constant c = 1 to the corresponding pixel to
express the stay time in the pixel. After plotting all GPS
points of P ′

s on the segment s, trajectory image Is is
obtained.

Figure 3 shows several examples of trajectory images
extracted from real GPS trajectories. The intensity of pix-
els indicates a user’s stay time: the brighter the color, the
longer the stay time. These trajectory images show that the
images store distance information by clipping in the same
range and represent time information through the pixel val-
ues. For instance, pixels near the center of thewalking images
become bright since the moving distance of walking is rel-
atively short and the user stays in the same pixels for a
long time. On the other hand, the images of bus and subway
include rectilinear lines that are geographically widespread.
Although there are such easy-to-understand features in the
images, it is time-consuming and difficult to discover all
features and quantify them. We therefore extract effective
features from trajectory images using deep learning in the
next section.

Fig. 3 Examples of trajectory images extracted from real GPS trajectories. Brighter color means longer stay time

123

Int J Data Sci Anal (2016) 2:107–117 111

Fig. 4 Structure of AE. Parameters are learned so that reconstruction
error L(x, z) between input vector x and encoded and decoded vector
z is minimized

4 Deep feature extraction and classification

In order to avoid the vanishing gradient problem, we pre-
train a DNN using SDA [21] in an unsupervised manner
only from trajectory images before fine-tuning the DNN in
a supervised manner. In this section, we first briefly review
basic techniques of SDA, autoencoder (AE) [2], denoising
autoencoder (DAE) [20], and SDA. Finally, we explain the
detailed settings for applying the deep learning algorithm to
trajectory images.
Autoencoder (AE) AE is a feed-forward neural network that
learns identity mapping so that an input vector x is equal
to an encoded and decoded vector z of the input vector
(Fig. 4). Encoding nonlinearly transforms an input vector
x and obtains intermediate representation y as follows:

y = s(Wx + b), (1)

where W ∈ R
nh×nx and b ∈ R

nh are, respectively, the
weighting matrix and bias term that transform vectors in nx -
dimensional space into vectors in nh-dimensional space. The
term s(·) is an activation function such as sigmoid or tanh. In
a similar manner, decoding nonlinearly transforms an inter-
mediate representation as follows:

z = s(W′y + b′), (2)

where W′ ∈ R
nx×nh and b′ ∈ R

nx are, respectively, the
weighting matrix and bias term that transform vectors in nh-
dimensional space into vectors in nx -dimensional space. We
can also use a constraint W′ = WT called tied weights that
has the effect of circumventing over-fitting by reducing the
degrees of freedom of parameters. The weighting matrices
and bias terms are estimated on the basis of a reconstruction
error. If we assume P(x|z) is a Gaussian distribution, the
reconstruction error is defined as the mean squared error:

L(x, z) = ||x − z||2. (3)

Fig. 5 Structure of SDA. Intermediate representations at deepest layer
at current stack of DAEs are used as input for new DAE when new
layer is added. In this example, first intermediate representation x(2) at
second layer is used as input of newly arranged DAE, and weighting
matrixW(2) and bias term b(2) are learned (where lower indices indicate
layer number). Then, y(2) is used as input of DAE at third layer (i.e.,
x(3)). This process is repeated until the number of layers reaches the
given value

If we assume P(x|z) is a binomial distribution, we can use
the cross entropy error as the reconstruction error. In this
paper, we use the mean squared error because our inputs are
real-valued vectors calculated from trajectory images and the
co-domain of each element is not limited.
Denoising autoencoder (DAE) DAE is similar to AE except
for that it adds noise to an input vector, and this enables the
generalization capability of a DNN model to be improved.
Specifically, on the basis of a distribution qD(x̃|x), noise is
added to each element of an input vector, and a corrupted
version of an input vector x̃ is obtained. Parameters are esti-
mated on the basis of the reconstruction error between the
original input vector and a vector obtained by encoding and
decoding noisy input x̃.
Stacked denoising autoencoder (SDA) SDA is composed of
multiple DAEs (Fig. 5) and used to initialize a DNN. For
training with SDA, unsupervised training with DAE is done
in a greedy layer-wise fashion. That is, when a new layer is
added, the intermediate representations at the deepest layer at
a current stack ofDAEs are used as input for a newDAE. This
pre-training helps to avoid the vanishing gradient problem
for a DNN. After pre-training with SDA, we can use features
obtained from the deepest layer of the pre-trained DNN as
input for constructing classification models. To adjust the
parameters of the entire network, fine-tuning is also applied
to the pre-trained DNN with annotation information.

