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Abstract In this paper, we consider the problem of fitting
a sparse precision matrix to multivariate Gaussian data. The
zero elements in the precision matrix correspond to condi-
tional independencies between variables. We focus on the
estimation of a class of sparse precision matrix which repre-
sents the scale-free networks. It has been demonstrated that
some of the important networks display features similar to
scale-free graphs. We propose a new log-likelihood formula-
tion, which promotes the sparseness of the precision matrix
as well as the topological structure of scale-free networks. To
optimize this new energy formulation, the alternating direc-
tion method of multipliers form is used with the general
L1-regularized loss optimization. We tested our proposed
method on various databases. Our proposed method exhibits
better estimation performance with various number of sam-
ples, N , and different selection of sparsity parameter, ρ.

Keywords Gaussian networks · Scale-free networks ·
ADMM · Sparse precision matrix

1 Introduction

Undirected graphical models study the relationship between
a set of variables. The Gaussian networks are a way of study
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to extract undirected relationships among the data. In the
Gaussian networks, the variables are assumed to follow the
multivariate Gaussian distribution with mean, μ, and covari-
ance matrix, Σ .

Gaussianmodels aim tofindout the dependencies between
variables. The relationship between variables in these net-
works can be represented using the precision matrix (Ω)
of data sets and a graph in which the nodes and edges
represent the variables and their conditional dependencies,
respectively. The estimation of precision matrices from data
is a problem of many applications and fields such as health,
finance and biology. Zero elements reveal the conditional
independencies of corresponding variables. If the i j th com-
ponent of Ω is zero, then variables i and j are conditionally
independent, given the other variables.

The problem formulation can be summarized as follows:
Let D represent a data set of cases, Z represent a set of
variables, Bs = (Z , E) be a graph representing interac-
tions between components of Z. Bs is any set in all possible
networks, B. If E consists of an edge between these two
variables, Zi and Z j , then these variables are said to be
dependent. The objective is to find the best network which
maximizes P(Bs |D) or P(Bs, D). In another definition, the
aim is to estimate the best network Bs which can be described
as follows:

B∗
s = argmin

Bs
−P(B | D). (1)

P(B|D) is modeled using the Gaussian distribution in the
Gaussian networks. The inverse of the covariance matrix can
be estimated by the log-likelihood estimation with respect to
the covariance matrix as follows:

Ω∗ = argmin
Ω∗ (tr(ΣΩ) − log |Ω|), (2)
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where Ω = Σ−1 is the precision matrix and tr denotes the
trace.

The number of nonzero elements in the precision matrix
and number of edges in the structure are equivalent measures
of complexity. Several methods have been proposed to obtain
the sparse precisionmatrix and tackle the existing challenges.
For instance, Dempster [2] proposed the idea of the precision
matrix estimation. The number of edges in the structure, the
number of parameters and the number of nonzero elements in
the precisionmatrix are equivalentmeasures of complexity in
the Gaussian graphical models [3]. Therefore, many studies
have been focusing on the sparseness of the precision matrix
recently. In the literature, there are various derivations of
the following likelihood formulation to estimate the sparse
precision matrix:

Ω∗ = argmin
Ω∗ (tr(ΣΩ) − log |Ω| + ρ‖Ω‖), (3)

whereΩ = Σ−1 is the precisionmatrix, tr denotes the trace,
ρ > 0 is a scalar parameter which controls the size of the
penalty, hence the sparsity of the solution, ‖Ω‖ is the L1

norm which is the sum of absolute values of Ω .
Meinshausen and Buhlmann [4] proposed a method to

perform edge selection at each node in the graph using the
least absolute shrinkage and selection operator (LASSO)
which was proposed by Tibshirani [5]. They demonstrated
that their estimate is shown to be both more accurate and
computationally much more efficient than the traditional
forward selection maximum-likelihood estimation (MLE)
strategy. The forward MLE estimation has poor accuracy
when the number of nodes in the graph is comparable to
the number of observations. Furthermore, when the number
of observations is remarkably less than the number of nodes,
the empirical covariance Σ is singular so that we cannot
access the required information about interactions between
nodes.

