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Abstract Despite the success of RNA secondary structure prediction for simple, short RNAs, the problem of
predicting RNAs with long-range tertiary folds remains. Furthermore, RNA 3D structure prediction is
hampered by the lack of the knowledge about the tertiary contacts and their thermodynamic pa-
rameters. Low-resolution structural modeling enables us to estimate the conformational entropies for a
number of tertiary folds through rigorous statistical mechanical calculations. The models lead to 3D
tertiary folds at coarse-grained level. The coarse-grained structures serve as the initial structures for
all-atom molecular dynamics refinement to build the final all-atom 3D structures. In this paper, we
present an overview of RNA computational models for secondary and tertiary structures’ predictions
and then focus on a recently developed RNA statistical mechanical model—the Vfold model. The main
emphasis is placed on the physics behind the models, including the treatment of the non-canonical
interactions in secondary and tertiary structure modelings, and the correlations to RNA functions.
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INTRODUCTION

The increasing discoveries of noncoding RNAs demand
more than ever the information about RNA structure
(Bachellerie et al. 2002; Kertesz et al. 2007; He et al.
2008; Bartel 2009; Gong and Maquat 2011; Wang et al.
2013). For example, the 3D structure of a microRNA–
target complex is crucial for understanding microRNA’s
binding affinity and efficacy in gene regulation (Kertesz
et al. 2007; Bartel 2009). However, the time-consuming,
laborious, expensive experimental determination, such
as X-ray crystallographic and NMR spectroscopic mea-
surements, alone cannot catch up the pace with the
rapidly increasing number of biologically significant
RNAs such as noncoding regulatory RNAs. This problem
highlights the need for computational prediction of RNA
folding.

The structure of an RNA is determined by the com-
plex pattern of base–base interactions, including base-
paired secondary structures and long-range tertiary
interactions. Existing RNA folding theories mainly focus
on the secondary structures. However, knowing the
secondary structure information alone is not sufficient
to determine the 3D structure, because a 3D structure
often involves long-range tertiary interactions such as
kissing interactions between the different loops.
Therefore, for a physics-based approach, accurate
evaluation of the energetic parameters for tertiary in-
teractions is critical for 3D structure prediction. More-
over, RNA function is correlated not only to the
minimum free energy state of an RNA, but also to the
potentially large conformational changes it can undergo.
Understanding RNA function requires the understand-
ing of the full energy landscape.

Statistical mechanics-based modeling has led to sig-
nificant success in RNA structure prediction, folding
stabilities, and folding kinetics for structures with dif-
ferent structural complexities (Liu et al. 2006; Chen& Correspondence: chenshi@missouri.edu (S.-J. Chen)
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2008). For example, a recently developed statistical
mechanics-based RNA folding model, ‘‘Vfold’’ model, has
provided a wide range of quantitative predictions and
novel insights for a variety of experiments and RNA
functions, such as the pseudoknot-involved conforma-
tional switch between bistable secondary structures (Xu
and Chen 2012), microRNA gene regulation through
microRNA/mRNA-binding interactions (Cao and Chen
2012), and RNA/RNA dimerization critical for viral
replication (Cao and Chen 2011; Cao et al. 2014).
However, despite the success of this approach, several
key issues remain. Estimation of the entropies for RNA
tertiary folds and extraction of the energy parameters
for noncanonical tertiary interactions from thermody-
namic data or known structures present major chal-
lenges hampering the structural modeling for large and
complex RNAs. The primary focus of this article is on
the statistical mechanics-based methods for predicting
RNA 3D structures and folding energy landscapes, and
the related quantitative insights into RNA functions.

AN OVERVIEW OF COMPUTATIONAL METHODS
FOR RNA FOLDING

RNA folding process is believed to be partly hierarchical,
whereby secondary structural motifs fold first followed
by the tertiary contacts formation. The secondary
structure is a set of helices containing canonical base
pairs (A–U, G–C, and G–U) and contributes to the major
part of the free energy of an RNA system. Canonical base
pairing and base stacking within helices are generally
stronger than the non-canonical interactions in loop
parts of an RNA system. Therefore, many computational
models dissect the RNA folding problem into two steps:
from sequence to two-dimensional (2D) structure and
from 2D structure to three-dimensional (3D) structure,
where a 2D structure is defined by base pairs including
tertiary cross-linked base pairs such as kissing base
pairs. With the 2D structure as constraint, the accuracy
of 3D structure prediction can be significantly improved.