To use trajectory images as input of a fully connected
DNN,we convert trajectory imagematrices Is intoWm×Hm-
dimensional vectors xs by simply aligning each pixel value.
The number of intermediate layers L of the DNN is deter-
mined by grid search as explained in the evaluation section.
We use a sigmoid function s(·) as an activation function of
each layer. To pre-train parameters (weighting matricesW(l)

and bias termsb(l) at each intermediate layer l) ofDNNusing
SDA [21], we use a minibatch L-BFGS method because of

123

112 Int J Data Sci Anal (2016) 2:107–117

its effectiveness for classification problems [10]. After pre-
trainingwith SDA, supervised fine-tuning adjusts parameters
of the entire DNN using annotated labels. For fine-tuning, an
output sigmoid layer is added to theDNN, and parameters are
updated using a stochastic gradient descent (SGD)method on
the basis of the squared error between vectors on the output
layer and binary vectors obtained from annotations. By using
the learned DNN, higher-level features x(L+1) are extracted
from the deepest L intermediate layer of the DNN:

x(l) =
{
s(W(l−1)x(l−1) + b(l−1)) (l > 1);
xs (l = 1).

(4)

These image-based higher-level features are concatenated
with the handcrafted features xe (movement distance, mean
velocity, etc.). Finally, we construct a classifier, such as
logistic regression and support vector machine, using the
concatenated features [xT(L+1), x

T
e]T and annotated trans-

portation mode labels.

5 Evaluation

5.1 Dataset

GeoLife (GL)We used a GeoLife dataset [23–25] published
by Microsoft Research. The GPS trajectories in the dataset
were basically positioned every 1–3s, and 69 users annotated
labels of transportation modes. We removed the data of users
who have only ten annotations or fewer and used the data
of 54 users for our experiments. Each annotation contains
a transportation mode and beginning and end times of the
transportation. In the experiments, we labeled each section
of GPS trajectories between the beginning and end times
with an annotation, and used these sections as a segment of
the same transportation mode. Although there are 11 types
of annotations, we used only seven (walking, bus, car, bike,
taxi, subway, and train), because the other four are in too few
trajectories, and 9043 segments were obtained.
Kanto trajectories (KT) To verify that our method works in
other regions, we used other trajectory data collected in the
Kanto area of Japan. The data contains 30 users’ trajectories
for 20 days obtained from a Nexus7 2012 with a GPS sensor.
The trajectories were basically positioned every 3 s. Each tra-
jectory was annotated with a label of the seven transportation
modes (walking, bike, car, bus, taxi, motorcycle, and train).
In this dataset, we additionally segmented each labeled seg-
ment at three-minute intervals, and 14,019 segments were
obtained. This is because we assume the use of our method
for a real-time application, which estimates transportation
modes from sequential segments for a relatively short time
window.

5.2 Compared methods

Feature extractionmethodsTo evaluate our feature extraction
method, we prepared the following baseline features and our
features:

– Basic Features (BF) [23]: Ten-dimensional features such
as velocity.

– BF + Advanced Features (AF) [24,25]: Thirteen-
dimensional features includingBF and advanced features
(VCR, SR, HCR).

– BoVW (Bag of Visual Words): Image features extracted
from trajectory images using Dense-SIFT [19].

– SDNN: Deep features extracted using a DNN from vec-
tors simply consisting of a series of latitude, longitude,
and movement time at each GPS point.

– IDNN: Deep features extracted using a DNN from tra-
jectory images.

– BF + AF + IDNN: Features consisting of handcrafted
ones (BF + AF) and deep ones of trajectory images
(IDNN).

For SDNN, the dimensions of input vectors are fixed to be
the same number as those of the trajectory images of IDNN.
Since one GPS point consists of three-dimensional compo-
nents (i.e., latitude, longitude, and movement time), when
three times the number of GPS points in a segment is smaller
than the fixed dimensions, the empty element of the vector is
set to 0. When that value is larger than the fixed dimensions,
the newer GPS points are discarded.
Classification methods To build a classifier for estimating
transportation modes, supervised learning is done using the
extracted features and transportation mode annotations. We
compared three classification methods, logistic regression
(LR), support vectormachine (SVM), and decision tree (DT).
The experiment showed that the effectiveness of the classifi-
cation method differs according to the features. For BF and
BF+AF, we used DT in the following experiments since DT
obtains the highest accuracy [23–25]. For BoVW, we used
SVM. For SDNN, IDNN, and BF + AF + IDNN, we used
LR.

