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Abstract High-throughput sequencing-based metagenomics has garnered considerable interest in recent years.
Numerous methods and tools have been developed for the analysis of metagenomic data. However, it is
still a daunting task to install a large number of tools and complete a complicated analysis, especially
for researchers with minimal bioinformatics backgrounds. To address this problem, we constructed an
automated software named MetaDP for 16S rRNA sequencing data analysis, including data quality
control, operational taxonomic unit clustering, diversity analysis, and disease risk prediction modeling.
Furthermore, a support vector machine-based prediction model for intestinal bowel syndrome (IBS)
was built by applying MetaDP to microbial 16S sequencing data from 108 children. The success of the
IBS prediction model suggests that the platform may also be applied to other diseases related to gut
microbes, such as obesity, metabolic syndrome, or intestinal cancer, among others (http://metadp.cn:
7001/).
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INTRODUCTION

A wide variety of microbes live in the human body.
These microbes exist in oral, nasopharynx, skin, gut, and
many other regions of the body and play an important
role in human health (Human Microbiome Project 2012;
Sankar et al. 2015). To date, there is still significant
uncertainty about the relationships between resident
microbes and human diseases.

Most microorganisms in the human body have
remained uncultured. Therefore, traditional methods for
the inspection and identification of the microbial species
have significant limitations. In 1998, Handelsman et al.
first put forward the concept of the ‘‘metagenome’’
(Handelsman et al. 1998), and defined it as the genes
and genomes of all of the microorganisms in an envi-
ronmental sample. With the rapid development of high-
throughput sequencing technology and the establish-
ment of numerous microbial databases, metagenomics
has become an emerging topic of interest in biomedical
research. Recently, multiple metagenomics studies have
revealed that microbial communities are associated
with human diseases. Turnbaugh et al. characterized the
gut microbial communities of 154 individuals and found
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that obesity was associated with phylum-level change in
the microbiota and reduction of bacterial diversity
(Turnbaugh et al. 2009). Pushalkar et al. studied five
saliva microbial samples and found fifteen unique phy-
lotypes in three oral squamous cell carcinoma subjects
(Pushalkar et al. 2011). The relationships between
microorganisms and some other diseases have also been
investigated, such as oral diseases (Belda-Ferre et al.
2012), neurological diseases (Hsiao et al. 2013),
rheumatoid arthritis (Scher et al. 2013), and Crohn’s
disease (Gevers et al. 2014). Furthermore, some com-
putational models have been constructed for disease
classification and prediction based on metagenomic
data. Qin et al. analyzed the differences between type 2
diabetes (T2D) patients and non-diabetic controls in
345 Chinese gut microbial samples. The researchers
chose 50 gene markers to develop a T2D classifier
model and used it for risk assessment and monitoring of
T2D (Qin et al. 2012). Saulnier et al. compared the gut
microbiomes of healthy children and pediatric patients
with irritable bowel syndrome (IBS), and found some
differences in the microbial communities in these two
sample sets, which might suggest a novel technique for
the diagnosis of pediatric patients with functional bowel
disorders (Saulnier et al. 2011). Moreover, Qin et al.
developed a support vector machine (SVM) model and
indicated that microbiota-targeted biomarkers may
serve as new tools for disease diagnoses (Qin et al.
2014). These prediction models indicate that metage-
nomics data can perhaps play an important role in the
prevention and early diagnosis of disease.

Although numerous tools and methods have been
developed to investigate the relationship between
microbes and human diseases, there is still an absence
of a general automated workflow from raw data to
disease prediction. Some metagenomic data analysis
tools, such as QIIME (Caporaso et al. 2010a, b), mother
(Schloss et al. 2009), and RDP classifier (Wang et al.
2007), are readily amenable to running automated
analyses, especially for biologists with minimal bioin-
formatics backgrounds. To address this problem, we
developed a web-based platform called MetaDP, in
which an automated analysis workflow was built for
16S rRNA sequences generated by both the 454 and
Illumina platforms. The web server is constructed based
on the open-source bioinformatics platform, Galaxy
(Goecks et al. 2010) (https://galaxyproject.org/). In
MetaDP, we integrated a number of metagenomics-
associated tools and further built an automatic
analysis pipeline. MetaDP also presents a user-friendly
interface for one-stop automatic analysis and pro-
vides most of the output results in downloadable
figure formats.

Previously reported 16S rRNA sequencing data from
IBS disease were imported into the MetaDP platform.
Based on microbial information from pediatric patients
with IBS and healthy children, we constructed an IBS
disease prediction model with a high degree of accuracy.
This model is integrated into the MetaDP platform and
may be helpful for IBS prevention and early diagnosis.
The MetaDP web server is available publically (http://
metadp.cn:7001/).

