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Abstract

We present a newmethod for computing the zeta function of an algebraic curve over a
finite field. The algorithm relies on a trace formula of Harvey to count points on a plane
model of the curve. The zeta function of the curve is then obtained by making
corrections at singular points. We report on an implementation and provide some
examples in MAGMA which demonstrate an improvement over Tuitman’s algorithm.

1 Introduction
Let Fq denote the finite field of characteristic p and cardinality q = pa. Let ˜X be a
nonsingular projective curve of genus g over Fq . Recall that the zeta function of ˜X is
defined by

Z(˜X, T ) = exp
( ∞

∑

r=1

|˜X(Fqr )|
r

T r
)

.

It follows from the Weil conjectures [18, Ch. VIII] that Z(˜X, T ) is a rational function of
the form P(T )/(1 − T )(1 − qT ) where P(T ) ∈ Z[T ] is a polynomial of degree 2g whose
roots all have absolute value q− 1

2 . Furthermore Z(˜X, T ) satisfies the functional equation

Z(˜X, q−1T−1) = q1−gT 2−2gZ(˜X, T ). (1.1)

It follows from these facts that to compute Z(˜X, T ) it suffices to compute |˜X(Fqr )| for
r = 1, . . . , g .
The main purpose of this paper is to describe a practical, efficient algorithm for the

problem of computing the zeta function of an arbitrary nonsingular curve.

Theorem 1.1 There exists an explicit deterministic algorithm with the following proper-
ties. The input consists of a prime p, a positive integer a, a monic irreducible polynomial
b̄ ∈ Fp[t] of degree a defining the finite field Fq ∼= Fp[t]/b̄, and an absolutely irreducible
polynomial F ∈ Fq[x, y] of degree d ≥ 2. The output is Z(˜X, T ) where ˜X is the nonsingular
projective curve with function field Fq(x)[y]/〈F〉. The algorithm has time complexity

aO(1)dO(1)p
1
2+o(1).
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We do not provide a complete proof of this theorem. We will give an outline of all of
the steps involved in the algorithm, from which one could deduce the time complexity
of aO(1)dO(1)p

1
2+o(1) by referring to the detailed time complexity estimates provided in

[14] and [2]. We have not worked out the exponents in the time complexity stated in
Theorem 1.1, but intend to present a thorough analysis in a future paper. In Sect. 4 we
present concrete examples that demonstrate the utility and generality of our algorithm.
Schoof in [21] was the first to demonstrate a deterministic polynomial-time algorithm

for computing the zeta function of an arbitrary genus g = 1 curve E/Fq . The algorithm
involves computing the trace of the Frobenius endomorphismmodulo a number of small
primes �, followed by using the Chinese remainder theorem to determine the exact value
of (q + 1 − #E(Fq)). Schoof’s algorithm, and higher genus variants of it such as [19] and
[1], are known today as �-adic algorithms for computing the zeta function. These �-adic
algorithms have time complexity polynomial in log q for fixed g , but unfortunately they
are badly exponential in g . Extensions of Schoof’s algorithm are frequently used for the
case of g = 1, and specialised �-adic algorithms for the case of g = 2 have been useful in
practice [11], but as yet �-adic algorithms have been impractical for the case of an arbitrary
curve of genus g ≥ 3.
Kedlaya in [16] demonstrated an efficient p-adic algorithm for the problem of comput-

ing the zeta function of an hyperelliptic curve ˜X over a finite field of odd characteristic.
Kedlaya showed how one could apply the machinery of Monsky–Washnitzer cohomol-
ogy to this problem, computing the zeta function by explicitly computing the action of
Frobenius on this p-adic cohomology of ˜X . This method proved to be fruitful for exten-
sion and generalisation to larger classes of curves, resulting in the development of p-adic
point-counting algorithms for the case of superelliptic curves [10],Cab curves [9] and non-
degenerate curves [8]. These Kedlaya-style algorithms have time complexity polynomial
in g but exponential in log p, and they are used in practice for curves of genus g ≥ 2.
The most general algorithm among the descendants of [16] is Tuitman’s algorithm