5.3 Evaluation method

As an evaluation metric, we use accuracy that is the ratio
of segments of correctly estimated labels out of all seg-
ments.Weusedfivefold cross validation (CV) over users, that
is, each dataset was divided into training segments of 80%
users and test segments of 20% users, while previous stud-
ies [23–25] mentioned nothing about discriminating users.
This is because the training data of the test users are not
often obtained in a realistic scenario. The problem setting
in our study is more difficult than the previous studies. This

123

Int J Data Sci Anal (2016) 2:107–117 113

is because movement features depend on users due to their
habits or environments, but their data cannot be trained, and
we also handle more transportation modes than the previous
studies.

For the GL dataset, we search for model parameters using
grid search based on fivefold CV with training data (i.e.,
nested CV):

– For DT, the splitting criterion is selected from the
Gini coefficient or entropy, and the maximum ratio of
features used for classification is searched for from
{0.1, 0.2, . . . , 1.0}.

– For SVM, the rbf kernel is used, the trade-off parameter is
searched for from {0.01, 0.1, 1, 10, 100}, and the kernel
coefficient is searched for from {0.001, 0.01, 0.1, 1, 10}.

– For trajectory image generation, the interval of sampling
GPS points T is searched for from {10, 30, 60, 120} s,
ranges of longitudeWp and latitude Hp from {0.01, 0.05,
0.1, 0.2}, and the image size Wm × Hm from {20 ×
20, 25 × 25, 30 × 30, 35 × 35, 40 × 40, 50 × 50}.

– For the DNN, the number of intermediate layers L is
searched for from {1, 2, . . . , 5} (often 3 performed best),
the number of each layer’s neurons from {10, 50, 100, 200}
(often 100 performed best). For fine-tuning, the learning
rate is set to 0.1 and the number of epochs is searched for
from {1, 2, . . . , 15}.

For the KT dataset, we empirically set the parameters by
referring to the parameters automatically determined for the
GL dataset.

5.4 Performance of feature extraction

Overall performance Table 1 compares the accuracies of
transportation mode estimation with our features and the
other features. The bold font denotes the condition that
yielded the highest accuracy. In the results for both datasets,
the accuracy of IDNN is modestly higher than those of BF
and BF + AF. This indicates that the features extracted from
trajectory images using deep learning work at least similarly
to the handcrafted features, without complicated features

Table 1 Performance comparison of transportation mode estimation

Features GL dataset KT dataset

BF 0.632 ± 0.025 0.771 ± 0.0040

BF + AF 0.648 ± 0.025 0.780 ± 0.0030

BoVW 0.602 ± 0.044 0.760 ± 0.015

SDNN 0.386 ± 0.014 0.474 ± 0.025

IDNN 0.663 ± 0.029 0.797 ± 0.0060

BF + AF + IDNN 0.679 ± 0.028 0.832 ± 0.0047

designing. IDNN also significantly outperformed BoVW,
that is, deep learning is more effective than the common
image feature extraction approach. In contrast, SDNN does
not work well despite using deep learning. It implies that
simply applying deep learning to almost raw trajectory data
cannot extract effective features for this task. One possible
reason is that raw trajectory data contain values that widely
range in an absolute coordinate system. Finally, it can be seen
that the proposed method with the handcrafted and deep fea-
tures (i.e., BF+AF+ IDNN) achieves the best performance
among all the methods. In other words, our deep features
make up for the deficiencies of the existing features.

Table 2 shows the results of other classification models
in the GL dataset. Notably, the accuracies of LR for IDNN
and BF + AF + IDNN were the highest among the three
classifiers, and the valueswere significantly higher than those
of BF, BF + AF, and BoVW. This demonstrates that fine-
tuning with the output sigmoid layer works well because LR
is based on a logistic sigmoid function. In other words, our
method can appropriately exploit the expressiveness of the
DNN.