RESULTS

The MetaDP framework

The MetaDP webserver is freely available at (http://
metadp.cn:7001/) (Fig. 1A, B). MetaDP provides pre-
defined workflows and can be used without registration.
It begins with a straightforward process whereby a user
uploads sequencing data. The analysis mainly includes
three parts: data pre-processing, traditional metage-
nomic data analysis, and disease prediction (Fig. 1C).
Pre-processing includes filtering low-quality sequences,
splitting libraries based on the barcodes, removing
chimeric sequences, and assembling reads. Traditional
metagenomic data analysis includes microbial compo-
sition taxonomic analysis, alpha diversity, and beta
diversity. The disease prediction aspect classifies testing
samples with our pre-defined disease prediction model.
The essential purpose of the MetaDP web service is to
provide a user-friendly automated analysis system, in
which users simply upload their raw data generated
from a high-throughput sequencing platform. Thereby,
the MetaDP may be readily used. There is no need for
installing, integrating, and designing individual tools. In
addition, MetaDP provides some optional parameters
for better analysis.

Metagenomic data analysis

Operational taxonomic unit (OTU) counting

For our dataset, after the pre-processing step, filtered
sequences were clustered by the Uclust method (with a
sequence similarity threshold of 97%). Then, the long-
est sequence from each cluster was chosen as its rep-
resentative sequence. The OTU summary (http://
metadp.cn:7001/metadp/F1/OTU_summary.txt) included
91,470 OTUs in a total of 2,448,155 sequence counts, in
which the maximal OTU count among samples was
76,939. The microbial composition summary for each
taxonomic level (from phylum to genus) is shown in
Table 1.
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Taxonomic abundance

Taxonomic binning of classified sequences was gener-
ated at five levels, from phylum to genus (http://
metadp.cn:7001/metadp/F2/barchart_for_samples.
html). Samples were grouped and averaged to plot the
stacked bar charts (http://metadp.cn:7001/metadp/
F3/barchart_for_groups.html). Another group of stacked
bar plots were generated with the sorted taxonomic
abundance data in samples (http://metadp.cn:7001/
metadp/F4/OTU_sorted_barplot_for_samples.pdf) and
in groups (http://metadp.cn:7001/metadp/F5/OTU_
sorted_barplot_for_groups.pdf). Figure 2A shows the
microbial stacked bar plot for the grouped sorted data
of IBS versus noIBS samples at the order level. The
analysis indicated that there is no obvious difference
between the two groups, and the main microbes of
these two groups are all Bacteroidales and Clostridiales,
which is consistent with previously reported results
(Riehle et al. 2012; Saulnier et al. 2011).

Alpha diversity

Alpha diversity analysis provides insight into differ-
ences in species abundance, richness, and evenness.

Alpha diversity indices were analyzed with the default
metrics, Chao1, ACE, Simpson, Shannon, Good’s cover-
age, and PD whole tree (http://metadp.cn:7001/
metadp/F6/alpha_index_table.txt). Plots were generated
and exported for rank-abundance, rarefaction index, and
species richness. The rank-abundance curve (http://
metadp.cn:7001/metadp/F7/rank_abundance_plot.pdf)
is a 2D chart with abundance rank on the X-axis and
relative abundance on the Y-axis. The alpha rarefaction
analysis was performed by computation with multiple
metrics (defaults: chao1, Shannon, and observed
species) (http://metadp.cn:7001/metadp/F8/alpha_
rarefaction_plot.html). Figure 2B shows the rarefaction
curve displayed by groups that were analyzed with the
observed species metrics. This curve demonstrates that
the number of species in the two groups increased
gradually with increasing sample sequence number,
eventually saturating. The curve also indicates that the
species richness of the noIBS sample (the blue line) is
higher than that of the IBS sample (the red line).

Beta diversity

Beta diversity analysis provides a measure of the dis-
tance between each sample. Both weighted and
unweighted distance matrices were calculated and
visualized with Principal coordinates analysis (PcoA)
plots (http://metadp.cn:7001/metadp/F9/weighted_
PCoA.html and http://metadp.cn:7001/metadp/F10/
unweighted_PCoA.html). Figure 2C shows the weighted-
distance distribution of samples in 3D space. In this
figure, both IBS (red) and noIBS (blue) samples are
mixed, indicating that it was difficult to classify the
samples according to the distance matrix.

