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Abstract Smartcard data provide a great number of infor-
mation that are increasingly used nowadays. In the field
of transport, they offer the opportunity to study passenger
behavior, leading to a better knowledge of public transit
demand and thereby granting the transport operators the abil-
ity to adapt their transport offer and services accordingly,
both in space and in time. In particular, an accurate charac-
terization of mobility patterns using data mining approaches
has a very strong interest for transport planning purposes.
This paper aims to propose a two-level generative mixture
model that partitions passengers according to their temporal
profiles.Using the timestampsof the passengers’ transactions
in the public transport network, the first level models the pas-
sengers partitioning into a reduced set of clusters, whereas
the second level captures how the trips made by each clus-
ter of passengers are distributed over time. The proposed
approach is applied on real ticketing data collected from the
urban transport network of Rennes Métropole (France). The
obtained results show that different passenger profiles can
be discovered, thus highlighting several patterns of transport
demand. The crossing of the clustering resultswith smartcard
fare types aswell as city characteristics such as academic cen-
tralities is also conducted in order to identify the close link
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between urban mobility and the socioeconomic characteris-
tics of the city.

Keywords Clustering · Smartcard data · Generative
model · Public transport

1 Introduction

Nowadays, an ever increasing number of digital traces
describing urban mobility is generated on a daily basis:
check-ins and geo-tagged messages on social networks, tra-
jectories collected from smartphones and GPS devices, etc.
In the context of public transportation, passenger traces
depicted by ticketing data collected through automated fare
collection (AFC) systems can be leveraged not only to mea-
sure the quality of service but also to understand passenger
behavior, characterize the travel demand, and adapt the trans-
port offering accordingly. Compared to household travel
surveys that are conducted on small samples of passengers
and over a short duration, ticketing data provide a more com-
prehensive view of all trips made in the public transportation
network over extended periods of time. However, due to pri-
vacy concerns, they are often stripped out of personal data
regarding the passengers (e.g., age, income, etc.).

However, conducting an analysis on smartcard data raises
a number of challenges. Among which we mention the fol-
lowing:

– How to manage the large amount of data that are gen-
erated continuously (≈200.000 validations each day in
Rennes)?

– How to conduct reliable analyses with some missing
information? Origin stations are available but missing
destination stations are missing.
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– How to overcome the absence of socioeconomic passen-
gers’ data due to privacy rules (use of an anonymized
id)?

– How to take into account the time continuity of the data?

Understanding temporal passenger habits and travel pat-
terns is of great interest to both public transportation opera-
tors and local authorities since it can help predict andmanage
inflow, measure the adequacy between the existing offer and
the real usage, and take the appropriate measures to adapt to
the observed demand. This goal can be achieved by using
statistical learning techniques, in particular cluster analy-
sis: By partitioning passengers into groups based on travel
hours, it is possible to extract general patterns describing
different types of usage (sporadic usage, typical home-work
commute behavior, etc.). Different approaches to clustering
passengers using ticketing logs have been presented in the
literature [1,5,8,11]. However, most propositions rely on a
discrete representation of time in which trips are aggregated
over pre-defined time slots (e.g., 1h). This can lead to issues
w.r.t. capturing travel regularity. For instance, frequent trips
made on the boundary of two consecutive time slots (e.g.,
trips made between 8:55 a.m. and 9:05 a.m. when a 1h bin-
ning is considered) will be strewn between both time slots,
thus giving an impression of a diffuse usage instead of a
regular one.

We address the aforementioned issues in the present paper.
Namely, our contributions can be summarized as follows:

– We present a novel approach to passenger clustering
based on travel hours. The proposed approach consid-
ers a continuous representation of time instead of the
time binning used in most existing methods and relies on
estimating a Gaussian mixture model from the temporal
profiles of passengers.

– We also conduct an extensive experimental study on a
real dataset and illustrate how our approach can help dis-
cover different types of passenger behaviors (irregular
passengers, typical commuters, etc.).

– We cross our results with spatial information on the city
and users cards’ type, in order to compensate the absence
of socioeconomic information.

The remainder of this paper is organized as follows.
Related work on ticketing data analysis and clustering is pre-
sented in Sect. 2. We describe the real dataset we use in
our study along with preliminary statistics in Sect. 3. Our
approach to clustering passengers based on temporal behav-
ior is introduced inSect. 4. Experimental results are presented
and discussed in Sect. 5. Finally, concluding remarks and
future work are presented in Sect. 6.

2 Related work

Using ticketing logs collected through AFC systems in order
to analyze mobility in public transportation motivated a con-
siderable amount of research in the past few years. The
possible role of ticketing data for the analysis of travel prac-
tices and their potential to supplement or even replace more
conventional approaches that rely on survey data were inves-
tigated as early as [2,15].