Additionally, we analyzed accuracies of individual trans-
portation modes in Fig. 6. As can be seen in the figure, the

Table 2 Performance comparison of transportation mode estimation
with each feature and three classifiers in GL dataset

Features LR SVM DT

BF 0.458 ± 0.017 0.479 ± 0.013 0.632 ± 0.025

BF + AF 0.483 ± 0.021 0.524 ± 0.0088 0.648 ± 0.025

BoVW 0.579 ± 0.0055 0.602 ± 0.044 0.548 ± 0.0087

SDNN 0.386 ± 0.014 0.386 ± 0.014 0.362 ± 0.0096

IDNN 0.663 ± 0.029 0.649 ± 0.0053 0.626 ± 0.0045

BF + AF
+ IDNN

0.679 ± 0.028 0.660 ± 0.0058 0.659 ± 0.0028

Each bold font denotes the condition that yielded the highest accuracy
on each experiment

Fig. 6 Performance comparison on each transportation mode. a Con-
fusion matrix of the previous method (BF + AF). b Confusion matrix
of the proposed method (BF + AF + IDNN)

123

114 Int J Data Sci Anal (2016) 2:107–117

Fig. 7 a Accuracy with
different noisy levels in KT
dataset. b Performance
comparison in GL dataset with
each trajectory image generation
method

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

2 6 10 14 18 22 26 30

A
cc

ur
ac

y
σ (meter)

BF+AF+IDNN
IDNN
BF+AF

(a)

0.40
0.45
0.50
0.55
0.60
0.65
0.70

Proposed
(IDNN)

Resizing No_Staytime

A
cc

ur
ac

y

Method(b)

deep image features (IDNN) improved the performance of
estimating bike, subway, train, and walking. On the other
hand, IDNN did not have significant effect on the accuracies
of private car, bus, and taxi; that is, it was difficult to dis-
criminate between these transportation modes because each
mode is all a sort of automobile. However, IDNN improved
the performance of discriminating between these automo-
biles and the other transportationmodes. For example, IDNN
increased the ratio of the car data that were estimated to one
of these automobiles.

We implemented our method using Python.3 The program
was run on a PC equipped with a 2.66GHZ CPU and 48GB
of memory. As for computational time in our method, train-
ing the DNN and classifier from the datasets took about 30
minutes, whereas estimation of transportation modes from a
segment (including generating a trajectory image) took about
1 s.
Noise robustnessWe also evaluated our method’s robustness
against noise. For this purpose, we generated noisy trajec-
tory data from the KT dataset. While the original dataset
already contains some noise due to measurement error, the
measurement can degenerate even more depending on the
performance of a GPS sensor equipped in a mobile device
and urban environments. For example, the KT dataset has
about a 10-meter error on average according to the measure-
ment accuracy reported from a function of Android OS. This
value seems to be relatively low because we use devices with
a relatively accurate GPS sensor (Nexus 7 2012), but all peo-
ple do not have high-performance devices, and some people
may alsomove in noisier environments. In fact, measurement
accuracy may be worse than 100 meters in actual situations,
while current positioning systems in smartphones are accu-
rate to within 10 meters under ideal conditions [16]. We
therefore evaluated noise robustness by adding some noise to
the relatively clean trajectories in the KT dataset. The mea-
surement is modeled as random Gaussian noise with zero
mean and σ 2 variance [26].

3 We used the scikit-learn library to implement classifiers. http://
scikit-learn.org/stable/.

Figure 7a shows the accuracy with different noisy levels
in the KT dataset. In this experiment, we empirically fixed
the DNN parameters for simplifying the experiment. The
accuracy of BF+AF decreased with increasing noisy levels,
whereas that of IDNN was barely affected by the noise. The
accuracy of BF + AF + IDNN modestly decreased, but it
only reached that of IDNN.This is becauseBF+AFdoes not
work well when the noise level is high, but our DNN-based
method is robust against measurement error.

There are two reasons our method is robust against mea-
surement error. First, noise is reduced in the process of
trajectory image generation. For example, if Wp and Hp are
0.01, the images are generated in the range of about 1000
square meters. When the image size Wm × Hm is 40 × 40,
one pixel represents 25meter square. Therefore, noise of tens
of meters has an insignificant effect on trajectory image gen-
eration. Second, the DNN can automatically detect features
from trajectory images even if the data have some noise. In
particular, the DNN with SDA learns a model to be able to
reconstruct denoised data from noisy data.