2D structure predictions

Computational models for RNA 2D structure prediction
fall into two general categories: free energy minimiza-
tion (Ding and Lawrence 2003; Hofacker 2003; Zuker
2003; Xayaphoummine et al. 2005; Mathews and Turner
2006; Parisien and Major 2008; Bellaousov et al. 2013;
Xu et al. 2014), and sequence comparison (Gutell et al.
2002; Hofacker et al. 2002; Mathews and Turner 2002;
Havgaard et al. 2005; Bindewald and Shapiro 2006;
Bernhart et al. 2008; Sato et al. 2009). Most free energy

minimization methods employ the empirical thermody-
namic parameters [the Turner parameters (Turner and
Mathews 2010)] for the different secondary structural
elements. Other models, such as MC-Fold (Parisien and
Major 2008), use knowledge-based energy functions
extracted from the known PDB structures. However, not
all the interactions (such as long-range tertiary contacts)
can be captured by these parameters. As a result, the
accuracy of prediction falls off rapidly with the length of
the sequence, because larger RNAs are more prone to the
formation of long-range tertiary contacts.

The accuracy of computational predictions is usually
better for methods that consider ‘‘fold recognition’’:
structure is usually more conserved than sequence, and
the functional core regions are usually more conserved
at all levels. In general, sequence comparison-based
methods can give more improved predictions than free-
energy-based predictions if the homologous sequences
are available. However, these methods depend strongly
on the availability of the sequence database. To over-
come the above limitations, several hybrid algorithms
that combine free energy minimization and sequence
comparison have been developed (Mathews and Turner
2002; Havgaard et al. 2005; Bernhart et al. 2008). For
example, Dynalign (Mathews and Turner 2002) combi-
nes free energy minimization and comparative sequence
analysis to find a low free energy structure common to
two sequences without requiring any sequence identity.
On average, Dynalign predicted 86.1 % of known base-
pairs in the tRNAs, compared to 59.7 % by free energy
minimization alone. For the 5S rRNAs, the average ac-
curacy improves from 47.8 to 86.4 %.

Another way to improve the accuracy of structure
prediction is to incorporate experimental data to the
secondary structure prediction modeling (Mathews et al.
2004; Deigan et al. 2009; Low and Weeks 2010; Klad-
wang et al. 2011; Hajdin et al. 2013; Leonard et al. 2013).
Selective 20-hydroxyl acylation analyzed by primer ex-
tension (SHAPE) probing data has proved useful for RNA
secondary structure modeling (Deigan et al. 2009; Low
and Weeks 2010; Kladwang et al. 2011; Hajdin et al.
2013; Leonard et al. 2013). The SHAPE information
provides refinements for the experimental determined
thermodynamic parameters (Turner andMathews 2010)
for RNA folding. Benchmark test for a set of 21 RNAs of
size from 34 to 530 nt shows that 93 % on average of
known base pairs can be predicted. and all pseudoknots
inwell-folded RNAs can be identified (Hajdin et al. 2013).

Tertiary motifs: free energy models

Unlike the entropy (free-energy) parameters for simple
loops (hairpin, bulge, and internal loops), which have
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been determined from thermodynamic experiments
(Turner and Mathews 2010). Quantitative understand-
ing of many other interactions remains very limited.
Moreover, because of the possible conformational cou-
pling between the different loops and between loops
and helices, the loop entropies are not additive for ter-
tiary motifs such as loop–loop kissing contacts (Fig. 1).
Previous studies on the kissing complexes and other
RNA folding systems such as pseudoknots suggested
that a reliable estimation for the entropy is indispens-
able for folding predictions (Cao and Chen 2006, 2009;
Andronescu et al. 2010a, b). Accurate treatment for the
entropy and free energy for tertiary structure formation
is a bottleneck.

Dirks and Pierce (2003) introduced a simplified en-
ergy model for H-type pseudoknots:

Gpseudo ¼ b1 þ b2B
P þ b3U

p;

where b1 is the penalty for introducing a pseudoknot, B
p

is the number of base pairs that border the interior of
the pseudoknot, and Up is the number of unpaired bases
inside the pseudoknot. Later, this energy model was
extended (Sperschneider et al. 2011) to parameterize
hairpin–hairpin kissing motifs, as shown in Fig. 1. In
essence, by decoupling the interplay between helices
and loops in the tertiary motifs, this energy model ap-
proximates the non-additive energy with an additive
model.