In this context, several algorithms have been proposed
such as Glasso (by Friedman et al. [6]), SPICE (by Roth-
man et al. [7]), SCAD (by Fan et al. [8]), COVSEL (by
Banerjee et al. [9]) and CLIME (by Cai et al. [10]). Fried-
man et al. [6] estimated sparse graphs by a lasso penalty
applied to the precision matrix. They proposed a well-
known algorithm, named as Glasso. They used the blockwise
coordinate descent approach in Banerjee et al. [9] as a
launching point and proposed a new algorithm for the rest
of the problem solution. They started with a given covari-
ance matrix and regenerated data from the given covariance.
The new covariance matrix is estimated from the generated
data. Then for each variable they solved the lasso problem
(minβ{0.5‖Σ1/2

11 β − b‖ + ρ‖β‖1} where b = Σ
−1/2
11 s12,

Σ =
[

Σ11 σ12
σ T
12 σ22

]
, S =

[
S11 s12
sT12 s22

]
) using the blockwise

coordinate descent method. This process produces a p − 1
vector solution β̂ which is used to calculate σ12 = σ11β̂. This
process continues until convergence. They stated that their
algorithm is 30 to 4000 times faster than other competing
methods.

Later, Dahl et al. [11] solved the likelihood estimation
problem using Newton’s method and conjugated gradient
method. Their proposed method solves problems where a
sparse structure ofΣ−1 is known a priori. Recently, Honorio
et al. [3] proposed a method promoting the variable selec-
tion in addition to the sparseness of the precision matrix. In
this method the sparseness is imposed not only at the edge
level but also at the important variable selection level. They
applied the block coordinate descent method and compared
the results with the graphical lasso and covariance selection
methods. Yuan et al. [12] proposed a penalized-likelihood
method which has the model selection and parameter estima-
tion simultaneously in the precision matrix estimation. They
ensured that the estimator of the precision matrix is positive
definite.D’aspremont et al. [13] proposed a likelihood formu-
lationwhich penalizes the cardinality of the precisionmatrix.
To solve the cardinality penalty term, they derived a convex
relaxation solution. Other techniques have been developed in
the similar direction and can be found for instance in [14–16]
and the references therein.

One of themajor limitations in traditional precisionmatrix
estimation methods is that they aim the sparsity uniformly
on each variable. In reality, however, most networks display
scale-free properties [17]. Hence, the traditional methods
would give poor performance to estimate the topology of
the specific networks. Hub-dominated networks are usually
dominated by a relatively small number of nodes (hubs)
which are connected tomany other nodes, and these networks
are considered resistant to accidental failures but extremely
vulnerable to coordinated attacks. Some examples of such
data structures can be described as the interactions between
research collaborations, accesses to the World Wide Web,
role plays in Hollywood, etc. While many studies have been
carried out for sparse network learning, little is done on
the learning of the sparse Gaussian graphical models aim-
ing to preserve properties of networks which are believed
to be scale-free or have dominating hubs. We prefer to name
both topologies as ‘scale-free’ networks for simplicity in this
paper.

Liu et al. [18] proposed an L1 regularization formula-
tions, where coefficients of nodes with higher degree are
decreased. They proposed a formulation to promote the fea-
tures of hub-dominated networks. One of the drawbacks
of this paper is that the proposed formulation is noncon-
vex which does not guarantee the convergency. Also, they
tested their method on relatively very small data sets (e.g.,
p < 120). In this paper our problem can be described
as follows: Given a set of data, we solve a convex likeli-
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hood formulation to make the resulting graph as sparse as
possible, whereas the hub-dominated graphical topology is
protected.