5.5 Effectiveness of image generation method

Wenowdiscuss the effectiveness of ourmethod at generating
trajectory images. Our image generation method does not
use the information of the GPS points that are (1) outside of
the defined region and (2) not sampled at T intervals, and
(3) detailed latitude and longitude values (discretization into
pixels).

For the validation of the first point, as shown in Fig. 7b, we
compared the proposedmethod (Proposed), whichmaintains
the scale of trajectories and also stores the stay time in image
pixels, with the following two methods. One method (Resiz-
ing) generates different-sized trajectory images by clipping
an entire region in each segment where a spatial range of one
pixel is fixed to a small constant. It then resizes the different-
sized images to the same size (i.e., Wm × Hm) using the
nearest neighbor method [12]. The stay time information is
stored in the same way as with Proposed. The other method
(No_Staytime) assigns the same constant value to pixels in
which multiple GPS points exist. The scale is maintained

123

http://scikit-learn.org/stable/
http://scikit-learn.org/stable/

Int J Data Sci Anal (2016) 2:107–117 115

Fig. 8 Visualization results on state of activated neurons (weighting matrices) of learned DNN. Two left images show states of activated neurons
on first and second intermediate layers, and seven right images show states of activated neurons strongly responding to data with labels of each
transportation mode

in the same way as with Proposed. Obviously, Proposed
performed best among the three methods, which suggests
effectiveness of maintaining scale and storing stay time with
our method.

Second, we evaluated our method at different sampling
intervals from 10 to 120s. We confirmed that smaller inter-
vals (<60s for the GL dataset) worsened the accuracy via
the grid search (explained in Sect. 5.3). The GPS points in
each segment are not always positioned at a fixed time inter-
val. Therefore, the sampling method, which generates GPS
points at more regular intervals, is effective for accurately
maintaining the stay and velocity information of the trajec-
tories in images, and results in accuracy improvement.

Third, as we mentioned in Sect. 5.4, we confirmed the
discretization into pixels improved the robustness to spatial
noises in GPS trajectories.

We concluded that our image generation method can
extract important information ofGPS trajectories and convert
them into images effectively.

5.6 Feature visualization

We analyzed deep features by visualizing activity states of
neurons on the learned DNN. In Fig. 8, the two left images
show visualization results on states of activated neurons
of each intermediate layer of the DNN. We can see that
each layer acts as filters for extracting characteristic parts of
trajectories such as moving range, moving interval, and dis-
tribution. The features also become more abstract as layers
become deeper. The seven right images visualize the activ-
ity states of neurons that strongly respond to the data with
each transportation mode. While it is difficult to understand
all meanings of them by visualization, we can distinguish
betweenwalking, bike, and bus on the basis of moving range.
Interestingly, we can see that the activity state of bus includes
more dark regions than that of car. This is seemingly because
buses are driven on specific roads unlike cars. These results
verify that activated neurons differ depending on transporta-
tion modes and that deep learning for trajectory images can

0.50
0.55
0.60
0.65
0.70
0.75

1 4 10 30 60 12
0

30
0

A
cc

ur
ac

y

T

Wp x Hp=0.2x0.2
Wm x Hm=40x40

0.50
0.55
0.60
0.65
0.70
0.75

Wp x Hp

T=60
Wm x Hm=40x40

0.50

0.55

0.60

0.65

0.70

0.75

Wm x Hm

T=60
Wp x Hp=0.2x0.2

Fig. 9 Accuracy comparison depending on parameters of trajectory
image generation (sampling interval T , longitude and latitude ranges
Wp × Hp , and images size Wm × Hm)

extract features that effectively distinguish between trans-
portation modes.

5.7 Effect of parameters

Figure 9 compares accuracies for the GL dataset when we
used different parameters of our trajectory image generation
algorithm (sampling interval T , longitude and latitude ranges
Wp × Hp, and images size Wm × Hm). When T = 1, the
stay time was not appropriately detected and the accuracy
was low because the difference in positioning intervals was
not considered. In contrast, modestly increasing T enabled
the difference in positioning intervals to be reduced and the
accuracy to become higher. That is, our approach for sam-
pling GPS points worked well. While too large Wp × Hp

and small Wm × Hm cannot represent detailed movement in
images, opposite parameter settings make trajectories sparse
in images; consequently, the accuracies decrease. These
results show that setting the appropriate parameters can yield
better estimation performance.