Fig. 1 The framework of MetaDP. A User interface of web server. B System architecture. C Main steps of analysis

Table 1 The counts of
microbial communities at
different taxonomy levels

Level Counts

Phylum 14

Class 25

Order 42

Family 82

Genus 169
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OTU heatmaps

A heatmap was used to visualize the relationships
between the OTUs and samples (http://metadp.cn:
7001/metadp/F11/raw_OTUs_heatmap.html). In the
heatmap, raw OTU counts per sample are displayed.
Figure 2D presents the heatmap for the top 10 microbes
at the genus level (other classification levels are listed in
http://metadp.cn:7001/metadp/F12/top10_heatmaps.
pdf). Both samples in columns and OTUs in rows were
clustered by relative abundance, and the rows were
scaled by Z-score.

Prediction model

In total, 91,470 OTUs were obtained among 108 samples
by OTU picking. After filtering for zero values (percentage
[80% in all samples), 1726 OTUs were selected. Then, a
t test was used to examine the discriminatory ability of
each feature. Finally, 110 OTU feature sets were selected
for the construction of the nextmodel (http://metadp.cn:
7001/metadp/F13/filtered_OTU_table.txt). The top 20

most significant features and their p-values are listed in
Table 2. Within these features, Bacteroides, Dorea, and
Faecalibacterium have been reported to be associated
with IBS (Saulnier et al. 2011; Ghoshal et al. 2012; Rajilić-
Stojanović et al. 2015).

Then, the quantified feature vector could be input
into LIBSVM. The radial basis function (RBF) kernel
was used in LIBSVM, and a grid search program
(grid.py) was used to obtain the optimized parameter
combination C = 4.0, c = 0.125. Thereby, the IBS
prediction model was constructed successfully. To test
the performance of the IBS model, tenfold
cross-validation was adopted. The results show that
the accuracy and the AUC score were 0.93 and 0.95,
respectively (Fig. 3).

DISCUSSION

The MetaDP platform is a one-stop 16S rRNA sequenc-
ing data analysis flowchart with a friendly user interface
that aims to help researchers investigate the structure
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and diversity of human microbial flora and provide deep
insight into microorganisms associated with the disease.
An automatic analysis workflow can be performed once
users upload their raw sequencing data with barcodes.
In this version, our platform provides a set of universal
16S rRNA data analysis tools to constitute a workflow
for data from the 454 and Illumina platforms. The
workflow outputs the bacterial distribution, alpha
diversity, beta diversity, and disease risk assessment
with a plug-in prediction model. To build the prediction
model, we used IBS as an example with a total of 108
microbial samples. In the near future, we will increase
the sample size of intestinal microbial diseases and
improve the prediction model.

In future work, MetaDP will provide an open API
interface, so that researchers can easily integrate
other bioinformatics tools and data analysis work-
flows with our platform. We will also integrate more
metagenomic data analysis tools, data analysis
workflows, and machine learning models, making
our platform useful for the analysis of more diseases.
Users can also perform custom/personalized data
analysis processes according to their own require-
ments. The MetaDP platform can be easily used for
microorganism-associated diseases, such as diabetes,
obesity, and colorectal cancer, among others. We will
collect more intestinal microbial sequencing data to
expand disease prediction models for better disease
prevention and diagnosis.

MATERIALS AND METHODS

MetaDP provides pre-defined workflows for metage-
nomic data analysis and disease prediction modeling
based on the Galaxy platform (Fig. 4). Users simply
need to upload their raw 16S sequencing data generated
by 454 pyrosequencing or by the Illumina platform and
another metadata mapping file with detailed sample
information, including sample names, barcodes,
descriptions of the columns. The core analysis pipeline
consists of demultiplexing, quality filtering, OTU picking,
taxonomic assignment, phylogenetic reconstruction,
diversity analysis, and visualization. In addition, a con-
figured SVM-based prediction model has been con-
structed for intestinal bowel syndrome.

Data pre-processing

First, sample isolation and quality control must be
performed from multiplexed Standard Flowgram For-
mat (SFF) file or FASTQ files. The four main steps for
raw data pre-processing are as follows. (1) Sample
demultiplexing: the multiplexed reads are assigned to
samples based on their unique nucleotide barcodes in
the mapping file. (2) Primer removal: during demulti-
plexing, the primer sequences and barcodes have to be
removed at the same time. (3) Quality filtering: short or
low average quality score reads are removed using
customized thresholds, and any sequence with the first
nucleotide as ‘‘N’’or ‘‘n’’ is cut. (4) Denoising and chimera
removal: before sequence clustering, denoising and
chimera removal are required for 454 and Illumina
datasets. In this platform, chimera detection is based on
the USEARCH 6.1 algorithm (Edgar 2010). The above
steps are all run by calling QIIME (Caporaso et al.
2010a, b). Paired-end reads for the Illumina platform
are trimmed using Trimmomatic (Bolger et al. 2014).
Then, FLASH software (Magoc and Salzberg 2011) is
used to assemble the trimmed paired-end reads, and the
resulting contigs are compiled into an input file to use
for the next sample demultiplexing step.