One need identified in early studies is that of enriching
ticketing logs by inferring missing data such as trip desti-
nations and transfer information which are often omitted. A
large amount of works have been dedicated to these prob-
lems, particularly [3,4,14,16]. These enrichment can then
lead to further studies on mobility data.

By applying data mining tools to smartcard data, differ-
ent facets of mobility in public transportation can be studied
such as the variability of travel behavior [11], the difference
between perceived and actual travel behavior and the reaction
to travel incentives [6], passenger loyalty [13], community
well-being [7], etc. Lathia et al. in [8] apply hierarchical
agglomerative clustering on passenger weekday profiles (trip
counts over five time bins within the day) in order to uncover
different travel behaviors (e.g., typical commutes, evening-
only travel, etc.) and motivate the need for using smartcard
data to build user-tailored transport information services.

One way to extract information about mobility patterns
is by using clustering methods. Conducting cluster analy-
sis on ticketing data was first introduced in [11]. The authors
study individual travel regularity by aggregating transactions
belonging to the same smartcard into daily profiles, each indi-
cating the time slots (i.e., hours) when the cardholder made
at least one boarding, and using k-means clustering in order
to identify clusters of similar days w.r.t. boarding times. A
similar analysis of weekly travel behavior is conducted in
[1]: Bus trips are aggregated into profiles that summarize the
weekday activity of passengers and hierarchical agglomera-
tive clustering (HAC) and k-means are then applied in order
to study group behavior. In [9], DBSCAN is applied to indi-
vidual trip chains in order to retrieve recurrent travel patterns.
Additionally, k-means++ is used to cluster passengers based
on regularity.

All these works have in common their use of classi-
cal clustering approaches. However, some more advanced
machine learningmethods have also been developed in recent
works. For instance, nonnegativematrix factorization (NMF)
is used in [12] to discover a dictionary of behavioral atoms to
describe passengers based on their subway journey transac-
tions. The distribution of these atoms over the stations is then
used to conduct multi-scale clustering and retrieve groups of
stations with similar behavior. In the approach described in
[5], individual trip chains are aggregated into weekly pas-
senger profiles, each containing the number of trips a given
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passengermade over 1-h bins for each day of theweek. Then,
a mixture of unigrams model is estimated over the temporal
profiles in order to retrieve clusters of passengers exhibiting
similar temporal patterns.

The majority of the aforementioned approaches rely on
a discretization of time (e.g., using a binning over 1-h over
periods of interest such as the morning, midday, and evening
peaks). One drawback of this representation is that it does not
fully capture travel regularity. For example, if we consider
a passenger who commutes to work everyday between 8:55
a.m. and 9:05 a.m. and a 1-h binning, the passenger’s trips
will be scattered across two distinct time slots (8 a.m. and 9
a.m.), which can be misinterpreted as a diffuse usage (which
is clearly not the case).

This issue is addressed by the approach we propose in this
paper. The novelty of our approach resides in considering a
mixture of Gaussians that accounts for the continuous nature
of time.

3 Urban transportation network and data

In this work, we use real ticketing data collected during the
month of April 2014 from the STAR (Service de Transport
en Commun de l’Agglomération Rennaise) public trans-
port network of Rennes Métropole (France). The network
is composed of one metro line (ligne a) and around 135
bus lines. Forty-three municipalities containing more than
400,000 inhabitants are serviced by the STAR network.

In 2006, the city introduced a smartcard that passengers
can use to make trips in the STAR network. Passengers are
required to validate their card only when boarding a bus or
entering ametro station (therefore, alighting locations are not
collected). The AFC system keeps track of these validations.
Each record of a validation contains a unique anonymized
card ID, the boarding time (date and time up to the minute)
and location, the boarded bus or metro line, and the smart-
card’s fare type.

In this study, smartcards are categorized into seven fare
types: (i) pay as you go, (ii) free travel (granted to some
passengers based on social criteria such as income, employ-
ment), (iii) short-term subscribers (less than one week), (iv)
young subscribers, (v) subscribers, (vi) elderly subscribers,
and (vii) Keolis Rennes (KR) agents.

A pre-processing step is conducted on the raw data (using
an approach similar to [3,14]) in order to infer alighting loca-
tions, detect transfers, and reconstruct trip chains.

The distribution of the number of active days (i.e., days
where at least one trip was made using a given smartcard)
during the 30 days covered by the data is depicted in Fig. 1.
We can see that this number is decreasing between 0 and
10 days. At ten days of active usage, a first inflection point
can be observed followed by a steady increase of the number
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Fig. 1 Number of active days per passenger in the transport network
during the month of April 2014
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Fig. 2 Average number of day trip per user in the transport network
during the month of April 2014

of passengers. A second inflection point occurs around 18
days as the number of passengers starts declining constantly.
Additionally, we can inspect the average number of trips per
daymade bypassengers. Figure 2 shows thatmost passengers
only made one or two trips per day.