Table 3 compares accuracies for the GL dataset when we
used different DNN parameters (number of intermediate lay-
ers, number of neurons on each layer, and corruption rate).
The best performance was obtained when three intermedi-
ate layers and 100 neurons were used. This means that too
many layers and neurons can increase the expressiveness of
models, but cause an over-fitting problem and vice versa. For
the corruption rate, 0.4 is the best because adding moderate

123

116 Int J Data Sci Anal (2016) 2:107–117

Table 3 Results with the various DNN parameters

of layers #of neurons Corr. rate Accuracy

1 100 0.2 0.633 ± 0.068

2 100 0.2 0.652 ± 0.059

3 100 0.2 0.683 ± 0.059

4 100 0.2 0.677 ± 0.058

5 100 0.2 0.680 ± 0.065

3 10 0.2 0.607 ± 0.091

3 50 0.2 0.657 ± 0.067

3 100 0.2 0.683 ± 0.059

3 200 0.2 0.671 ± 0.069

3 100 0.0 0.669 ± 0.057

3 100 0.2 0.683 ± 0.059

3 100 0.4 0.687 ± 0.051

3 100 0.6 0.683 ± 0.053

3 100 0.8 0.673 ± 0.052

Too many layers and neurons can increase the expressiveness of mod-
els, but cause an over-fitting problem and vice versa, and moderate
corruption rate is important to improve the generalization ability of the
model
Each bold font denotes the condition that yielded the highest accuracy
on each experiment

Table 4 Results with and without pre-training

Algorithm Accuracy

Fine-tuning without pre-training 0.624 ± 0.033

Fine-tuning with pre-training 0.679 ± 0.028

Pre-training is important to efficiently optimize model parameters in
deep layers
Each bold font denotes the condition that yielded the highest accuracy
on each experiment

noise to input data improves the generalization ability of the
model.

Table 4 compares accuracies with and without pre-
training. Without pre-training, we used randomly initialized
weighting matrices and bias terms for initialization for fine-
tuning. As can be seen in the table, pre-training with IDNN
greatly improved accuracy without pre-training and played
an important role regarding deep learning.

6 Conclusion

We have proposed a method for extracting features from raw
GPS trajectories for transportation mode estimation using
deep learning. Given raw GPS trajectories, our method gen-
erates trajectory images and automatically extracts features
from them using a fully connected DNN with SDA. From
these features and conventional handcrafted features, trajec-

tories are classified according to transportation modes using
the supervised framework.

We have demonstrated that our method outperformed the
existing methods that use only the handcrafted features. This
is because the DNN can appropriately extract global fea-
tures from trajectory images while it is difficult for existing
approaches to manually discover all features and quantify
them. For example, trajectory images of walking have often
narrow movements, those of bus have broad movements on
regular routes, and those of train have rectilinear movements
on railways. Such global features are not susceptible to GPS
noise, and thus, our method performed better especially in
noisy environment.

We also note that our framework can easily use deep fea-
tures in conjunction with other existing features, and it can
replace the classifier with other classifiers.

While we used a fully connected DNN with SDA, which
is a standard method of deep learning, a convolutional neural
network (CNN) is known as a closely related approach
to deep learning. Although a basic CNN was proposed
before deep learning emerged, a recent approach based on
CNN significantly improved performance of image recogni-
tion [9]. Several learning algorithms for DNNs were also
proposed, such as dropout and maxout. Nevertheless, we
demonstrated that our framework for transportation mode
estimation attained the highest overall performance and sig-
nificant improvement in noisy environment. It is hoped
that our study will become a bridge between the recently
advanced approaches of deep learning and trajectory min-
ing.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning—a
new frontier in artificial intelligence research. IEEE Comput. Int.
Mag. 5(4), 13–18 (2010)

2. Bengio,Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-
wise training of deep networks. In: NIPS, pp. 153–160 (2006)

3. Bengio, Y.: Learning deep architectures for AI. FTML 2(1), 1–127
(2009)

4. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent
pre-trained deep neural networks for large-vocabulary speech
recognition. TASLP 20(1), 30–42 (2012)