Based on the polymer physics theory (de Cloizeaux
1974; Grosberg and Khokhlov 1994), Aalberts et al.
(2013) proposed the following expressions (Meng and

Aalberts 2013) for the free energy cost of stretching
mRNA hairpin loops upon small RNA binding (Fig. 1):
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where N is the number of single-stranded backbone
segments (of length a = 6.2 Å), and M is the number of
helix crossing segments (of length b = 15 Å). The Flory

radius RF¼ N
6
5a2þM

6
5b2

� �1=2
represents the character-

istic end-to-end separation of a self-avoiding chain
(Aalberts and Hodas 2010). b = kB T and the constant
C0 can be set on the basis of experiment. The parameter
z is the end-to-end separation of a helix, which can be
calculated as

zðsÞ ¼ ðhsÞ2 þ r2 1� cos
2ps
11

� �� �2
þr2sin2

2ps
11

� �( )1=2

¼ ðhsÞ2 þ 4r2sin2
2ps
11

� �� �1=2

for an A-form RNA helix of (s ? 1) base pairs, with
h = 2.7 Å and r = 9.9 Å. We note that the freely jointed
chain (FJC) model used to derive the above free energy
upon small RNA binding to mRNA hairpin loops does

Fig. 1 A A schematic figure
for the microRNA–target-
binding complex. The entropic
change upon the binding
between microRNA and the
mRNA DS(leff, S) depends on
the length of the binding site
S and the effect loop length leff.
B A schematic diagram and
all-atom structure of the
hairpin–hairpin kissing
complex
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not consider the excluded volume effect between the
A-form helix and the single-stranded chain; moreover,
the FJC model can only provide an estimation for long
chains.

To compute entropy of hairpin, bulge/internal and
multibranch loops of long length (up to 50 nt), with an
efficient sampling method based on the sequential
Monte Carlo principle, Zhang et al. (2008) developed
optimized discrete k-state models based on RNA back-
bone conformations in known RNA structures. The
method is general and can be applied to calculating
entropy of loops with high complexity.

3D structure predictions

RNA 3D structure prediction is still at its early stage
(Shapiro et al. 2007; Andersen 2010; Laing and Schlick
2011; Rother et al. 2011; Sim et al. 2012). Current RNA
folding algorithms are generally limited to simple
(short) structures, hampered by the challenges includ-
ing adequate treatment of the conformational sampling
and the evaluation of the energies for the tertiary con-
tacts. Table 1 describes some of the most recently de-
veloped algorithms, ranging from coarse-grained
modeling to various structure–assembly, and other
conformational sampling approaches.

Coarse-grained approaches

Coarse-grained representation can largely reduce the de-
grees of freedom and thus enhance the conformational
sampling. YAMMP/YUP (Wang et al. 1999; Tan et al. 2006)

andNAST (Jonikas et al. 2009) represent RNAwith just one
pseudo-atom per nucleotide residue: P and C30, respec-
tively. iFoldRNA (Sharma et al. 2008) and Vfold (Cao and
Chen 2005; Shi et al. 2014) represent RNA by three
pseudo-atoms per residue. Ren (Xia et al. 2010, 2013) uses
5-bead to represent each nucleotide, and HiRE-RNA (Pas-
quali and Derreumaux 2010) uses six or seven pseudo-
atoms for purine and pyrimidine residues, respectively.
Coarse-grained systems are usually modeled with knowl-
edge-based potentials that are derived from known
structures. Combined with discrete molecular dynamics
(DMD) (Ding et al. 2008) or other similar methods, this
approach has the potential to predict structures and fold-
ing mechanism for large RNAs. For example, a recently
developed 3-beadmodel (Shi et al. 2014) can achieve 3.5 Å
RMSD on average for 46 small RNAs including pseudo-
knots. Combined with Monte Carlo-simulated annealing
algorithm and a coarse-grained force field with implicit
salt, the model may provide reliable predictions for the
stability and salt effectwith themeandeviation*1.0 �C of
melting temperatures, compared with the extensive ex-
perimental data for 30 RNA hairpins.

Another coarse-grained approach is the graph theory-
based tool (RAG) (Izzo et al. 2011; Kim et al. 2014) for
sampling RNA global helical topologies. RAG represents
RNA 2D structure as planar tree or dual graphs to assist
the cataloging, analyzing, and designing of RNA struc-
tures. With the knowledge-based potential for internal
loop orientations, such as bending and torsion of in-
ternal loops, the combination of graph theory and Monte
Carlo-simulated annealing sampling shows great pro-
mise for assembling global features of RNA architecture:

Table 1 A partial list for the computational models for RNA tertiary structure prediction and interactive manipulation

Model Simulation method References

YAMMP/YUP Coarse-grained (1-bead/nt) Wang et al. (1999) and Tan et al. (2006)

NAST Coarse-grained (1-bead/nt) Jonikas et al. (2009)

iFoldRNA Coarse-grained (3-bead/nt) Sharma et al. (2008)

CG Coarse-grained (3-bead/nt) Shi et al. (2014)

CG Coarse-grained (5-bead/nt) Xia et al. (2010, 2013)

HiRE-RNA Coarse-grained (6- or 7-bead/nt) Pasquali and Derreumaux (2010)