The number of trips per hour for each day of theweek from
April 7 to April 14 is shown in Fig. 3. A pattern is clearly
visible duringweekdays as three peaks can be observed in the
morning, midday, and evening (this pattern is the same for
the other weeks of the data). The morning peak is the more
concentrated, which suggests that morning trips are more
regular than evening trips. The midday peak is smaller than
the otherswhich is probably due to the fact that a large amount
of passengers do not use the transport network during their
lunch break. A different pattern is observable on Wednesday
with an increase in midday validations. This high activity
can be explained by the fact that schoolchildren and high
school students in France often do not have courses to attend
on Wednesday afternoon. The day with the most activity is
Tuesday. Some days (Thursday, Friday, and Sunday), a night
activity can also be observed with trips registered at the end
and at the beginning of the service. Compared to weekday
activity, the activity during the weekend is lower, especially
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Fig. 3 Number of validations in the STAR network during the week
of April 7, 2014

onSunday, anddoes not show the three peaks pattern. Instead,
only one peak spread over the afternoon is observed.

Subsequently, we use the 10 days of activity mark as a
threshold to distinguish between occasional and regular pas-
sengers and retain only the latter group for our study since
our objective is to highlight frequent temporal passenger pat-
terns. In the next section, the dataset we use contains the trips
made by 10,000 passengers randomly sampled from those
having more than 10 active days. This dataset contains 28%
of young subscribers, 25% of pay as you go, 31% of free
travel, 12% of subscribers, and the other fare types repre-
sent less than 15%. Rennes is a student city which explains
the high number of young subscribers. This dataset can be
of great interest for studying passenger patterns, especially
to identify different types of passengers using their temporal
profiles.

In order to have a better understanding of the spatial vari-
ability in the data, we represent the number of trips for four
distinct periods in Fig. 4. This figure is composed of 4 maps
representing the number of trips per station on Tuesday 1st
April between 8 a.m. and 9 a.m. (Fig. 4a), Tuesday 1st April
between 5 p.m. and 6 p.m. (Fig. 4b), Saturday 5th April
between 3 p.m. and 4 p.m. (Fig. 4c) and finally Sunday 6th
April between 6 a.m. and 7 a.m. (Fig. 4d). We can observe
different usages depending on the day and time. For instance,
we notice a difference in the number of validations between
Tuesday, which is a typical weekday, and Saturday and Sun-
day: There are more trips and active stations during the week
than during the weekend. Moreover, we can observe some
spatial differences between Tuesday morning and evening:
While inactive during the first half of the day, stations located
in industrial and commercial areas (highlighted in beige
color) become active during the evening. Finally, Sunday
station activity is mostly concentrated around the metro and
the city center.

The aforementioned points illustrate the necessity of ana-
lyzing the temporal habits of passengers since their activity
is constantly evolving with respect to both the number of
trips and their spatial locality in time. Additionally, study-

ing the mobility of Rennes residents sets out to gain a better
understanding of how Rennes metropolis is taking shape.
Regarding Fig. 4, for instance, the polycentric operation of
the metropolitan area can be easily seen.

4 Methodology

Clustering passengers based on their temporal activities is
an interesting topic in knowledge extraction from smartcard
data. As a matter of fact, the presence of groups of similar
passengers can reveal the most frequent travel patterns in a
given public transport network which, in turn, can contribute
to a better characterization of the demand.

Our approach to passenger clustering is detailed in this
section. We present our generative model which integrates
a continuous representation of time. The algorithm used to
estimate the model’s parameters is also explained.

4.1 Model

Our clustering approach relies on estimating a two-level gen-
erative mixture model. The first level models the passengers’
partitioning into groups (passenger clusters), whereas the
second level captures how the trips made by each group of
passengers are distributed over time.

One common way that is often used by generative
approaches (such as Latent Dirichlet Allocation and the
mixture of unigrams model) in order to determine cluster
memberships is to consider that they are givenby a latent vari-
able that follows a multinomial distribution. We adopt this
approach in the first level of our mixture model and consider
that each passenger’s membership to one of the K clusters
(K being fixed a priori), denoted Z1, follows a multinomial
distribution.

In the same fashion, the distribution of the trip hours made
by the passengers belonging to a given cluster can be repre-
sented by a mixture distribution. In this case, a mixture of
Gaussians is a fit and natural choice to describe the tempo-
ral habits of the passenger when the continuous nature of
timestamps needs to be preserved (i.e., when they are not to
be discretized). With such a distribution, the different times
of typical use as well as the variances around these peaks can
be extracted.