5. Endo, Y., Toda, H., Nishida, K., Kawanobe, A.: Deep feature
extraction from trajectories for transportation mode estimation. In:
Proceedings of PAKDD2016, pp. 54–66 (2016)

6. Ermes, M., Parkka, J., Mantyjarvi, J., Korhonen, I.: Detection of
daily activities and sports with wearable sensors in controlled and

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Int J Data Sci Anal (2016) 2:107–117 117

uncontrolled conditions. IEEE Trans. Inf. Technol. Biomed. 12(1),
20–26 (2006)

7. Hinton, G.E., Salakhutdinov, R.: Reducing the dimensionality of
data with neural networks. Science 313(5786), 504–507 (2006)

8. Hung, C.-C., Peng, W.C., Lee, W.C.: Clustering and aggregat-
ing clues of trajectories for mining trajectory patterns and routes.
VLDB J. 24(2), 169–192 (2015)

9. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification
with deep convolutional neural networks. In: NIPS, pp. 1106–1114
(2012)

10. Le, Q.V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Ng, A.Y.:
On optimizationmethods for deep learning. In: ICML, pp. 265–272
(2011)

11. Liao, L., Fox, D., Kautz, H.: Learning and inferring transportation
routines. In: AAAI’04, pp. 348–353 (2004)

12. Parker, J.A., Kenyon, R.V., Troxel, D.: Comparison of interpolating
methods for image resampling. IEEE Trans. Med. Imaging 2(1),
31–39 (1983)

13. Parkka, J., Ermes, M., Korpippa, P., Mantyjarvi, J., Peltola, J.:
Activity classification using realistic data from wearable sensors.
IEEE Trans. Inf. Technol. Biomed. 10(1), 119–128 (2006)

14. Patterson, D., Liao, L., Fox, D., Kautz, H.: Inferring high-level
behavior from low-level sensors. In: UbiComp, pp. 73–89 (2003)

15. Shah, R.C.,Wan, C.-Y., Lu, H., Nachman, L.: Classifying themode
of transportation onmobile phones using GIS information. In: Ubi-
Comp, pp. 225–229 (2014)

16. Shaw, B., Shea, J., Sinha, S., Hogue, A.: Learning to rank for spa-
tiotemporal search. In: WSDM, pp. 717–726 (2013)

17. Song, X., Zhang, Q., Sekimoto, Y., Shibasaki, R.: Prediction of
human emergency behavior and their mobility following large-
scale disaster. In: KDD, pp. 5–14 (2014)

18. Toda, H., Yasuda, N., Matsuura, Y., Kataoka, R.: Geographic
information retrieval to suit immediate surroundings. In: GIS, pp.
452–455 (2009)

19. Vedaldi, A., Fulkerson, B.: Vlfeat: an open and portable library of
computer vision algorithms. In: MM, pp. 1469–1472 (2010)

20. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P. A.: Extracting
and composing robust features with denoising autoencoders. In:
Proceedings of ICML’08, pp. 1096–1103 (2008)

21. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.:
Stacked denoising autoencoders: learning useful representations in
a deep network with a local denoising criterion. JMLR 11, 3371–
3408 (2010)

22. Zheng, Y.: Trajectory data mining: an overview. ACM TIST 6(3),
29 (2015)

23. Zheng, Y., Liu, L.,Wang, L., Xie, X.: Learning transportationmode
from raw GPS data for geographic applications on the web. In:
WWW, pp. 247–256 (2008)

24. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.-Y.: Understanding
Mobility Based on GPS Data. In: Ubicomp, pp. 312–321 (2008)

25. Zheng, Y., Chen, Y., Li, Q., Xie, X., Ma, W.-Y.: Understanding
transportation modes based on GPS data for web applications.
TWEB 4(1), 1–36 (2010)

26. Zheng, Y., Zhou, X. (eds.): Computing with Spatial Trajectories.
Springer, Berlin (2011)

123

	Classifying spatial trajectories using representation learning
	Abstract
	1 Introduction
	2 Related work
	3 Trajectory image generation
	4 Deep feature extraction and classification
	5 Evaluation
	5.1 Dataset
	5.2 Compared methods
	5.3 Evaluation method
	5.4 Performance of feature extraction
	5.5 Effectiveness of image generation method
	5.6 Feature visualization
	5.7 Effect of parameters

	6 Conclusion
	References