Recently, analyzing and using scale-free topology and
graphical models improves the computational costs and
accuracy. For instance, Liu [19] employed the scale-free net-
work to represent the inter-individual interactions in particle
swarm optimization (PSO) algorithm. They reported that in
contrast to the traditional PSO with fully connected topol-
ogy or regular topology, the scale-free topology incorporates
the diversity of individuals in searching and information dis-
semination ability, leading to a quite different optimization
process. They obtained results with respect to several stan-
dard test functions. The outcome demonstrated that their
updated PSOalgorithmgives better balance between the con-
vergence speed and the optimum quality than the traditional
PSO algorithms. They further explored that the cooperation
of hub and regular nodes plays a crucial role in optimizing
the convergence process. Zhang and Huang [20] studied the
combined impact of reinstalling system and network topol-
ogy on the spread of computer viruses over the Internet. Their
experiments show that the virus-free equilibrium is globally
asymptotically stable when its spreading threshold is less
thanone; nevertheless, it is proved that the viral equilibrium is
permanent if the spreading threshold is greater than one. The
impacts of different model parameters on spreading thresh-
old are analyzed. Haoran [21] proposed a new scale-free
topology model which has both fault tolerance against ran-
dom faults and intrusion tolerance against selective remove
attacks at the same time. The optimal scale-free topology
which can keep the fault tolerance and maximize intrusion
tolerance is obtained through analyzing the effect of topo-
logical degree distribution on these properties of topological
fault tolerance and topological intrusion tolerance. The sim-
ulation results show that their method also can reduce their
fragility for selective remove attacks and further prolong its
lifetime.

The major contributions of this paper can be listed as fol-
lows: (i)We propose a novel structure learningmethodwhich
is capable of working on the scale-free networks. (ii) The
proposed convex formulation emphasizes the sparsity of the
precision matrix and features of the scale-free topology. (iii)
The proposed method is able to guard the hubs since hub-
dominated networks are considered extremely vulnerable to
coordinated attacks. One may diminish the connections on
the hubs when the penalty constant is chosen for only the
sparsity of the precision matrix.

The rest of the paper is organized as follows. In Sect. 2, the
basic formulation of the precision matrix estimation prob-
lem and the proposed method is presented. We show the
numerical performance of the proposed method and some
of alternatives in Sect. 3 using synthetic and real data sets.
We conclude our paper in Sect. 4.

2 Method

In this paper, we use the alternating direction method of
multipliers (ADMM) form [22,23] to solve our proposed
log-likelihood formulation [1]. First, we start to explain and
derive a simple L1 problem using ADMM solution. For a
generic L1 problem, the objective is written as follows:

minimize l(x) + ρ‖x‖1, (4)

where l is any convex loss function. In ADMM form, this
problem is written as

minimize l(x) + g(y)

subject to x − y = 0, (5)

where g(y) = ρ‖y‖1. The new updates are estimated as
follows:

xk+1 = argmin
x

(l(x) + (κ/2‖x − yk + uk‖22)),
yk+1 = Sρ/κ(xk+1 + uk),

uk+1 = uk + xk+1 − yk+1, (6)

where the soft thresholding operator, S, is defined as follows:

Sγ (a) =
⎧⎨
⎩
a − γ a > γ

0 |a| ≤ γ

a + γ a < −γ.

(7)

In a scale-free network, some nodes, which are named as
hubs in this paper, have a tremendous number of connec-
tions to other nodes, whereas most nodes, which are named
as normal or regular nodes, have just a few. The hubs can
have considerably much larger number of connections with
respect to the normal nodes (e.g., hundreds, thousands or
even millions of links). Therefore, these networks appear to
have no scale [17].