More formally, this generative model can be written as:

Z1
i ∼ M(1, π),

Z2
i j |Z1

ik Di jl = 1 ∼ M(1, τkhl),

Xi j |Z1
ik Z

2
i jh Di jl = 1 ∼ N (μkhl , σkhl).

Z1
i encodes the membership of the ith passenger (i ∈

{1, . . . , M}) to one of the K passenger clusters and is drawn
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Fig. 4 Number of trips per station for different day and hours of the week. a 8–9 a.m. on Tuesday, April 1, 2014. b 5–6 p.m. on Tuesday, April 1,
2014. c 3–4 p.m. on Saturday, April 5, 2014. d 6–7 p.m. on Sunday, April 6, 2014

using a multinomial distribution (denotedM) with the clus-
ter proportions π = {π1, π2, . . . , πK } · Z2

i j encodes the
membership of the jth trip ( j ∈ {1, . . . , Ni }) made by this
passenger to one of the H Gaussians describing the latter’s
cluster and is drawn conditionally to the passenger’s clus-
ter Z1

ik and the day of the week the trip was made Di jl

using a multinomial distribution of parameter τkhl (describ-
ing the clusters of Gaussians’ proportions). The trip’s time
Xi j is then generated using the corresponding Gaussian
N (μkhl , σkhl). A graphical representation of the model is
illustrated in Fig. 5.
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Fig. 5 Graphical model representation of the two-level mixture of
Gaussians model

The conditional density of Xi j can then be written as:

f (Xi j |{Z1
ik Z

2
i jh Di jl = 1})

=
H∑

h=1

τkhdi j f (x;μkhdi j , σkhdi j ), (1)

with f (.;μ, σ 2) the density of a Gaussian distribution of
mean μ and variance σ 2. The likelihood of this model is
given by:

L(θ) =
M∏

i=1

K∑

k=1

πk

⎛

⎝
Ni∏

j=1

H∑

h=1

τkhdi j f (xi j ;μkhdi j , σkhdi j )

⎞

⎠ ,

withM the number of passengers, K the number of passenger
clusters, Ni the number of trips made by passenger i , and H
the number of Gaussians.

All in all, K + H × K × 7 × 3 parameters have to
be estimated. But the parameters of this likelihood, θ =
(π , τ ,μ, σ ), cannot be directly estimated, and we propose
in the next section a conditional expectation maximization
(CEM)-type algorithm to solve this problem.

4.2 CEM and EM algorithm

We want to maximize the complete likelihood of Z1 and
Z2 using a simple CEM with an expectation (E) step to
reconstruct Z2. As mentioned before, the log-likelihood is
too complex for parameter estimation and using the com-
plete likelihood enables the use of estimation algorithms such
as CEM and expectation maximization (EM), which are the
most commonly used methods for mixture model estima-
tion [10].

Since the aim of the model is to classify passengers rather
than validation hours, only the complete log-likelihood in Z1

is used as a maximization criterion (i.e., Z2 is excluded from
the classification process). The complete likelihood in Z1 is
expressed as:

Lc(Θ;X,Z1)

=
M∏

i=1

K∏

k=1

⎛

⎝πk

Ni∏

j=1

H∑

h=1

τkhdi j f (xi j ;μkhdi j , σkhdi j )

⎞

⎠
z1ik

,

Again, the rationale behind this is to work in a density
estimation context for Z2 and in a clustering context for Z1.
To this effect, we use a CEM algorithm since it has a classifi-
cation step that assigns each observation to its most probable
cluster (instead of yielding a vector of membership probabil-
ities as in the classic EM).

During the E step (E1) of the CEM algorithm, the condi-
tional expectation of (1) is calculated. This expectation will
provide the lower bound of the log-likelihood that will be
maximized during the maximization (M) step and is given
by:

Lc(Θ;X,Z1) =
M∑

i=1

K∑

k=1

ẑ1ik log(πk)

+
M∑

i=1

K∑

k=1

Ni∑

j=1

H∑

h=1

ẑ1ik t
2
i jh

× log
(
τkhdi j f (xi j ;μkhdi j , σkhdi j )

)
, (2)

where z1ik and t2i jh are the a posteriori probabilities of the
passenger’s cluster and the Gaussian’s cluster, respectively,
and ẑ1ik is the estimation of z1ik · t1ik is then given by:

t1ik ∝ πk

Ni∏

j=1

H∑

h=1

τkhdi j × f (xi j ;μkhdi j , σkhdi j ).

t1ik is calculated during the E1 step, whereas ẑ1ik is calcu-
lated from t1ik in the classification step C1.

ẑ1ik =
{
1 if k = argmax

k
t1ik,

0 otherwise.

We then maximize the bound during theM1 step to obtain
the proportions π of each passenger cluster.

