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Abstract Diosi and Penrose have suggested a criterion for

spontaneous wave function collapse. According to Penrose

the profound conflict between the principle of superposi-

tion and general covariance entails the existence of

reduction of quantum states, e.g. a quantum superposition

of two different space–time geometries will collapse onto

one of them. In his proposal, collapse time has an inverse

relationship with ill-definedness in the gravitational self-

energy, for the static gravitational fields. Anandan obtained

the same result using the fluctuations of the connection of

gravitational field. We show that in Newtonian limit of the

superposition of a static and non-static gravitational field

the results of the methods of Anandan and Penrose are

different, but the numerical value of the extra term in

Anandan’s approach, involving angular velocity, is not

even considered in a case of practical interest. Then, we

investigate the collapse time of the superposition of a static

and non-static gravitational field.

Keywords Spontaneous wave function collapse � Non-
static gravitational field � Superposition of space–times

1 Introduction

Quantum mechanics and general relativity are the two

basic theories in physics and the principal problem is to

unify these two theories in the sense that they are

approximations of a deeper quantum theory of gravity. We

expect this theory to solve the measurement problem in

quantum theory and the problem of quantizing gravitation.

Some physicists believe that quantum mechanics is correct

and it is general relativity that needs to be reformed. On the

other hand, there are physicists that say these two theories

are incompatible. It appears that to achieve the consistent

quantum theory of gravity, quantum mechanics and general

relativity should both be reformed. In standard quantum

mechanics, it is postulated that when the wave function of a

quantum system is measured by a macroscopic device, it

no longer follows the linear Schrodinger equation, but

instantaneously collapses to one of the wave functions that

corresponds to definite measurement results. However, this

collapse postulate is not satisfactory, as it does not explain

why and how the wave function collapses during a mea-

surement. There have been various proposals concerning

the origin of wave function collapse. Among them, the

most promising and exciting idea is proposed by Penrose.

He takes a radical approach to quantum gravity by bringing

gravity into the measurement problem (Penrose 1989,

1994, 1996, 1997, 2004). Indeed, the gravity-induced col-

lapse hypothesis can be traced back to Feynman (1995). In

his Lectures on Gravitation, Feynman considered the

philosophical problems in quantizing macroscopic objects

and contemplates on a possible breakdown of quantum

theory. He said, ‘‘I would like to suggest that it is possible

that quantum mechanics fails at large distances and for

large objects, it is not inconsistent with what we do know.

If this failure of quantum mechanics is connected with
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gravity, we might speculatively expect this to happen for

masses such that GM
2�
hc ¼ 1 of M near 10-5 g’’.

In this paper, we review Penrose’s gravity-induced

collapse and also Anandan’s approach, which obtained the

same result in another way. In Penrose’s and Anandan’s

approaches, the superposition of two different macroscopic

configurations are assumed, e.g. state superposition of a

lump of material that moves horizontally and that of one

that does not move, and each lump location is accompanied

by the static gravitational field produced by the lump in

that location. We consider the superposition of a static and

a non-static gravitational field and show that the results of

Penrose and Anandan’s approaches are different, but the

numerical value of the extra term in Anandan’s approach is

not considered in a case of practical interest. Our motiva-

tion for using non-static space–times is that, since both the

collapse of wave function and non-static metric are time

asymmetric, maybe considering non-static space–time is a

part of the solution to the measurement problem. Finally,

we study collapse time of the superposition of a static and

non-static gravitational field.

2 Gravity-Related Spontaneous Collapse:
The Penrose’s Proposal

Consider the superposition of two different macroscopic

configurations. For example, state superposition of a lump

of material that moves horizontally and that of one that

does not move is given by:

Wj i ¼ 1
ffiffiffi
2

p ð uj i þ �uj iÞ ð1Þ

where u and �u are macroscopically different. The super-

posed lump plays the role of the Schrodinger’s cat. Sup-

posing the gravitational field of the lump and that each

lump location separately represents a stationary state and

that energy in each case is the same, can we conclude that

the quantum superposition of the two lump locations is a

stationary state? Penrose using the profound conflict

between general covariance principle and superposition

principle, asserts that gravity is responsible for an objective

reduction of quantum states, accordingly such superposi-

tion is not stationary and collapses (Penrose 1996). His

argument is as follows. General covariance principle

implies that in absence of any spatial inhomogeneity in the

background potentials, there is nothing in the intrinsic

nature of the lump location that allows us to distinguish it

from any other lump location, whereas to sense the quan-

tum superposition of lump locations, those locations must

be distinguishable. In other words, to have just a single

Schrodinger equation governing the evolution of the

superposed quantum system, we have to identify those two

space–times and according to the general covariance

principle there is no canonical way of asserting which point

of one space–time is to be regarded as the same point in

another. Penrose considered the approximate identification.