[23], which can handle almost all inputs F ∈ Fq[x, y]. The main drawback of Tuitman’s
algorithm is that it requires as input a “good” characteristic zero lift of the polynomial
F ∈ Fq[x, y]. The properties this lift must have are rather technical; they are described in
[23, Ass. 1]. Such a lift always exists (provided that p > 2 and allowing for extension of the
base field), but the problem of efficiently computing a good lift for arbitrary F ∈ Fq[x, y] is
difficult. Castryck, Tuitman and Vermeulen have shown in [6,7,23] how one can compute
a suitable lift for inputs F that are nondegenerate with respect to their Newton polytope,
or that define a curve of geometric genus at most 5, or that define a curve of arithmetic
gonality at most 5.
There aremore general p-adic algorithms that can be used to compute the zeta function

of an arbitrary n-dimensional variety over Fq and that have polynomial time complexity
for fixed p. Lauder and Wan were the first to demonstrate an algorithm having these
properties; they achieved this by using ideas originally presented by Dwork in his proof of
the rationality of the zeta function. Forfixedn, in the caseof ann-dimensional hypersurface
over Fq , Lauder andWan achieved a time complexity polynomial in a, p and the degree d
of the defining polynomial [17, Thm. 37]. In [14], Harvey developed an algorithm similar
in nature to that of [17] but with asymptotically superior time complexity [14, Thm. 1.2].
Our algorithm is based on the trace formula for counting points on a hypersurface

from [14, §3]. We present a modified version of this trace formula in Sect. 2. In [14],
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Harvey suggested that one could compute the zeta function of a nonsingular curve by
using the trace formula to count points on a plane model, which gives the right result
except possibly at the singularities of that model, and afterwards making corrections for
these singularities. We make explicit in Sect. 3 how one does this.
Let F and ˜X be as in Theorem 1.1, and let X0 be the affine curve cut out by F , with

projective closure X . By using Harvey’s trace formula we can count the points on X in
any extension Fqr/Fq . If X happens to be nonsingular, then we actually have that X is
isomorphic to ˜X over Fq , and by counting points on X in extensions of Fq of degree up to
g we succeed in computing Z(˜X, T ).
IfX is singular, a naive approach to computingZ(˜X, T ) using the trace formula would be

to compute Z(X, T ) and then remove extraneous factors from the numerator, i.e., remove
factors whose roots have absolute value 1 rather than q− 1

2 . One can compute Z(X, T ) by
bounding the degree of the numerator using Bombieri’s bound [4, Thm. 1A], and then
counting points on X in extensions of Fq of degree up to this bound.
Our algorithm does better than the naive approach — it avoids costly computations of

point-counts on X that are performed when using the naive approach in the case that X
is singular. In our algorithm we count only the Fqr -rational points on X for r = 1, . . . , g ,
and we determine using the Montes algorithm [13] precisely how ˜X differs from X by
factoring ideals related to the singular points ofX in maximal ordersO of Fq(˜X).With the
point-counts on X for r = 1, . . . , g and the extra information about how ˜X and X differ
we determine the values |˜X(Fqr )| for r = 1, . . . , g , and hence compute Z(˜X, T ).
Themain advantage our algorithmhas overTuitman’s is thatwe require no assumptions

about the lift F of F to characteristic zero. To apply Harvey’s trace formula we must
lift F ∈ Fq[x, y] to some F ∈ Zq[x, y], but any lift suffices. We have implemented our
algorithm in the q = p case in the computer algebra system MAGMA [5] and made the
code publicly available. In Sect. 4 we compare the performance of our implementation
against the MAGMA implementation of Tuitman’s algorithm.

2 Harvey’s trace formula
In this section, we shall present a generalisation of the trace formula given in Theorem 3.1
of [14]. This version allows us to take into account the shape of the polynomial defining
a curve (or more generally, hypersurface), and therefore results in a more efficient com-
putation of point-counts than if one were to use a straightforward implementation of the
formula from [14]. Our version works with the actual Newton polytope of the polynomial,
whereas [14, Thm. 3.1] works with a dilation of the standard simplex that contains that
Newton polytope. For our point-counting purposes we only need the case of curves, but
we shall present the general hypersurface case as it is no harder to state or prove.
For any domain R, we denote the Laurent polynomial ring R[x1, x−1

1 , . . . , xn, x−1
n ] by

R[x±], and for F ∈ R[x±] and u = (u1, . . . , un) ∈ Z
n, we denote by [F ]u the coefficient of

xu = xu11 · · · xunn in F . Throughout, we shall use K to denote a convex polytope in R
n with

integral vertices. We will denote by KZ the set of integral points in K , i.e., KZ := K ∩ Z
n.