πk = Mk

M
,

with Mk the number of passengers assigned to the kth cluster.
At the end of the CEM algorithm, we obtain a classification
of the passengers.

However, as can be seen in (2), the likelihood is composed
of two sums. That is why, we cannot only apply a CEM and
we need to use an EM on the second sum to estimate the
variables.
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The second EM begins with an E2 step which calculates
the a posteriori probability of t2i jh conditionally to Z1. The
probability can then be written as:

t2i jh = τkhdi j × f (xi j ;μkhdi j , σkhdi j )∑H
h=1 τkhdi j × f (xi j ;μkhdi j , σkhdi j )

.

The M2 step gives us the final estimations of Gaussians
proportions and parameters by maximizing the lower bound.
The estimations are:

τkwh =
∑M

i=1
∑Ni

j=1 z
1
ikdi jwt

2
i jh

∑M
i=1

∑Ni
j=1 z

1
ikdi jw

,

μkwh =
∑M

i=1
∑Ni

j=1 z
1
ikdi jwt

2
i jh xi j

∑M
i=1

∑Ni
j=1 z

1
ikdi jwt

2
i jh

,

σkwh =
∑M

i=1
∑Ni

j=1 z
1
ikdi jwt

2
i jh(xi j − μ

(q+1)
k )2

∑M
i=1

∑Ni
j=1 z

1
ikdi jwt

2
i jh

.

Pseudo-code of the algorithm is shown in Appendix 2.

4.3 Model calibration

We now present our model calibration choices. The number
of Gaussians H needed to represent the temporal patterns of
passengers will be discussed, and the choice of the number of
passenger clusters K will be explained. For this model, two
different initializations have been developed for the algo-
rithm. These are described in Appendix 1.

The algorithm is launched while varying the number of
Gaussians H from 2 to 4 and the number of passenger clus-
ters K from 2 to 20 and the estimated parameters of the
Gaussians, cluster proportions, and complete log-likelihood
obtained in each run are registered. The integrated classifica-

tion likelihood (ICL) is then be calculated to choose the best
model (cf. Fig. 6).

When the temporal profiles of passenger activities are rep-
resented with only two Gaussians, the ICL criterion’s values
are higher than in the other models. Moreover, the plot of
results shows that clusters from the models with H = 2
lead to a precision loss. This translates the incapability of
these models to capture three-peak patterns (morning, mid-
day, and evening), thus resulting in the morning and evening
peaks having a bigger variance and shifted means in order to
compensate for the omission of the midday peak.

The results for the remaining two cases are very close
since, for all values of K , the models with H = 4 result in
similar values of ICL to those with H = 3. The study and
visualization of results for H = 4 (not depicted here) have
shown that they do not produce a fourth peak contrary to
what can be intuitively expected. Besides, a greater variabil-
ity than in the three-Gaussian model appears from one day to
another, andwe noticed that some very thin peaks are appear-
ing, which can be symptomatic of overfitting. This suggests
that the simpler three-Gaussian models are sufficient to rep-
resent passenger travel in a single day and are preferable to
work with since an additional Gaussian requires more para-
meters but does not contribute significant improvements to
the clustering results.

Regarding the number of passenger clusters K , the ICL
is not very helpful because it did not help us find an optimal
number of clusters. It seems that the more clusters there are,
the better the model representation is. For the experimental
study presented in the following section, we chose to analyze
the ten clusters model (H = 3, K = 10) since it contains a
variety of different and interesting passenger clusters. If we
want to be more specific and to break clusters with a high
percentage of passengers, we can choose more clusters.

5 Experimental results

Now that the numbers of Gaussians and passenger clusters
are fixed, and it is interesting to interpret the results. We
first present four passenger clusters that seem to be the most
representative ones w.r.t. the trends they depict. The Tuesday
activity curves of these clusters are then compared in order to
highlight the key differences between their patterns. Finally,
we focus on the spatial activity of young subscribers belong-
ing to one specific cluster by locating the stations where they
are most active and positioning them within the context of
the city.

5.1 Clusters study

Cluster 1 (see Fig. 7) exhibits a two-peak pattern that occurs
during weekdays. The study of these two peaks shows that
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Fig. 8 The temporal activity profiles for each day of the week and card type of cluster 4 passengers. a Temporal profil. b Cards’ type
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Fig. 9 The temporal activity profiles for each day of the week and card type of cluster 7 passengers. a Temporal profil. b Cards’ type

the variance of the morning peak is very small as the peak
is concentrate between 7 a.m. and 9 a.m., whereas the after-
noon peak is more spread and goes from 3 p.m. to 8 p.m.
Outside these peaks, there is very low to no activity at night
and during the weekend. This suggests that passengers of
this cluster are typical commuters that do not rely on public
transportation outside of their regular home–work commute
(e.g., during lunch breaks and for leisure activities). This
observation is supported by the cluster’s composition w.r.t.
fare types (see Fig. 7b), which shows that it contains a high
percentage of subscribers (mostly active adults) and young
subscribers (mostly students and schoolchildren) who have
clear schedules around which their travel habits revolve.