Assume that f and �f are the acceleration 3-vectors of the

free-fall motion in the two space–times (f and �f are grav-

itational forces per unit test mass). Penrose postulated that

at each point the scalar �f � f
� �

: �f � f
� �

is a measure of

incompatibility of the identification. The total measure of

incompatibility at time t is given by:

EG ¼ 1

4pG

Z
�f � f

� �
: �f � f
� �

d3x

That

f ¼ �r/

We have

EG ¼ 1

4pG

Z
ðr �/�r/Þ2d3x

EG ¼ � 1

4pG

Z
ð �/ðxÞ � /ðxÞÞðr2 �/ðxÞ � r2/ðxÞÞd3x

ð2Þ

Using the Newtonian description, we have gravitational

potential function / and �u corresponding to the two mass

distributions q and �q in the two lump configurations. By

Poisson’s formula

r2/ðxÞ ¼ 4pGqðxÞ

and using the integral formula

/ðxÞ ¼ �G

Z
qðyÞ
x� yj jd

3y

Thus,

EG ¼ G

Z ð�q xð Þ � q xð ÞÞð�qðyÞ � qðyÞÞ
x� yj j d3xd3y ð3Þ

which is the gravitational self-energy of the difference

between the mass distributions that are involved in the

quantum superposition of the two lump locations. The

quantity EG is the Newton self-energies E11 þ E22 of the

two lumps minus twice their interaction energy E12,

assuming stationary and static mass distribution. Accord-

ingly, Penrose proposed that quantum superposition

involving remarkable mass displacement are unstable, with

lifetime of the order of s ¼ �h=EG. This result is obtained in

a different way by Anandan (1998). He points out that

quantum gravitational effects depend on the fluctuation of

the gravitational field. In a weak gravitational field for

which the linearized approximation is appropriate, the
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gravitational fields of the superposed states may be regar-

ded as perturbations of a background Minkowski space–

time. The fluctuation of the connection DC is given by

ðDCÞ2 ¼
XZ

W Ĉq
lm � W Ĉq

lm

���
���W

D E� �2
����

����W
� �

d3x ð4Þ

Consider the quantum superposition of the two lump

locations as in ‘‘Eq. (1)’’. In Newton–Cartan limit,

assuming static and stationary field, the only non-zero

connection coefficients are

Ci
00 ¼

ou
oxi

ð5Þ

Anandan proposed that incompatibility of the identification

between two space–times is given by

EG ¼ 1

4pG
ðDCÞ2 ð6Þ

For superposition of two gravitational fields ‘‘Eq. (1)’’,

where uj i and �uj i are quantum states of the two lump

locations, we have

Ĉq
lm uj i ¼ Cq

lm uj i

Ĉq
lm �uj i ¼ �Cq

lm �uj i ð7Þ

Accordingly, incompatibility of the identification

between two space–times is given by

EG ¼ 1

4pG

X

qlm

Z
1

4
ðCq

lmÞ
2þ 1

4
ð �Cq

lmÞ
2� 1

2
ðCq

lmÞð �Cq
lmÞ

	 

d3x

¼ 1

4pG

Z
ðr �/�r/Þ2d3x ð8Þ

This is the same result obtained by Penrose ‘‘Eq. (2)’’.

3 Gravity-Related Spontaneous Collapse
with Non-static Gravitational Field

Penrose in his scheme assumes that each lump location is

accompanied by the static gravitational field produced by

the lump in that location. One way to generalize this is to

obtain the collapse time for the non-static gravitational

field (Anandan 1998; Christian 2001). At least theoreti-

cally, we can construct the quantum superposition of a

static and a non-static gravitational field. Our motivation

for using non-static space–time is different from that in

reference (Christian 2001). The linear dynamics of quan-

tum mechanics (U-process) seem to conflict with the pos-

tulate that during measurement a non-linear collapse of the

wave packet (R-process) occurs. The R-process is time

asymmetric. In an effort to study R-process by the geo-

metric approach, we consider the non-static space–time,

because this space–time is time asymmetric. Maybe

considering non-static space–times is a part of the solution

to the measurement problem. This is only a crude proposal.

So far, there is no geometric method for studying the

measurement process in quantum theory.

Among the known solutions of Einstein’s field equa-

tions, the only known solution which is appropriate to

describe space–times for non-static gravitational field, and

has a genuinely Newton–Cartan limit, is the NUT space–

time (Ehlers 1997). The metric of the NUT space–time can

be written as

ds2 ¼ �Vðdt þ 4a sin2
h
2
duÞ2 þ V�1dr2 þ ðr2 þ a2Þdr2

With

V ¼ 1� 2ðmr þ a2Þ�ðr2 þ a2Þ

where m and a are positive constants, r[ 0, and dr2

denotes the standard metric on S2 in terms of (h, u). The
limit model has a flat Galilean metric with t as absolute

time and r, h, u as Euclidean polar coordinates. In New-

ton–Cartan limit of the NUT space–time, non-zero con-

nection coefficients are

Ci
00 ¼ �gi;C j

0i ¼ sjkeiklx
l ð9Þ

where sjk is a nowhere vanishing, symmetric, 2-con-

travariant tensor field, the (inverse) spatial metric.

sjk ¼ diagð0; 1; 1; 1Þ

The limit model has a flat Galilean metric with t as

absolute time. In addition, with respect to Euclidean polar

coordinates, one finds

/ ¼ �m

r
� a2

r2
ð10Þ

g~¼ �r~/ ¼ ð� m

r2
� 2a2

r3
Þ o

or
ð11Þ

x~ ¼ � a

r2
o

or
ð12Þ

where / is the Newtonian potential, and the spatial vector

fields g~ t; x~ð Þ and x~ðt; x~Þ play the role of a gravitational

acceleration and Coriolis angular velocity, respectively.