For F ∈ R[x±], we denote by �(F ) the Newton polytope of F , by which we mean the
convex hull in R

n of the finite set {u ∈ Z
n : [F ]u 	= 0} ⊆ Z

n. We denote by PK the free
R-module on the set of monomials with exponents in K ∩ Z

n:

PK :=
⊕

u∈KZ

R xu.
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For s ∈ Z
+, let sK denote the s-fold dilation of K . For two convex polytopes K1, K2 denote

by K1 ⊕ K2 the Minkowski sum {v1 + v2 : v1 ∈ K1, v2 ∈ K2}. One can show that for
F, G ∈ R[x±] and s ∈ Z

+, we have �(FG) = �(F ) ⊕ �(G) and �(Fs) = s�(F ).
For n ≥ 1, let An

Fq
denote affine n-space over Fq with coordinates x1, . . . , xn. Let Tn

Fq
be

the affine torus {x1 · · · xn 	= 0} ⊆ A
n
Fq
. When we refer to a hypersurface V in T

n
Fq

cut out
by F ∈ Fq[x±], we mean the variety with geometric points

{(c1, . . . , cn) ∈ (Fq
∗)n : F (c1, . . . , cn) = 0}

where Fq is an algebraic closure of Fq . We denote by V (Fqr ) the set of Fqr -rational points
on V , i.e., the geometric points

{(c1, . . . , cn) ∈ (F∗
qr )n : F (c1, . . . , cn) = 0}.

For q = pa, let Qq denote the unique unramified extension of degree a of Qp, and let
Zq denote the ring of integers of Qq . Let φ : Fq → Fq be the absolute Frobenius map
x �→ xp. We shall also denote by φ the unique lift of the Frobenius map to a continuous
ring automorphism Zq → Zq .
We now define maps φ,ψ , TH , AH analogous to the maps φ,ψ , TH , AH in [14, §3.1].

Define φ,ψ : Zq[x±] → Zq[x±] by
φ(G) =

∑

u∈Zn

φ([G]u)xpu, ψ(G) =
∑

u∈Zn

φ−1([G]pu)xu.

ForH ∈ Zq[x±], let TH : Zq[x±] → Zq[x±] be the multiplication operatorG �→ HG, and
let

AH = ψ ◦ THp−1 .

Note that AH is a φ−1-semilinear map. Form ≥ 1, we also define

H (m) = (H · φ(H ) · · · φm−1(H ))p−1.

It is straightforward to check that

Am
H = ψm ◦ TH (m)

for any m ≥ 1, and that AH maps PK into PK for K ⊇ �(H ). Note that Aa
H = ψa ◦ TH (a)

is a linear map, it is not just φ−1-semilinear.
The following theorem directly generalises [14, Thm. 3.1].

Theorem 2.1 Let K ⊆ R
n be a convex polytope with integral vertices, and let F ∈ Fq[x±]

be a non-zero Laurent polynomial with �(F ) ⊆ K. Let V be the hypersurface in T
n
Fq

cut
out by F. Let F ∈ Zq[x±] be any lift of F with �(F ) ⊆ K. Let r, λ, τ be positive integers
satisfying

τ ≥ λ

(p − 1)ar
.

Then

|V (Fqr )| = (qr − 1)n
λ+τ−1
∑

s=0
αstr(Aar

Fs ) (mod pλ),

where

αs = (−1)s
τ−1
∑

t=0

(−λ

t

)(

λ

s − t

)

∈ Z,

and where Aa
Fs is regarded as a linear operator on the Zq-module PsK .
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Remark 2.2 Harvey mistakenly described the map AFs as a Zq-linear operator in [14,
Thm. 3.1]. ThemapAa

Fs is aZq-linear operator, but in generalAFs is only φ−1-semilinear.

We do not give a proof of this theorem. The proof is identical to the one provided by
Harvey for [14, Thm. 3.1], except that we remove all references to degree and replace
them with the application of the results �(Gs) = s�(G) and �(G1G2) = �(G1)⊕ �(G2).
The key idea of Harvey’s proof is to construct an indicator function J on (Z∗

qr )n that takes
the value 1 ∈ Z/pλ

Z if the input c ∈ (Z∗
qr )n reduces mod p to a zero of F , and takes the

value 0 otherwise.
As in [14, Lem. 3.2], we now give a more computationally explicit description of Aar

Fs .

Lemma 2.3 Let F ∈ Zq[x±] be as in Theorem 2.1. The matrix of Aa
Fs on PsK , with respect

to the basis {xu : u ∈ (sK )Z}, is given by

φa−1(Ms) · · · φ(Ms)Ms

where Ms is the square matrix defined by

(Ms)v,u = [F (p−1)s]pv−u

for u, v ∈ (sK )Z, and where φ acts component-wise on matrices.