DMD Discrete molecular dynamics Ding et al. (2008)

RAG Graph theory Izzo et al. (2011) and Kim et al. (2014)

FARNA/FARFAR Fragment assembly Das and Baker (2007) and Das et al. (2010)

MC-Sym Fragment assembly Parisien and Major (2008)

Vfold Coarse-grained (3-bead/nt) and motif-based template assembly Cao and Chen (2011)

3dRNA Secondary-elements assembly Zhao et al. (2012)

BARNACLE Probabilistic model for sampling Frellsen et al. (2009)

RNA2D3D Interactive manipulation Martinez et al. (2008)

Assemble Interactive manipulation Jossinet et al. (2010)
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graph RMSDs range from 2.52 to 28.24 Å for RNAs of
the size 25–158 nucleotides.

Structure–assembly approaches

Based on the assumption that the 3D fold is more
conserved and can be recognized by the alignment of
sequences and secondary structure patterns, the tem-
plate-based modeling (Das and Baker 2007; Parisien
and Major 2008; Das et al. 2010; Cao and Chen 2011;
Zhao et al. 2012) has shown promising achievements in
RNA 3D structure predictions. In structure-assembly
approaches, RNA 3D structures are built based on the
known structures modules ranging from fragments of
1–3 nucleotides to 2D structural motifs.

FARNA/FARFAR (Das and Baker 2007; Das et al. 2010)
models RNA 3D structures by assembling of short frag-
ments (1–3 nucleotides) from a single crystal structure
via a Monte Carlo procedure guided by a knowledge-
based energy function that encodes base-stacking and
base-pairing potentials. It can reach atomic resolution
(\3.0 Å) formost short RNAs (\30 nt). MC-Sym (Parisien
and Major 2008) builds all-atom structures using the 3D
version of the nucleotide cyclic motif (NCM) fragments.
The 3D NCM library was built from a list of 531 known
RNA 3D structures. Due to the limited NCM fragments for
large, complex NCM motifs, such as 6-way junctions and
kissing loops, current MC-Sym is limited to short RNAs
requiring 2D structures as input. 3dRNA (Zhao et al.
2012) builds the whole RNA structure from the smallest
secondary elements (SSEs) by a two-step assembling
procedure. The SSEs are defined as base-pair hairpin,
internal/bulge loop, pseudoknot loop and junction,
which are extracted from known structures.

One of the common limitations to the structure–
assembly approaches is the degree of divergence of the
fragment library. Given the limited number of known
RNA structures, structural motif templates with the re-
quired high sequence identity are difficult to attain. The
lack of reliable structural motifs for loops and junctions
greatly hampers accurate 3D RNA structure prediction.
Moreover, the template-based structure prediction
models cannot predict structures with ‘‘new’’ motifs.

As for the coarse-grained models, incorporating ex-
perimental data can dramatically improve the accuracy
for the structure–assembly approaches. For instance,
constraints using structural inference of native RNAs by
high throughput contact mapping, such as the multi-
plexed hydroxyl radical (–OH) cleavage analysis
(MOHCA), improve the FARNA’s prediction (Das et al.
2008). For the 158-nt P4–P6 domain of the group I
intron, MOHCA leads to an improvement of RMSD from
35 Å with FARNA to 13 Å.

Sampling algorithms

One of the challenges for current RNA structure pre-
diction is the problem of conformational sampling. Even
for the DMD with knowledge-based energy functions at
different coarse-grained levels, a major issue is that
sampled conformations often remain close to the initial
starting model (Sim et al. 2012). The molecular system
is trapped in its local energy minima for the most part of
the computational time, and the barriers between local
minima on the energy landscape hinder transitions be-
tween different low-energy states. To overcome this
difficulty requires the use of special simulation tech-
niques (Li and Scheraga 1987; Rahman and Tully 2002;
Minary et al. 2004; Curuksu and Zacharias 2009) to
achieve effective sampling of conformational space.

A probabilistic model, called BARNACLE (Frellsen
et al. 2009), allows for efficient sampling of RNA con-
formations in continuous space and with related prob-
abilities. Using coarse-grained base-pairing information,
BARNACLE generates reasonable RNA-like structures
for small RNAs (\50 nt). However, the method is mostly
limited to short RNAs because of the rapid increase in
complexity of the probabilistic model.

Interactive manipulation

Many RNA structure design algorithms, such as
RNA2D3D (Martinez et al. 2008) and Assemble (Jossinet
et al. 2010), are quite efficient. This interactive graphical
tools are useful to analyze and build RNA architectures,
but have less ability for RNA structure predictions, since
they rely on manual application of expert knowledge.