Metagenomic data analysis

OTU picking

OTUs are normally used for analyzing microbial com-
position and diversity. Pre-processing sequences are
grouped into a cluster when their sequence similarities
are greater than the threshold value, such as 97% at the
species level. In this study, we chose Uclust (Edgar
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Fig. 3 ROC curve of the SVM model of IBS disease. X and Y axes
represent the false positive rates (1-sensitivity) and the true
positive rates (sensitivity), respectively. The AUC score is 0.95
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2010) as the default OTU clustering tool. The five steps
for OTU picking are given as follows. (1) Pre-filtering:
the sequences are searched against the GreenGenes
reference database (DeSantis et al. 2006), filtered for at
least a low percent identity (default: 0.60), and dis-
carded if they fail to match. (2) Multi-step OTU picking:
the pre-filtered sequences are aligned with an existing
database, and added to the database as new reference
sequences if the sequences are mismatched. (3) Rep-
resentative sequence picking: the longest sequence is

chosen as the representative sequence. (4) Taxonomic
assignment: a taxonomic classification is assigned to
each sequence of the representative set with the
GreenGenes database and newly defined taxonomies
from step 2. (5) OTU table generation: an OTU table is
constructed in the Genomics Standards Consortium
candidate standard Biological Observation Matrix
(BIOM) format. The BIOM format file can be converted
to other formats with a series of scripts available from
the BIOM project (McDonald et al. 2012).

Input

Database

Output

16S rRNA data
454/IIIumina

Metadata

Pre-processing

Multi-step OTU picking and representative sequences
picking

Open-reference based

Data visualizations
Rarefraction curve & PCoA &

Heatmap and so on
Predicted results

Taxonomy

OTU table

Phylogenetic tree

Alpha diversity Beta diversity

Feature generation

Disease predictionSVM

Fig. 4 Overview of the MetaDP workflow for 16S rRNA sequences analysis and disease prediction. The workflow supports the input of
16S rRNA sequencing data and sample metadata. The analysis includes sequence pre-processing, OTU picking, biodiversity analysis, and
disease prediction with the configured SVM model. Predicted results and visualized data are returned

RESEARCH ARTICLE X. Xu et al.

112 | December 2016 | Volume 2 | Issues 5–6 � The Author(s) 2017. This article is published with open access at Springerlink.com



Phylogenetic analysis

Representative sequences are assigned to the core set of
the GreenGenes database (DeSantis et al. 2006) with
PyNAST (Caporaso et al. 2010a, b). Then, the sequence
alignment is filtered by removing the gap regions from
every sequence. The FastTree method (Price et al. 2009)
is utilized to construct phylogenetic trees based on the
filtered sequence files. The phylogenetic tree can be
interactively displayed through an online tool named
Interactive Tree of Life (iTOL, http://itol.embl.de/)
(Ciccarelli et al. 2006).

Taxa summaries

A taxa summary summarizes the relative abundance of
different taxonomic levels (from phylum to genus)
among all samples based on an OTU table. Sequences
are taxonomically binned based on the output of a local
copy of the ribosomal database project (RDP) classifier.
Normalized data are produced from the relative abun-
dances of taxa present in each sample. Any unclear taxa
are combined and named ‘‘other.’’ The results from the
taxonomic binning of classified sequences are displayed
as bar charts, which make it easier to convey the main
compositions of the samples.

Biodiversity

Two types of diversity measurements (alpha diversity
and beta diversity) are usually used for assessing the
relatedness of metadata attributes on OTU tables. Alpha
diversity is mainly used to estimate the diversity of a
microbial community within a group of samples,
through a series of statistical indices such as Chao1,
ACE, Shannon, Simpson, Good’s coverage, and so on
(Navas-Molina et al. 2013). Rarefaction curves are
plotted by counting the OTU numbers from random
reads of the samples based on these diversity metrics.
Beta diversity is mainly used to compare the differences
of microbial communities between samples. UniFrac
(Lozupone et al. 2011) is always used for comparing
biological communities. Both weighted and unweighted
variants of UniFrac are widely used. The former
accounts for the abundance of OTUs, while the latter
only considers their presence or absence. The distance
metrics are investigated through PCoA, and an interac-
tive 3D plot is generated.