In our problem the variables can be defined as Z =
{Zr ∪ Zh} where Zr and Zh represent the sets of the normal
variables and hubs, respectively. The number of variables in
Zr and Zh classes can be represented as pr and ph , respec-
tively. We assume that the precision matrix consists of two
classes as Ω = [Ωr + Ωh] where Ω ∈ Rpxp, Ωr ∈ Rpxp

and Ωh ∈ Rpxp.
We propose a new log-likelihood formulation which pro-

motes the sparseness of the precision matrix and features of
the scale-free topology. Given a sample covariancematrixΣ ,
we estimate a precisionmatrixΩ∗ for p variables as follows:

Ω∗ = argmin
Ω∗ (tr(ΣΩ) − log |Ω| + ||G ∗ Ω||1),

subject to : Ωr − Yr = 0 and Ωh − Yh = 0, (8)
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where Yr ∈ Rpxp, Yh ∈ Rpxp, G ∈ Rpxp, G = [ρi j ],
i = {1, 2, . . . , p}, j = {1, 2, . . . , p} and ρi j = ρi+ρ j

2 . The
augmented Lagrangian (using the scaled dual variable) can
be written as:

L(Ω,Y,U ) = tr(ΣΩ) − log |Ω| + ||G ∗ Y ||1
+ κ

2
||Ωr − Yr +Ur ||2F

+ κ

2
||Ωh − Yh +Uh ||2F , (9)

where κ = 1 in our method. The scaled form of ADMM for
this problem is:

Ωk+1 = argmin
Ω

L(Ω, Y k,Uk),

Y k+1 = argmin
Ω

L(Ωk+1,Y,Uk),

and Uk+1 = Uk + Ωk+1 − Y k+1, (10)

where k is the iteration number. Using the scaled form of
ADMM, the optimization steps of Ω , Y and U can be
described in the following three subsections.

Ω−optimization :

Ωk+1 = argmin
Ω

L(Ω,Y k,Uk)

= argmin
Ω

(tr(ΣΩ) − log |Ω|

+ κ

2
||Ωr − Y k

r +Uk
r ||2F+ κ

2
||Ωh−Y k

h +Uk
h ||2F

)
,

(11)

where Ω = [Ωr + Ωh], Y = [Yr + Yh] andU = [Ur +Uh].
After this point, Ω-optimization step can be solved using an
analytic method. The first-order optimality condition is that
the gradient should vanish as follows:

Σ − Ω−1 + κ(Ωr − Y k
r +Uk

r ) + κ(Ωh − Y k
h +Uk

h ) = 0,

(12)

κΩ − Ω−1 = κ(Y k −Uk) − Σ. (13)

Ω is constructed to satisfy this condition and thus minimizes
the Ω-minimization objective. First, take the orthogonal
eigenvalue decomposition of the right-hand side,

κ(Y k −Uk) − Σ = QΛQT , (14)

where Λ is the diagonal matrix which contains the eigenval-
ues of κ(Y k −Uk) − Σ , and Q is the matrix which contains
eigenvectors of κ(Y k−Uk)−Σ . Note that QQT = QT Q =
I where I is the identity matrix. Let us multiply the right side
of Eq. 14 with QT on the left and Q on the right side as fol-
lows:

QT (κ(Y k −Uk) − Σ)Q = QT QΛQT Q, (15)

κΩ̃ − Ω̃−1 = Λ, (16)

where Ω̃ = QTΩQ. We can now construct a diagonal
solution of this equation, i.e., find positive numbers Ω̃i i
that satisfy κΩ̃ − 1

Ω̃
= ri , where ri is the corresponding

eigenvalue. By the quadratic formula, each elements can be

estimated as Ω̃i i = ri+
√
r2i +4κ

2κ , where the solution is always
positive since κ > 0. It follows that Ω = QΩ̃QT satisfies
the optimality condition κ(Y k −Uk)−Σ = QΛQT , so this
is the solution to the Ω-minimization.