The proof of this lemma is identical to the one provided in [14]. The difference between
our Theorem 2.1 and Lemma 2.3 and Harvey’s Theorem 3.1 and Lemma 3.2 is that
Harvey works with homogeneous F in Fq[x0, . . . , xn] rather than Laurent polynomials in
Fq[x1, x−1

1 , . . . , xn, x−1
n ]. In Harvey’s proof of Theorem 3.1, homogenous polynomials act

as a convenient book-keeping device — the extra variable x0 serves as a way to keep track
of relations between Newton polytopes. However, given that the trace formula counts
points on a hypersurface in an affine torus it is in fact more appropriate to work with
Laurent polynomials, and thus our Theorem 2.1 is a more natural way to state Harvey’s
trace formula.

3 The algorithm
Let Fq , F and ˜X be as in Theorem 1.1. Here we shall present an algorithm based on [14]
that takes F as input and outputsZ(˜X, T ). Our algorithm consists of two independent sub-
routines. The first subroutine counts the number of Fqr -rational points on the projective
plane model X defined by F for r = 1, . . . , g ; the second subroutine determines the errors
|˜X(Fqr )| − |X(Fqr )| for each r. We refer to the former subroutine as CountPlaneModel,
and the latter as ComputeCorrections. We expect the asymptotic time complexity of
CountPlaneModel to dominate that of ComputeCorrections.

3.1 Counting points on a plane model

Here we describe the CountPlaneModel algorithm. It takes as input a non-zero polyno-
mial F ∈ Fq[x, y], a positive integerD, and a positive integer λ. The polynomial F cuts out
an affine plane curve X0, whose projective closure we denote by X . The algorithm outputs
a list of the point-counts |X(Fqr )| (mod pλ) for r = 1, . . . , D.
The idea of the algorithm is to first count the points on X ∩ T

2 by applying the trace
formula from Theorem 2.1 to F , followed by locating and counting the points on X \ T2.
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Given the input F, λ, D, the first step in CountPlaneModel is to choose an F ∈
(Zq/pλ

Zq)[x, y] satisfying F (mod p) = F and �(F ) = �(F ) to which we can apply
the trace formula. Here the ring Zq/pλ

Zq is represented as (Z/pλ
Z)[t]/b, where b ∈

(Z/pλ
Z)[t] is a monic, degree a lift of the irreducible degree a polynomial b̄ ∈ Fp[t]

defining the extension Fq/Fp. In our application of the trace formula, we will ultimately
evaluate

|(X ∩ T
2)(Fqr )| (mod pλ) = (qr − 1)2

S
∑

s=0
αstr(Aar

Fs ) (mod pλ) (3.1)

for all r = 1, . . . , D. In each of these sums we take S := λ+ τ −1 with τ := �λ/(a(p−1))�;
by Theorem 2.1 this choice of τ guarantees the correct result modulo pλ for every r ∈ Z

+.
We can do these evaluations of (3.1) efficiently in the manner described below — this is
the same as what is described in [14, §3], with a slight modification to account for the
fact that we are working with the Newton polygon �(F ) of F rather than the polygon
Conv{(0, 0), (0, d), (d, 0)} ⊇ �(F ).
As in [14, §3], we iterate s over 1, . . . , S: for each s we first construct the matrix Ms

modulo pλ where Ms is the matrix described in Lemma 2.3, then we compute the traces
tr(Aar

Fs ) (mod pλ) for r = 1, . . . , D. We compute Ms by expanding F (p−1)s and reading
off coefficients at monomials pv − u where u, v ∈ s�(F ) ∩ Z

2. We compute the traces
tr(Aar

Fs ) (mod pλ) for r = 1, . . . , D exactly as in [14, Lemma 3.4]. That is, we compute the
matrix ofAa

Fs using a modified binary powering algorithm in accordance with Lemma 2.3,
and we naively compute the required traces by computing D successive powers of that
matrix. Having computed all of the required traces tr(Aar

Fs ) (mod pλ) for 1 ≤ r ≤ D and
1 ≤ s ≤ S, we iterate r over 1, . . . , D and use (3.1) to compute |(X ∩ T

2)(Fqr )| (mod pλ)
for each r.
Computing |(X \ T

2)(Fqr )| (mod pλ) for r = 1, . . . , D can be done by factoring three
univariate polynomials over Fq . We count the points on X in P

2 \ T
2 by factoring the

polynomials F0, F1, F2 ∈ Fq[t] defined by F0(t) := Fh(t, 1, 0), F1(t) := Fh(0, t, 1), and
F2(t) := Fh(1, 0, t), where Fh ∈ Fq[x0, x1, x2] denotes the homogenisation of F .
For simplicity of exposition we have described an unoptimised version of the Count-

PlaneModel algorithm, whose time complexity has a dependence in p of p2+o(1) rather
than p