A similar trend is observed in cluster 4 (see Fig. 8) and
cluster 7 (see Fig. 9) in both of which the morning activity
is also very regular with a steep peak. However, contrary to
the first cluster, they present a three-peak pattern with the
appearance of a third peak between 10 a.m. and 3 p.m. In
cluster 4, midday and evening peaks are mingled and on Fri-
day only two peaks are noticeable: The second and the third
peaks are completely merged and form a bell-shape curve
that spreads from 10 a.m. to midnight. Contrary to cluster
1, weekend and night present some noticeable activity. The
cluster is composed of more than 50% of young subscribers
andmore than 25%of free travelwhich hints that it ismajorly
composed of students. In cluster 7, the three peaks are more
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Fig. 10 The temporal activity profiles for each day of the week and card type of cluster 9 passengers. a Temporal profil. b Cards’ type

distinguishable and there is less night activity on weekends
than in cluster 4 (due to young subscribers being less present
in the former).

Finally, cluster 9 (see Fig. 10) presents some interesting
particularities. For instance, it has amore diffuse activity than
in the other clusters. There is no thin morning peak but a mix
of two peaks that spans across all the day. These mixed peaks
have an inverted pattern: The second peak is the highest one,
which implies that more activity occurs in the afternoon and
the evening than during the morning. This can be explained
by the high night activity present every day of the week: Pas-
sengers who are using public transportation later at night will
also tend to use it later in the morning. As it can be seen in
Fig. 10, pay as you go passengers (i.e., passengers using tick-
ets) and those benefiting from free travel account for more
than 50% of the cluster’s composition. These card types are
mostly owned by passengers that use public transport spo-
radically.

Another interesting aspect is the comparison of different
clusters based on temporal activity occurring on the same day
of the week. To this effect, all the clusters’ curves for Tues-
day are presented in Fig. 11. Indeed, the subtle differences
between clusters become more apparent. For example, while
presenting similar patterns, the morning peak hour of cluster
2 occurs earlier than the peak hour of cluster 7. Some clusters
(such as cluster 6) also depict a very regular pattern which
becomes more visible by comparing it to the others clusters.

Based on Fig. 11, it is possible to distinguish between
three types of clusters. The first one is composed of clusters
with two activity peaks, such as clusters 1, 2, 6, and 8. The
difference between these clusters lies in the fact that cluster
8 has a bigger activity on midday even if a peak pattern does
not appear. Cluster 2’s morning peak is a bit earlier than
cluster 1’s morning peak, and cluster 6 has a greater variance
than the other clusters. The second type is the three-peak
pattern clusters, such as clusters 4, 5, and 7. They can be
further distinguished using their peak hour and their shape
(e.g., cluster 7 has more distinct peaks). Finally, we have the
diffuse clusters, such as clusters 3, 9, and 10. The morning
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Fig. 11 The Tuesday temporal activity profiles for all ten clusters

peak of cluster 10,while being spread on a large time interval,
is still visible. In cluster 3, only one peak covering the whole
the day is present, and cluster 9 presents an inverted pattern
compared to all other clusters. Clusters of this last category
regroup the majority of passengers (61.31%). If required,
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the activity patterns they depict can be further refined by
increasing the number of clusters (thus splitting them into
smaller, more detailed clusters).

Compared to results obtained using a discretized-time
approach, profile curves issued from our continuous time
approach offer a better view of passenger activity: Instead of
having discrete per hour activity probabilities, we now have
a continuous time activity probability that does not suffer
from potential bias resulting from aggregating observations
into time bins. Additionally, mean and variance information
for each activity peak is now available, which was not pos-
sible with aggregate time clustering. Finally, the graphical
representation of the temporal activity profiles is still easy to
understand and interpret.

5.2 Geographical location of student cluster

We now illustrate how the activities of a specific cluster of
passengers can be positionedwithin the geographical context
of the city. To this effect, we propose to study the specific
case of student activity. The rationale behind choosing stu-
dents is that their trip generators (i.e., academic institutions
and related facilities) are more spatially confined than trip
generators of other types of passengers (e.g., vast industrial
and economical areas for working adults).

Inspecting the distribution of card types across clusters
(see Fig. 12) reveals that most of young subscribers are
present in clusters 4, 6, and 9. As mentioned before, clus-
ter 9 corresponds to a more diffuse activity. In clusters 4 and
6,morning peaks are visible, and in clusters 4 and 9 an impor-
tant night activity can be seen on weekend and on Thursday
night, which corresponds to the most active night for French
students.