VFOLD: FROM SEQUENCE TO 3D ALL-ATOM
STRUCTURES

Vfold (web server (Xu et al. 2014): http://rna.physics.
missouri.edu) is a model used to predict RNA 2D and 3D
structures and the folding stability from the sequence.
The model distinguishes itself from other models by two
unique features: physics-based modeling of conforma-
tional entropy for 2D structure prediction, and tem-
plate-based multiscale modeling for 3D structure
prediction.

Entropy parameters for tertiary motifs

Using the P-C40 and C40-P virtual bonds to represent the
backbone conformations, the Vfold model (Cao and
Chen 2005) samples loops/junction conformations in
the 3D space through conformational enumeration (Xu
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et al. 2014). By calculating the probability of loop for-
mation, the model estimates the conformational entropy
parameters for the formation of the different types of
loops such as pseudoknot loops and hairpin–hairpin
kissing motifs. The model has the advantage of ac-
counting for chain connectivity, excluded volume, and
the completeness of conformational ensemble. Studies
by us and other groups show that an accurate entropy
parameter improves the prediction of RNA secondary
structures and thermodynamic stabilities (Andronescu
et al. 2010). Here, we use the hairpin–hairpin kissing
motif to illustrate the Vfold calculation for the entropy
of an RNA/RNA kissing complex.

The hairpin–hairpin kissing complex, shown in
Fig. 1B, consists of three stems and four loops. We as-
sume loop l2 and l4 are short, with B1 nucleotide, which
favors the formation of coaxial stacking interaction be-
tween stem H1 and H2 and between H2 and H3. There-
fore, the entropic cost upon the formation of loop–loop
kissing S(H2, l1, l3) depends on the length of the stem H2

and the single-stranded loops of l1 and l3. The compu-
tation involves three steps:

(1) Due to the nature of the coaxial stacking between
stems of H1, H2, and H3, the relative orientation
between stems of H1 and H3 is determined by the
length of stem H2. The coordinates of the 8 nt
(ai; a0i; aj; a

0
j; bi; b

0
i; bj; b

0
j; shown in Fig. 1B) are

adopted from the known NMR structure as the
template. The final coordinates of the 8 nt for
different length of H2 are generated according to
the A-formed H2 and the template.

(2) For each helix orientation, with well-defined (ai,
aj) of the starting and ending nucleotides for the
loop l1 and (bi, bj) of the starting and ending
nucleotides for the loop l3, we model loop
conformations as self-avoiding walks of the virtu-
al bonds on diamond lattice (Cao and Chen 2005)
to sample loops/junctions 3D conformations. The
connection between the A-form helix and the
discrete loop conformations is realized through an
iterative optimized algorithm (Ferro and Hermans
1971).

(3) A key issue in the conformational count is the
excluded volume interaction between loop and
helix and between the different loops. In the Vfold
model, this can be explicitly taken into account by
disallowing overlapping virtual bonds when the
loop conformations are generated in the virtual
bond diamond lattice. Assuming the interactions
in the loops are weaker than the base stacking
interactions that stabilize a 2D structure, we can

estimate the loop entropy parameter as the
logarithm of the conformational count.

The Vfold-predicted loop entropies (Table 2) enable
folding free energy calculations for RNA/RNA complex
such as for microRNA–target-binding (Cao and Chen
2012) and hairpin–hairpin kissing complex systems
(Cao and Chen 2011; Cao et al. 2014). For example, for
the kissing complex shown in Fig. 2, the free energy is
computed as

DG ¼ DGstem1 þ DGstem2 þ DGkissing�stem

� TDS S; l1; l2; l3; l4ð Þ
¼ �15:7� 15:7� 14:2þ 8:62ðkBTÞ
¼ �40:2 kcal/mol;

where S is the number of base pairs in the kissing stem,
and l1, l2, l3, l4 are the length of loops 1, 2, 3, and 4,
respectively. The entropic energy of kissing loop is es-
timated by kB ln

x6;2;2

xcoil
; with lnx6;2;2 is read from Table 1,

and lnxcoil = 2.05 l ? 0.1 (l is the chain length of loop
l1 or l3) from the polymer physics theory.

To treat more complicated (general) loop–loop kiss-
ing complexes, as shown in the Fig. 2 of Cao et al.
(2014), the stem-loop substructure’s impact on loop
entropy is approximated by replacing the terminal base
pairs (of the stems) by single nucleotides. Then, the
effective loop lengths of l1, l2, l3, and l4 are equal to the
sum of the number of unpaired nucleotides and the
number of stem-loop substructures. This approximation
ignores the (weak) excluded volume interference be-
tween the stem-loop substructure and the loop, thus
enabling us to treat general kissing motifs.