Y-optimization

Y k+1 = argmin
Y

L(Ωk+1,Y,Uk)

= argmin
Y

(
||G ∗ Y ||1 + κ

2
||Ωk+1

r − Yr +Uk
r ||2F

+ κ

2
||Ωk+1

h − Yh +Uk
h ||2F

)
. (17)

One can easily find that

||G ∗ Y ||1 = ρr ||Yr ||1 + ρh ||Yh ||1, (18)

where ρr and ρh are the specific constants assigned to Zr

and Zr , respectively. In this problem, we need to ensure that
the connections on the hubs will not be lost in the scale-free
networks when we seek to have a sparse precision matrix.
Therefore, we suggest to use two penalty parameters for the
scale-free networks. We offer that constants for the hubs can
be accepted as ρh = −ρr/c where we choose c = N in
our method. This representation of the proposed formulation
aims to minimize ||Ωr ||1, which promotes the sparseness,
and to maximize ||Ωh ||1, which promotes the presence of
hubs. Hence, the scaled form of ADMM for this problem
can be written as follows:

Y k+1 = argmin
Y

L(Ωk+1,Y,Uk)

= argmin
Y

(ρr ||Yr ||1 + ρh ||Yh ||1
+ κ

2
||Ωk+1

r − Yr +Uk
r ||2F

+ κ

2
||Ωk+1

h − Yh +Uk
h ||2F

)
. (19)

Since

Y k+1 = argmin
Y

(
ρr ||Yr ||1 + κ

2
||Ωk+1

r − Yr +Uk
r ||2F

)

+ argmin
Y

(
ρh ||Yh ||1 + κ

2
||Ωk+1

h − Yh +Uk
h ||2F

)
,

the final Y -optimization can be written as follows:

Y k+1 := [Sρr /κ (Ωk+1
r +Uk

r ) + Sρh/κ (Ωk+1
h +Uk

h )], (20)
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Fig. 1 Synthetic scale-free networks with a p = 16, b p = 30. c One of the real scale-free network [24] with p = 204

which corresponds to Y k+1 = [Y k+1
r + Y k+1

h ] and where S
is the soft thresholding operator.

U-optimization The scaled form of ADMM for this prob-
lem is:

Uk+1 = Uk + Ωk+1 − Y k+1. (21)

We can accept this formulation as follows:

Uk+1 = Uk
r + Ωk+1

r − Y k+1
r +Uk

h + Ωk+1
h − Y k+1

h , (22)

which corresponds to Uk+1 = [Uk+1
r +Uk+1

h ]. Our method
is summarized as in Algorithm 1.

Algorithm 1 Our proposed algorithm
Input: Data samples, D, penalty constants, ρr and ρh .
Output: Precision matrix, Ω .
1. The user defines the number of hubs, τhubs .
2. Assign the penalty constant ρ as ρr = ρ and ρh = −ρ/c, where
c > 0.
3. Estimate the covariance matrix, Σ from the samples.
4. Do “while k < Niter ” or “until the optimization is converged”:
4.a) Ωk+1 estimation begins.
4.b) Find the elements of the hubs, Ωh , and the normal nodes, Ωr .
Estimate the nonzero elements for each row/column in the precision
matrix as follows: Ni = ∑p

j=1(|Ωi j | > 0) for i = {1, . . . , p}. Select
τhubs number of maximum values in Ni and assign the corresponding
elements ofΩ toΩh . The rest of elements are classified asΩr . Classify
the matrices based on this rule as Ω = [Ωr + Ωh], Y = [Yr + Yh] and
U = [Ur +Uh].
4.c) Assign ρh and ρr for the hubs and normal nodes, respectively.
4.d) Y k+1 estimation begins.
4.e) Uk+1 estimation begins.
4. f ) Increase “k” and return to the step “4.”