Accordingly, we have a superposition of two different

space–time geometries. Thus, there is no way to make the

spatial identifications between the two space–times under

superposition, so that the free falls agree everywhere

throughout the space–time. Thus, similar to what was

observed in the static case, we consider some approximate

notion of pointwise identification between the two space–

times under superposition. We compute the error caused by

this approximation in non-static case, using the Newton–

Cartan limit of the NUT space–time by method of
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Anandan. Incompatibility of the identification between two

space–times is given by ‘‘Eq. (6)’’. If we had used the

method of Anandan, we would have obtained the additional

term rather than the method of Penrose, because in this

way, there are other components of C j
0i besides C

i
00. Con-

sider quantum superposition of the two gravitational fields

‘‘Eq. (1)’’, where one field is static and stationary with

connection coefficients Cq
lm, and the other is stationary and

non-static with connection coefficients �Cq
lm. By ‘‘Eqs. (4)’’

and ‘‘(6)’’, EG should be of the form

1

4pG

X

qlm

Z
1

4
ðCq

lmÞ
2 þ 1

4
ð �Cq

lmÞ
2 � 1

2
ðCq

lmÞð �Cq
lmÞ

	 

d3x

ð13Þ

In Newton–Cartan limit non-zero connection coefficients

are

Ci
00 ¼

ou
oxi

�Ci
00 ¼

o �u
oxi

�C j
0i ¼ sjkeiklx

l

By substituting connection coefficients in ‘‘Eq. (13)’’, EG is

given by:

1

4pG

Z
ðr~ �/�r~/Þ2d3xþ 1

2pG

Z
x2d3x ð14Þ

The second term in ‘‘Eq. (14)’’ is non-zero, and this is

different from ‘‘Eq. (2)’’. In Penrose’s method, where we

compare the geodesics related to any space–time, geodesic

equation in Newtonian limit of the geodesic equation is

d2Xi

dt2
þ Ci

00

dX0

dt

dX0

dt
¼ 0

where in non-static case

Ci
00 ¼ �gi

¼ �m

r2
� 2a2

r3

But in the method of Anandan connection coefficients C j
0i

and Ci
00 are present, which yield the additional term. The

difference between Penrose’s and Anandan’s approaches

are clear and are to be expected, but the numerical value of

the last term in ‘‘Eq. (14)’’, involving angular velocity, is

not even considered in a case of practical interest.

Accordingly, for all practical purposes Penrose and

Anandan’s approaches yield the same results.

Now, we obtain the collapse time s of the superposition of
the two gravitational fields, when one of them is the non-

static gravitational field for which there are other

components of C j
0i besides Ci

00. Incompatibility of the

identification between two space–times is given by substi-

tution ‘‘Eq. (14)’’ in ‘‘Eq. (2)’’ or ‘‘Eq. (6)’’. For a non-static

gravitational field we have (Christian 2001),

r2 �/ xð Þ ¼ 4pG�q xð Þ þ 2x2ðxÞ ð15Þ

where �q xð Þ and xðxÞ are mass distribution and Coriolis

angular velocity of non-static gravitational field, respec-

tively. We can write

r2 �/ xð Þ ¼ 4pG �q xð Þ þ x2 xð Þ
2pG

� �
¼ 4pG�.ðxÞ

Accordingly, EG for non-static case is given by ‘‘Eq. (2)’’

or ‘‘Eq. (6)’’. We have

EG ¼ � 1

4pG

Z
ð �/ xð Þ � /ðxÞÞðr2 �/ xð Þ�r2/ðxÞÞd3x

using the integral formula

�/ðxÞ ¼ �G

Z
�.ðyÞ
x� yj j d

3y

We obtain

EG ¼ G

Z ð�. xð Þ � q xð ÞÞð�. yð Þ � q yð ÞÞ
x� yj j d3xd3y

Due to the existence of the additional term caused byCoriolis

angular velocity in ‘‘Eq. (15)’’, EG in the non-static case is

greater than the static case. Thus, according to s ¼ �h=EG the

collapse time of the superposition of a static and non-static

gravitational field is less than the superposition of two static

gravitational fields. Since there are no satisfactory mea-

surements of the collapse time in the static case, such

experiment seems unlikely in the non-static case.

4 Conclusions

We showed that in Newtonian limit, collapse time for the

superposition of a static and a non-static gravitational field

by the methods of Anandan and Penrose leads to different

quantities, but the numerical value of the extra term in

Anandan’s approach is not considered in the case of

practical interest. Since both the collapse of wave function

and non-static metric are time asymmetric, we propose that

non-static space–time may play a role in the solution of

measurement problem and investigate Penrose’s gravity-

induced collapse for non-static gravitational field. Finally,

we study collapse time of the superposition of a static and

non-static gravitational field.
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