Template-based RNA 3D structure prediction

Predicting RNA 3D structure is not a solved problem
(Shapiro et al. 2007; Andersen 2010; Laing and Schlick
2011; Rother et al. 2011; Sim et al. 2012). Extensive ef-
forts have been made to enhance the conformational
sampling (Das and Baker 2007; Frellsen et al. 2009) and
to establish accurate scoring functions for the ranking of
the different structures (Ding et al. 2008; Parisien and
Major 2008). The Vfold model can predict the 2D struc-
tures of RNA/RNA kissing complex including inter- and
intramolecular base pairings. In general, a 2D structure
can correspond to a large number of 3D structures due to
the multiplicity of flexible loop conformations. The Vfold
model-predicted virtual bond structure provides a scaf-
fold for the construction of all-atom models of the 3D
structure. The prediction of the all-atom 3D structures
from a given sequence and 2D structure (base pairs) in-
volves the following three steps (see Fig. 3):
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(1) To build the 3D virtual bond structure. Helices are
modeled as A-formvirtual-bonded helix structures.
The loop/junction structures are built from the
virtual bond fragments of the template structures.
To identify the optimal template structure for the
loops/junctions, the model screens the pretabulat-
ed template library according to the loop size (first)
and the sequence (second) matches. If necessary,
this step may involve sequence replacement in
order to match the (same size) sequences in the
template library. The model assembles the helix
and loop 3D virtual-bonded structures to construct
the 3D scaffold of the whole RNA.

(2) To add all atoms to the virtual-bonded structure. For
nucleotides in eachhelix, atomsare added according
to the A-form helix atomic structure. The 3D
conformation of the nucleotides in loops are

generated by adding atoms according to the tem-
plates for base configurations, by aligning the C10,
N9, C4, and C8 for purine (A or G) or C10, N1, C2, and
C6 for pyrimidine (C or U)with those of a nucleotide
in a helix. This step results in an ‘‘atomistic version’’
of the Vfold structure. Using three atoms instead of
one atom per base, the current Vfold can better
capture the base orientation from templates and
also can easily replace base type accordingly.

(3) Energy minimization of the whole atomistic struc-
ture using AMBERmolecular dynamics simulations.
The above pre-refinement structure may contain
atoms/groups that clash sterically with each other.
Such steric clashes can be readily resolved by the all-
atom molecular dynamics simulations. With the
above pre-refinement structure as the initial state,
the AMBER energy minimization (Case et al. 2005)

Table 2 The Vfold-derived conformational entropies lnxH2 ;l1 ;l3 for the kissing complex for the different stem lengths and different loop
lengths