3 Numerical results

To evaluate the proposed method, we use structures of given
scale-free networks that have the ground truth of the preci-
sion matrix. The precision matrix is normalized using the

similar approach described in [8]. Nonzero off-diagonal ele-
ments in Ω are regenerated uniformly from intervals [−1 :
−0.5]⋃[0.5 : 1]. The value of each diagonal element is set
as a factor of the sum of the absolute values of its correspond-
ing row elements. A constant value is selected to ensure the
positive definiteness of Ω . Finally, each row is divided by
its corresponding diagonal entry so that the precision matrix
has diagonal values of ones. Using this precision matrix, the
covariancematrix,Σ , is obtained to generate various number
of samples. We simulate data sets each with various number
of samples i.i.d. generated from multivariate Gaussian dis-
tribution N (0,Σ−1).

The results of the proposed and some of the state-of-the-
art methods are evaluated with different formulations such
as sensitivity, specificity andMatthew correlation coefficient
(MCC) defined as follows:

Sensitivity = TP

TP + FN
, (23)

Specificity = TN

TN + FP
, (24)

SensitivityHUBS = TPHUBS

TPHUBS + FNHUBS
, (25)

MCC = T N × TP − FN × FP√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

,

(26)

where TP, TN, FP, FN are the number of true positives, true
negatives, false positives, false negatives, respectively. Note
that T PHUBS and FNHUBS represent true positives and false
negatives on hubs’ connections, respectively. The bigger sen-
sitivity, specificity and MCC indicate better estimation.

The proposed method is compared with Covsel [16] and
Glasso [6] on both synthetic and real data sets. We test
the proposed and alternative methods using various penalty
constants and sample size. We choose some of the compar-
isons in this section. Note that the results are selected when
Covsel [16] and Glasso [6] methods give their highest accu-
racy. The accuracy and robustness of the methods are shown
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Fig. 2 a Sensitivity of 30 connections between 6 hubs and other vari-
ables in the scale-free networkwith p = 16 and N = 1600.bHistogram
of the variable connections on the data set with p = 16. c Sensitivity
of 19 connections between 3 hubs and other variables in the scale-free

network with p = 30 and ρ = .045. d Histogram of the variable con-
nections on the data set with p = 30. e Sensitivity of the hubs in the
scale-free network with p = 204 and N = 20,400. f Histogram of the
variable connections on the data set with p = 204

using (i) the accuracy table, (ii) histograms analyzing con-
nections between all nodes, (iii) sensitivity measurements on
the connections between the hubs and other nodes, (iv) partial
regions of the resulting networks of the real data networks.

We tested the methods on two synthetic and three real
networks. Two synthetic networks are shown in Fig. 1a, b,
whereas one of the real network is shown in Fig. 1c. The
number of variables in these networks is p = 16, p = 30 and

p = 204, respectively. The second and third real networks
have “2361” and “4039” variables, respectively.

3.1 Synthetic data

First, we begin with two small synthetic examples to assess
the method to recover the sparse and scale-free structures. In
this experiment, wemeasure the robustness of the algorithms
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that ρ = ρR in the experiments.
Figure 2a shows the sensitivity only on the connections

between the hubs and other nodes under various penalty con-
stants. Here, our method ensures (as the alternatives do not)
that the connections on the hubs will not be lost as much as
possible in the scale-free networks when we seek to have a
sparse precision matrix under various penalty terms. Also,
the results show that the proposed method is more robust to
the changes. The number of hubs can be selected by users
or the power-law distribution. The histogram of “the number
of connections” with respect to “the number of variables” is
shown in Fig. 2b. Here, we use an illustration to show how
the proposed and other twomethods estimate the connections
between all variables, especially on the hubs (when the num-
ber of connections increases). Our proposed method is able
to protect the hubs, whereas the sparseness of the precision
matrix is warranted. Table 1(i) shows the results on this data
set with a specific scenario.

A similar experiment is applied on the network shown in
Fig. 1b. Figure 2c shows the sensitivity only on the connec-
tions between the hubs and other nodes under various sample
sizes. The histogram that shows “the number of connections”
with respect to “the number of variables” is shown in Fig. 2d.
In this figure, we can see that the numbers of hubs’ connec-
tions of our method and the ground truth are almost similar
to each other. One of the most important contributions of the
proposed method is to guard the hubs since scale-free net-
works are considered extremely vulnerable to coordinated
attacks to hubs. Table 1(ii) shows the results on this data set
with a specific scenario.