Consequently, we focus on young subscribers belonging
to cluster 4 (with the assumption, based on the aforemen-
tioned observations, that most of them are students) and
study how the spatial location of their trip generators impacts
their activity in the transport network. To this purpose, a
map of Rennes transport network is presented in Fig. 13. On
this map, we present the socioeconomic specifications of the

various neighborhoods of the city, the location of academic
facilities, and the most active stations for young subscribers
in clusters 4.

Themost active stations are located in the northeast, south,
and in the town center of Rennes. The activity in the south of
Rennes is mainly observed along the subway line. As shown
in Fig. 13, this part of the city corresponds to collective hous-
ing with low income which suggests that these stations are
probably residential stations of the young subscribers. The
highest activity, which is located in the town center, is not
surprising because the town center regroupsmost of the city’s
activities. Moreover, the STAR network is star-shape around
the town center, which results in a lot of transfer activities
occurring in this place. Finally, the northeast of Rennes is the
area which regroups the most of academic facilities, which
explains the high frequentation of stations located at this level
(such as the Villejean Université metro station and its sur-
rounding stations).

5.3 Spatial locality evolution during time

In the previous section, we have studied the spatial locality
of a specific population by analyzing their station activity
regardless of when this activity occured. Nevertheless, spa-
tial activity can be analyzed in further detail by looking for
example, at the evolution of the number of trips per station
depending on the time of the day. Such analysis can poten-
tially highlight more specific areas of interest and link them
to particular usage trends. In previous work that relies on a
pre-established time binning, each trip of a given passenger is
deterministically assigned to a time bin regardless of whether
or not the time binning is representative of the travel pattern it
depicts. By relying on a mixture of Gaussians, our approach
automatically captures the most relevant instants (and their
variability) for each cluster. Moreover, this process is con-
ducted separately for each day. Consequently, it is possible
to probabilistically assign each trip of a passenger belonging
to a given cluster to the most likely Gaussian of the day the
trip was made. For a given day of interest, the trips made by
the passengers belonging to a given cluster can be divided
into three groups one for each Gaussian. Each group can then
be studied separately in order to discover how usage evolves
in time.

To illustrate this idea, we can study the activity occurring
in cluster 1. As seen previously, the passenger activity in this
cluster is mostly divided in two peaks of activity. The number
of trips per station for the first Gaussian of the day (that
corresponds to the morning activity) is depicted in Fig. 14a,
whereas the third Gaussian of the day (that corresponds to
late afternoon activity) is depicted in Fig. 14b. These two
Gaussians capture most of the activity of the day, and they
can reveal the differences of activity between the morning
and the evening. It is then possible to locate the areas from
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Fig. 13 Map of stations activity in Rennes for young subscribers of cluster 4

which people aremostly departing in themorning (habitation
locations) and from where they are traveling in the evening
(work location).

The comparison of the two maps of Fig. 14 reveals, as
expected, some differences of activity. The first observation
that can be made is that activity occurring at the city center
becomes more spread in the evening. As a matter of fact,
during the morning, the center activity is mainly focused
around two areas (République and Gares), while the evening

activity is more spread. The second noteworthy observation
is the appearance of activity in commercial and industrial
areas (beige zones on the map). This suggests that a certain
number of passengers work in these areas and validate their
card at the end of the day, when they commute back home.
Finally, we can notice some stations that are active at the
end of the day and that were not in the morning and vice
versa.
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(a) (b)

Fig. 14 Number of trips per station made by cluster 1 passengers on
Tuesday 1st April 2014. a Trips assigned to first Gaussian of the day,
with a mean at 8:07 a.m. and a standard deviation of 32min. b Trips

assigned to thirdGaussian of the day,with amean at 5:20p.m. and a stan-
dard deviation of 80mi

6 Conclusion

In this paper, we proposed a two-level Gaussian mixture
model approach to clustering temporal passenger profiles in
a public transport network. The first level consists of clus-
tering the passengers based on their temporal activity which,
in turn, is represented by a mixture of Gaussians inferred
at the second level by clustering the ticketing logs based on
their timestamp information. As shown in Sect. 5, a con-
tinuous weekly activity profile is obtained for each cluster.
Cluster profiles can then be used to differentiate between
passengers with regular travel hours and those with diffuse
travel hours. The approach is also capable of detecting sub-
tle trends such as the presence of nightlife activity. The
results provided by our method could help the transport
operators to have a better knowledge of their passengers’
behavior patterns and adapt their offer to suit the different
demands they portray (e.g., specific card type for passengers
with regular temporal pattern). Moreover, a more precise
view of passenger activity peaks is also obtained with the
proposed approach compared to classic aggregate time clus-
tering.