l3 H2 = 3 H2 = 4

1 2 3 4 5 6 7 1 2 3 4 5 6 7

l1 = 2 - 0 0 1.8 2.6 4.2 5.8 - 1.1 0.7 1.4 3.4 5.0 6.7

l1 = 3 - 0 - 1.6 1.1 1.4 2.5 - 0.7 1.4 0.7 3.4 4.9 6.6

l1 = 4 - 1.8 1.6 3.8 4.2 5.8 7.4 - 1.4 0.7 - 2.7 4.1 5.7

l1 = 5 - 2.6 1.1 4.2 4.1 5.4 7.0 - 3.4 3.4 2.7 5.3 6.7 8.4

l1 = 6 - 4.2 1.4 5.8 5.4 6.3 7.8 - 5.0 4.9 4.1 6.7 7.9 9.5

l1 = 7 - 5.8 2.5 7.4 7.0 7.8 9.3 - 6.7 6.6 5.7 8.4 9.5 11.2

l3 H2 = 5 H2 = 6

1 2 3 4 5 6 7 1 2 3 4 5 6 7

l1 = 1 0 1.4 1.4 2.8 3.7 5.2 6.7 - - - - - - -

l1 = 2 1.4 2.8 2.4 4.1 4.8 6.3 7.8 - 0 0.7 1.1 2.2 3.3 4.7

l1 = 3 1.4 2.4 2.1 3.7 4.4 5.8 7.3 - 0.7 1.8 2.3 3.7 5.1 6.7

l1 = 4 2.8 4.1 3.7 5.4 6.1 7.6 9.0 - 1.1 2.3 2.7 4.0 5.2 6.8

l1 = 5 3.7 4.8 4.4 6.1 6.8 8.3 9.7 - 2.2 3.7 4.0 5.5 6.6 8.2

l1 = 6 5.2 6.3 5.8 7.6 8.3 9.7 11.2 - 3.3 5.1 5.2 6.6 7.6 9.2

l1 = 7 6.7 7.8 7.3 9.0 9.7 11.2 12.6 - 4.7 6.7 6.8 8.2 9.2 10.9

l3 H2 = 7 H2 = 8

1 2 3 4 5 6 7 1 2 3 4 5 6 7

l1 = 2 - - - - - - - - - - - - - -

l1 = 3 - - - - - - - - - - 0 2.2 4.1 6.1

l1 = 4 - - - 2.2 3.3 5.0 6.7 - - 0 0.7 2.4 4.2 6.1

l1 = 5 - - - 3.3 4.2 6.0 7.6 - - 2.2 2.4 3.9 5.5 7.3

l1 = 6 - - - 5.0 6.0 7.8 9.5 - - 4.1 4.2 5.5 7.0 8.7

l1 = 7 - - - 6.7 7.6 9.5 11.2 - - 6.1 6.1 7.3 8.7 10.4

The unit of the entropies is kB
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yields reliable predictions for all-atom 3D struc-
tures. In the energy minimization, the negative
charges on phosphates are neutralized by Na?
cations added to the solution. The nonbonded
interactions are truncated at 12 Å. Water molecules
are treated by the standard TIP3Pmodel included in
AMBER software. For themost predicted structures,
we found that the minimization causes only small
change in the RMSD of the structure. The main
advantage of the multiscale approach in the Vfold
model is that the virtual-bonded tertiary structures

as the initial state may already lie in the free energy
basin, so the structure refinement can avoid large
structural rearrangements and can thus lead to the
native structure effectively.

The Vfold model predicts the 3D structure for a 2D
structure based on the structural templates. To con-
struct the template library, the model classifies the
structure into different motifs, such as helices, hairpin
loops, internal/bulge loops, pseudoknots, and N-way
junctions (N C 3). The motif-based template library was

Fig. 2 The evaluation of the free energy for a hairpin–hairpin kissing complex using the loop entropy parameters in Table 1 in Cao and
Chen (2011) and the Turner parameters (Turner and Mathews 2010)

Fig. 3 A The 2D structure of the BWYV pseudoknot. Vfold identifies it as a motif of ‘‘PK(5-2-1-7-3)’’. B The virtual-bond (low-resolution)
structure built from the motif-based template library. C The all-atom 3D structure refined by Amber energy minimization
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built from 2621 PDB structures. With the increasing
number of known RNA structures, the larger and more
divergent pools of the known loop/junction structures
with the different types and different lengths would lead
to better predictions of the 3D structure.

As shown in Fig. 3, the above strategy gives reliable
predictions for the all-atom 3D structures for simple
tertiary folds, such as pseudoknots and hairpin–hairpin
kissing complexes. The predicted structures as a 3D
scaffold will provide highly needed guidance for ex-
periments. For example, the sequential resonance as-
signments from the Nuclear Overhauser Effect (NOE)
data may become efficient and more accurate if the in-
formation on the nucleotide spatial proximity from the
predicted (low-resolution) structure is combined with
for the NMR structural determination of RNA.

QUANTITATIVE PREDICTION FOR THE FOLDING
OF HIV-1 DIS COMPLEX

Intermolecular loop–loop base pairing is a widespread
and functionally important tertiary structure motif in
RNA. Loop–loop interactions often facilitate dimeriza-
tion reactions between RNA molecules. For example, in
HIV-1 virus, the loop–loop kissing interaction is critical
for one form of HIV-1 dimerization (Laughrea and Jette
1994; Muriaux et al. 1996; Paillart et al. 2004). In

bacteria, loop–loop interaction can regulate gene ex-
pression and affect replication and translation of the
bacteria (Schmidt et al. 1995; Argaman and Altuvia
2000; Repoila et al. 2003; Bossi and Figueroa-Bossi
2007; Vogel and Wagner 2007). A well-documented case
is OxyS RNA repression of fhlA translation in Escher-
ichia Coli through the formation of a stable loop-kissing
interaction (Argaman and Altuvia 2000).

The dimerization process is essential for the HIV-1
replication. Muriaux et al. proposed a two-step dimer-
ization process (Muriaux et al. 1996a, b). The kissing
loop–loop complex is formed followed by a conversion
to form the extended-duplex dimer due to temperature
increase or protein binding. Both the kissing-loop dimer
and the extended-duplex have been found in the struc-
tural measurement (Ennifar et al. 1999, 2001). Due to
the lack of the thermodynamic parameters for the
kissing-loop dimer, it has been difficult to determine the
relative population of each dimer at the different tem-
perature. Also, it would be biologically important to
understand if the kissing-loop dimer is a kinetic inter-
mediate or a thermodynamic stable state at room tem-
perature. Vfold model provides a useful tool to
quantitatively predict the thermodynamic stabilities for
the different dimes by computing the free energy
landscape of the two-stranded system (Cao and Chen
2011, 2012; Cao et al. 2014). Recently developed RNA
structure prediction models are good at predicting some