3.2 Real data

A considerably bigger scale-free network [24] with p = 204
(Fig. 1c) is analyzed as one of the real networks. Based on
the information given in [24], this graph displays the major
component of the network which was generated by pro-
teome data of Saccharomyces cerevisiae. Figure 2e shows
the sensitivity only on the connections between the hubs and
other nodes under various penalty constants. In this figure,
the sample size is fixed to N = 20,400 and the constant
ρ changes. Our method is more robust under various con-
stants ρ = {0.001− 0.05}. The histogram of all connections
is shown in Fig. 2f. Table 1(iii) shows the results on this
data set with a specific scenario. Figure 3 shows the results
of the precision matrix estimation. This figure shows that
the proposed algorithm protects the hubs. Figure 4 shows
the partial section of this network. In this figure, the quality
assessment on 4 hubs and their connections is shown. These
results are obtained when the sensitivity measurements of
all 204 variables’ connections are 93, 92 and 98% for Cov-
sel [16], Glasso [6] and the proposed method, respectively.

123



106 Int J Data Sci Anal (2016) 1:99–109

Fig. 3 Results on the scale-free network with p = 204. a Ground truth of the precision matrix. The results of the b Covsel, c Glasso and d our
proposed algorithm. As shown here, the proposed algorithm is capable of to guard the hubs when promoting the sparseness of the precision matrix

Fig. 4 A small region of the scale-free network [24] (as shown in
Fig. 1c) with p = 204. This area shows only the 4 hubs and their con-
nections with other nodes. a Ground truth of the variable connections.
The results of the b Covsel, c Glasso and d our proposed algorithm.

The red dashed color represents the FNs. These results are obtained
when the sensitivity measurements of all 204 variables’ connections are
91, 90 and 97% for Covsel [16], Glasso [6] and the proposed method,
respectively (color figure online)

The results reveal that the loss of connections between the
hubs and other nodes is decreased by our algorithm when
the sparsity is needed. The specificity rates are 98.8, 98.4

and 98.1% for Covsel [16], Glasso [6] and the proposed
method, respectively. As a second real data, we test the meth-
ods on a yeast data set [27,28] with p = 2361. Estimation
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Fig. 5 a Sensitivity of 841 connections between 54 hubs and other variables in the scale-free network with p = 2361 and ρ = .01. b Histogram
of the variable connections on this data set

Fig. 6 This region shows only the 3 hubs and their connections with other nodes. a Ground truth of the variable connections. The results of the b
Covsel, c Glasso and d our proposed algorithm. The red color represents the FNs (color figure online)
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Table 2 Precision results for the Facebook data sets [25] with p = 4039, N = 2,019,500, and (i) ρ = 0.003, (ii) ρ = 0.008, (iii) ρ = 0.015

Measurements (i) Ref. [16] Ref. [6] Ours (ii) Ref. [16] Ref. [6] Ours (iii) Ref. [16] Ref. [6] Ours

Sensitivity 0.86 0.85 0.89 0.62 0.61 0.65 0.44 0.42 0.52

Specificity 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.99

MCC 0.91 0.92 0.91 0.79 0.78 0.81 0.63 0.63 0.65

Sensitivity (HUBS) 0.87 0.86 0.95 0.84 0.83 0.91 0.74 0.73 0.86

Time (s) 512.3 48.3 53.2 523.2 47.8 52.3 534.2 49.1 54.9

Table 3 Results for the EVA data set [26] with p = 8343, N = 2,085,750, and (i) ρ = 0.0025, (ii) ρ = 0.0075, (iii) ρ = 0.015

Measurements (i) Ref. [16] Ref. [6] Ours (ii) Ref. [16] Ref. [6] Ours (iii) Ref. [16] Ref. [6] Ours