By cross-comparing the clustering results with the geo-
graphical and socioeconomic data of the city, it is possible

to assign passenger clusters to specific areas depending on
their card types. For instance, we showed that young pas-
sengers of a cluster with a regular three-peak pattern during
weekdays and with nightlife activity at the end of the week
can be identified as students because of the high number of
validations located near academic institutions. Pinpointing
the stations where most of a given passenger group’s activity
occurs gives the operator the opportunity to adapt its offer
to the specificities of said group (e.g., reduce the number of
buses serving stations that are solely used by students during
school breaks and vacations).

Further investigation is needed w.r.t. choosing a suitable
number of passenger clusters, which remains an open ques-
tion. In this study, we limited this number to ten clusters
merely for illustration purposes. However, our experiments
suggest that increasing the number of clusters results in the
“diffuse” clusters (i.e., in which no distinguishable pattern
is visible) being split into finer clusters with more apparent
patterns. Further work can also be conducted on passengers
regularity. In fact, while this work goes further than most
existing studies by using a continuous time instead of aggre-
gated time (which allows the study of trip hour variability
within groups of passengers), it would be very interesting to
study travel variability on an individual level (e.g., passengers
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Fig. 15 Comparison of complete likelihood and number of iterations
before convergence of the algorithm for methods seeds and random

traveling every day with a variance of 5min and passengers
with a variance of 30min). The data used in this study were
treated on a calendar day basis (i.e., considering that the day
starts at 0 a.m. and ends at 0 a.m. of the next day) which
can lead to an artificial bias at midnight. Therefore, applying
the algorithm on the data while considering “service days”
(i.e., a delimitation using the start and end of service times)
is needed in order to assess the existence and impact of such
a bias. Finally, it would be interesting to inject the model
with priors that model intuitive or existing knowledge about
travel behavior (e.g., priors modeling typical commute pat-
terns, leisure-centered usage, etc.) and study their impact on
the clustering process and the produced results.
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Appendix 1: initialization method

Two initializations are possible for the clustering. The
first one, named seeds, consists in a k-means initialization
approach. First, small groups of passengers are sampled. A
k-means is then applied on these groups to estimate model
parameters. In the second method, named random, clusters
are randomly initialized and parameters are estimated using
these clusters. The aim here is to determine which one of
these two methods is the most effective.

For both initializations, the algorithm is launched 50
times. The complete log-likelihood and the number of itera-
tions before convergence are registered. The choice is made
to compare these two initializationswith a clustering on three
Gaussians and fifteen clusters.

In Fig. 15, boxplots of complete likelihood and of the
number of iterations obtained are shown. Seedsmethod con-
verges faster than random method with a mean equal to 260
iterations against 493. In addition, complete likelihood is on
average equal to −97,440 for seeds method and to −98,300

Require: Data X, H desired number of gaussians cluster, K
desired number of passengers cluster

Ensure: Estimated parameters Θ = (π, τ, μ, σ)q ← 0
repeat

E1 Step:
for k in {1, . . . , K}, i in {1, . . . , N} do

t
1 (q+1)
ik = log

(
πk

Ni∏
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C1 Step: search of Z1 by a posteriori maximizing
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end for
M1 Step: maximisation : θ|Z1

for k in {1, . . . , K} do
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M
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M
with Mk the number of passengers

in k − th cluster
end for
E2 Step: calculation of the a posteriori probabilities of
Z2|Z1

for i in {1, . . . , M}, j in {1, . . . , Ni},k in {1, . . . , K}, h
in {1, . . . , H} do
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end for
M2 Step: maximisation: θ|Z1, Z2

for k in {1, . . . , K}, h in {1, . . . , H}, l in {1, . . . , L} do

τ
(q+1)
klh =

∑M
i=1

∑Ni
j=1 z1

ik
dijlt

2
ijh∑M

i=1

∑Ni
j=1 z1

ik
dijl

μ
(q+1)
klh =

∑M
i=1

∑Ni
j=1 z1

ik
dijlt

2
ijh

xij∑M
i=1

∑Ni
j=1 z1

ik
dijlt2ijh

σ
(q+1)
klh =

∑M
i=1

∑Ni
j=1 z1

ik
dijlt

2
ijh

(xij−µ
(q+1)
k )2∑M

i=1

∑Ni
j=1 z1

ik
dijlt2ijh

end for
until z1 (q+1) ∼ z1 (q) and z2 (q+1) ∼ z2 (q)

Fig. 16 EMCEM algorithm

for the other method. In this paper, seeds method is the only
one used because of its convergence speed.

Appendix 2: EMCEM algorithm

The EM and CEM combined algorithm pseudo-code used
for clustering is presented in Fig. 16.
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