Fig. 4 A The free energy landscape for the HIV-1 Mal dimer at T = 20 �C. The Vfold model predicts two coexisting structure (I, II),
corresponding to the extended-duplex and kissing-loop dimers; respectively. In the energy landscape, N and NN are the numbers of the
native and non-native base pairs, respectively. B The Vfold predicts 3D structures (in orange) for the kissing-loop and extended-duplex
dimers for HIV-1 Mal dimer. The all-atom RMSDs are 3.1 and 2.9 Å with respect to the experimental structures (in gray) with PDB IDs
1xpe and 462d, respectively
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structures at high-accuracy resolution. For example, de
novo predictive models can accurately predict the sim-
ple and short hairpin and internal loop structures (Das
and Baker 2007; Ding et al. 2008; Parisien and Major
2008). However, the models cannot predict the kissing
complex. The Vfold model enables the prediction of
kissing complexes (Cao and Chen 2011).

Quantitative prediction of HIV-1 DIS complex requires
modeling of the folding energy landscape and the structures
of dimers. The partition function for the two-stranded sys-

tem QðTÞ ¼ Q1 � Q2 þ e�DGassociate=kBT � Q12 is the sum over
the unbound and bound systems. Here, Q1, Q2, and Q12 are
thepartition functionsof the (unbound)strand1RNA,of the
(unbound) strand 2RNA and of the kissing (bound) system,
respectively. DGassociate is dependent on the RNA concen-
tration CT: DGassociate ¼ DGinit � kBTlnðCT=4Þ: We choose
DGinit to be 4.1 kcal/mol according to the experimental re-
sult (Serra and Turner 1995; Zuker 2003). The calculation
of Q1 and Q2 for single-stranded RNA can be achieved by
many RNA secondary structure prediction models; howev-
er, the computation of Q12 requires a statistical mechanical
model such as the Vfold model.

The predicted free energy landscape for HIV-1 Mal
shows two free energy minima, indicating two coexist-
ing structures at room temperature, shown in Fig. 4A.
The structural (base-pairing probability) calculations
show that the free energy minima correspond to the
kissing-loop dimer and the extended-duplex dimer, re-
spectively. The extended-duplex dimer is slightly more
stable than the kissing-loop dimer, with the free energy
difference DG\ 1.0 kcal/mol. The result suggests that
the two modes of dimerization of HIV-1 Mal can coexist
in thermodynamic equilibrium and can possibly inter-
convert with the change of the temperature and solution
condition.

Moreover, based on the Vfold study, we find that the
kissing-loop dimer of HIV-1 Mal is stabilized by the coaxial
stacking.Webuilt the 3D structure of the kissing-loopdimer
according to the above multiscale strategy. The all-atom
RMSD between predicted structure and the experiment
solved NMR structure (PDB id: 1xpe) is 3.1 Å, as shown in
Fig. 4B. For the extended-duplex dimer (structure I on the
energy landscape), Vfold predicts the 3D structure with an
RMSD of 2.9 Å (PDB id: 462d).

CONCLUSIONS

The bottleneck for RNA tertiary structure prediction is
the inability to treat the free energy, especially the en-
tropy, for structureswith long-range tertiary interactions.
The virtual-bond based low-resolution conformational

model (Vfold) allows us to estimate the entropy and the
full free energy landscape for RNA tertiary global folds.
The predicted 2D structures provide scaffolds for the
construction of all-atom 3D models through molecular
dynamics calculations. Validation by the experimental
data for the RNA 2D and 3D structures and the folding
thermodynamics as well as kinetics suggests that the
statistical mechanics-based approaches can be quite
reliable.

By considering the non-canonical interactions at both
secondary structure and tertiary structure levels, Vfold
model improves the accuracy of the secondary structure
prediction and introduces more detailed constraints,
besides the canonical base-pairing information, to the
3D structure modeling. However, a fast sampling algo-
rithm balancing the completeness of the conformational
space including non-canonical base-pairing information
and the computational time is needed to treat large
RNAs. Moreover, further development of the model
should go beyond the simple hairpin–hairpin kissing
complexes by estimating the entropic parameters for
global folds with more complicate tertiary interactions,
such as the SAM riboswitch.

With the rapidly growing size of the database of the
experimentally measured RNA structures, motif template-
based methods shows increasingly promising results,
especially when the homologous conformations can be
identified from the known structures. However, a backup
plan is always needed for a good model if no known ho-
mologous conformations canbe found in the PDBdatabase.
For instance, there is only a few of hairpin–hairpin kissing
motifs in the current motif library. Further development of
the model should address the motifs involving tertiary in-
teractions with the ability of de novo construction.
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