Sensitivity 0.81 0.80 0.86 0.56 0.56 0.61 0.40 0.37 0.49

Specificity 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.98

MCC 0.87 0.88 0.90 0.76 0.75 0.79 0.58 0.55 0.62

Sensitivity (HUBS) 0.92 0.90 0.98 0.85 0.87 0.96 0.79 0.78 0.92

Time (s) 610.1 76.1 65.3 678.1 49.5 52.3 814.9 56.5 67.3

methods for the interaction detection have led to the dis-
covery of thousands of interactions between proteins. This
yeast data set consists of protein–protein interaction network
described and analyzed in [27] and available as an example
in the software package [28]. Figure 5a shows the sensitivity
only on the connections between the hubs and other nodes
under various sample sizes. Figure 5b shows the histogram
of the number of connections with respect to the number of
variables. Table 1(iv) shows the results on this data set with
a specific scenario. Also, the execution time of each method
is shown in this table. Figure 6 shows the partial section
of this network. In this figure, the quality assessment on 3
hubs and their connections is shown. In this real network,
we accept that three variables (“120,” “126” and “135”) are
the hubs for this partial region. These results are obtained
when the sensitivity measurements of all 2361 variables’
connections are 93, 92 and 98% for Covsel [16], Glasso [6]
and the proposed method, respectively. The specificity rates
are 98.7, 99.7 and 99.3% for Covsel [16], Glasso [6] and
the proposed method, respectively. The false-positive (FP)
connections are not shown since there are very few edges
showing wrong dependencies for three methods. The results
reveal that the loss of connections between the hubs and other
nodes is decreased by our algorithm when the sparsity is
needed.

A larger real data set [25] is a network that analyze the con-
nections in Facebook. One of the objectives of analyzing the
social data is to discover the connections and users’ social cir-
cles. The number of subjects or variables is 4039 in these data,
whereas the average connection number is 21.88 per vari-
able. The biggest hub in this data set has 1043 connections.
We evaluate the performance of the proposed and alternative
methods with different scenarios as shown in Table 2. The

results show that hubs are more protected with our proposed
method using various parameters, while the other measure-
ments (i.e., sensitivity, specificity and MCC) are comparable
with other alternatives.

Finally, we assess our proposed method on the Extrac-
tion, Visualization and Analysis (EVA) of corporate inter-
relationships (US Corporate Ownership) data [26]. These
data are constructed using the telecommunications andmedia
industries with ownership networks with 6726 relationships
among 8343 companies. The analysis of these data reveals
a highly clustered network, with over 50% of all companies
connected to one another in a single one. In another words,
a link (X,Y ) revealing a connection from company X to
company Y exists in the network if in the company X has
the ownership of the company Y [29]. Also, the ownership
activity is highly unbalanced such that 90% of companies
have no more than one relationship, whereas the top ten
companies are parents for over 24% of all relationships.
These data can be a representative population for the cur-
rent inter-relationships. The results and comparison with the
alternatives are shown in Table 3. Again, in this experiment,
we prove that our proposed idea is more robust, especially
on the hubs when using various parameters.

4 Conclusions

This article has presented a newGaussian graphicalmodel for
the scale-free and/or hub-dominated networks. We proposed
a new convex log-likelihood formulation, which promotes
the sparseness of the precision matrix and scale-free feature
of graphical topology together. Our proposed method was
assessed on two synthetic and four real networks which have
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various variable numbers. As can be seen from the exper-
iments, the adaption of the our method to the various data
types such as yeast, social and business interactions is very
straightforward. The proposed method is more robust under
various effects and is able to guard hubs; hence, scale-free
networks are protected to the possible damages to hubs.There
are several ways to extend this research. For example, the
choice of the penalty constant for the hubs may be studied
although our proposed method is not very sensitive to the
penalty constant selection based on our experiments. The
method appears to be a potentially valuable technique for
analyzing various large-scale databases.
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