OTU heatmaps

For the composition analysis of OTUs among samples,
two types of OTU heatmaps are provided. The first type

of heatmap is an interactive plot and is directly colored
to reflect the absolute abundance of raw OTUs. The
other type of heatmap is a bi-directional map, in which
both the samples and the taxa summary are clustered.
Users can set the threshold for the microbes at different
classification levels (the default is top ten microbes at
the genus level).

Disease prediction model

Feature selection

Feature selection (Saeys et al. 2007), also known as
variable selection or attribute selection in machine
learning, is the selection of a subset of redundancy
features for the construction of a prediction model. In
this study, feature selection is used mainly for the sim-
plification of models for better feature interpretation,
and for the reduction of overfitting. In our training set,
the values of the OTU tables generated in the metage-
nomics data analysis were used. For each feature, a
value with zero is deleted first, then feature selection is
performed based on the statistical comparison.

Support vector machine (SVM)

SVMs are important supervised learning algorithms for
classification and regression analysis. In recent years,
SVMs have been widely used in life sciences research,
such as for studies on alternative splice site recognition,
biomarker selection, remote homology detection, gene
function prediction, and protein–protein interaction
prediction, among others (Pavlidis et al. 2002; Liao and
Noble 2003; Ben-Hur and Noble 2005; Ratsch et al.
2005; Sonnenburg et al. 2007). Some useful software
packages have also been developed (Bottou 2007; Fan
et al. 2008; Chang and Lin 2011). In this study, we use
LIBSVM (Chang and Lin 2011) (http://www.csie.ntu.
edu.tw/*cjlin/libsvm), which is an integrated software
package for support vector classification, regression,
and distribution estimation. An SVM can efficiently
perform a non-linear classification through a so-called
kernel function, thus implicitly mapping inputs into
high-dimensional feature spaces. The RBF kernel was
chosen for our study. The penalty parameter C and
kernel parameters c in the RBF kernel are optimized to
result in the best prediction performance. To obtain the
optimal C and c values, we used the grid search method.
The main steps for a grid search can be described as
follows. First, M and N numbers of C and c values are
assigned, respectively. Then, different SVM models with
M 9 N (C, c) numbers of parameters combined are
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trained. Finally, the optimal pair of parameters is
selected.

Evaluation

Cross-validation (tenfold) is used to estimate the per-
formance of our prediction model. In this study, we use
SVM-train with parameter –v 10, as it will randomly
split samples into ten subsamples; each subsample is
used once as the validation data for testing the model,
and the remaining nine subsamples are used as training
data; finally, the average accuracy will be reported. A
receiver-operating characteristic (ROC) curve is used to
illustrate the performance of the classifier model. The
ROC curve plots the true positive rate (TPR) against the
false positive rate (FPR) at various threshold values. The
TPR and FPR are given by TPR = TP/(TP ? FN) and
FPR = FP/(FP ? TN), respectively. The area under the
ROC curve (AUC) score is used to estimate the overall
classifier performance. The ROCR package from CRAN
(http://cran.r-project.org/) was used to calculate the
TPR and FPR values and to draw ROC curves, the AUC
scores were also provided to estimate this classifier
model performance.

Implementation

MetaDP has been implemented in a local Galaxy
instance running under a GNU/Linux operating system.
Galaxy was obtained from http://wiki.galaxyproject.
org/Admin/GetGalaxy and intentionally installed as a
normal user (‘‘galaxy’’) for easy migration and security.
The advantage of using the Galaxy framework for
MetaDP is that Galaxy provides a web-accessible plat-
form to integrate different command-line tools and has
a customized workflow configuration system. Addi-
tionally, Galaxy provides some useful functional
dependencies, such as a web service (Nginx), database
storage (MySQL), a job queuing system, and history
management. In MetaDP, we integrated the metage-
nomic data analysis package QIIME, the SVM model,
and NGS quality control tools. The applications of all
tools were implemented with XML files, Python, Perl,
and Shell wrappers. These tools consisted of the
specific workflow for library splitting, OTU picking,
taxonomy analysis, rarefaction analysis, and disease
prediction. For ease of use, we simplified the opera-
tions of the web applications and designed a more
interactive and user-friendly website. The user simply
needs to upload input files and run the workflow
through a web interface.

Datasets

In total, 108 samples (49 samples from pediatric
patients with IBS and another 59 samples from healthy
children) of 16S rRNA 454 sequencing data were
downloaded from the NCBI database (http://www.ncbi.
nlm.nih.gov/sra, SRP002457) (Saulnier et al. 2011).

Abbreviation
MetaDP Disease prediction of metagenomic datasets
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