1
2+o(1). To achieve the time complexity stated inTheorem1.1, one can use the defor-

mation recurrence technique from [14, §4] to compute the required matrices Ms rather
than using the naive approach of expanding powers of F and reading off the required coef-
ficients. Another optimisation arises from using an individual precision λr and upper limit
Sr for each r rather than the global precision λ and upper limit S = λ+�λ/(a(p−1))�−1.
The most computationally expensive parts of applying the algorithm described above

are: (1) the computation of the coefficients of the powers F (p−1)s that are required to
construct the matrices Ms, and (2) the computation of the matrix powers Aar

Fs and their
traces. On (2), note that the dimension of the matrix Ms is roughly s2vol(�(F )) as by
construction the matrix Ms has dimension equal to the number of integral points in
s�(F ), and in R

2 the polygon s�(F ) has s2 times the volume of �(F ).

3.2 Computing corrections for miscounted points

Here we describe the ComputeCorrections algorithm. It takes as input an absolutely
irreducible polynomial F ∈ Fq[x, y] of degree d ≥ 2 and a positive integer D, and it
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outputs a list of the differences |˜X(Fqr )| − |X(Fqr )| for r = 1, . . . , D, where X is the
projective closure of the affine plane curve cut out by F .
The idea of the algorithm is to reduce the problem of computing the differences

|˜X(Fqr )| − |X(Fqr )| to the problem of counting points on ˜X and X above a certain set
of points on P

1. To do this, we rely on the following theorem.

Theorem 3.1 Let π : ˜X → X be the normalisation of X. Let S be the singular subscheme
of X. Let Z be any subscheme of X containing S, and let ˜Z = π−1(Z). Then we have

|˜X(Fqr )| − |X(Fqr )| = |˜Z(Fqr )| − |Z(Fqr )|.

Sketch proof Theorem 3.1 follows from: (1) the fact that for any closed point p on X , we
have

˜OX,p =
⋂

q∈π−1(p)

O
˜X,q

whereOX,p ⊆ Fq(˜X) is the ring of rational functions onX that are regular at p, ˜OX,p is the
integral closure in Fq(˜X) of that ring, and O

˜X,q ⊆ Fq(˜X) is the ring of rational functions
on ˜X that are regular at q [22, Thm. III.2.6], and (2) the fact thatOX,p is integrally closed
if p is a nonsingular closed point on X [18, Prop. VII.2.6]. ��

We will compute the differences by choosing a subscheme Z of X containing S and
counting points on both Z and ˜Z = π−1(Z). Our ComputeCorrections algorithm will
consist of three subroutines: ComputeY, CountPointsOnZ and CountPointsAboveZ,
which we describe below.

3.2.1 Counting points on Z

Let a0(x), . . . , an(x) be the coefficients of F when regarded as a polynomial in y over Fq[x],
i.e., when we write F = an(x)yn + · · · + a0(x) with an(x) 	= 0. Let X0 be the affine plane
curve cut out by F , and let S0 be the singular subscheme of X0. Let ϕ : X0 → A

1 be the
morphism of curves (x, y) �→ x. Let A be the closed set of A1 where an(x) vanishes.
We define subschemes Y0, Y of P1 and Z0, Z of X as follows:

Y0 := ϕ(S0) ∪ A,

Z0 := ϕ−1(Y0),

Y := Y0 ∪ {∞},
Z := Z0 ∪ (X \ X0).

(3.2)

That is, the points of Y0 are the x-coordinates of singular points on X0 together with the
x-coordinates of “vertical asymptotes” of X0. The points on Z0 are those points on X0
that share an x-coordinate with a singular point, along with those points at which an(x)
vanishes. The points on Z ⊆ X are all of the points on Z0 ⊆ X0 together with all of the
points on X \ A

2 ⊆ P
2. Note that by construction, Z contains S. An illustration of the

schemes Z0 and Y0 is shown below in Fig. 1.
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A
1

X 0

Fig. 1 An example showing Y0 ⊆ A
1 (black square) and Z0 ⊆ X0 (black circle)

Based on the discussion above we now introduce the subroutine ComputeY. It takes as
input the polynomial F and outputs a list of irreducible polynomials in Fq[x] representing
the closed set Y0 ⊆ A

1. This subroutine amounts to finding the distinct irreducible factors
of the polynomial an(x)·gcd(resy(F, ∂F

∂y ), resy(F,
∂F
∂x )). Note that resy(·, ·) denotes the resul-

tant where the polynomials are regarded as univariate polynomials in ywhose coefficients
are polynomials in x, and hence the set of roots of gcd(resy(F, ∂F

∂y ), resy(F,
∂F
∂x )) ∈ Fq[x]

includes all of the x-coordinates of common zeroes of F, ∂F
∂x and ∂F

∂y , i.e., it includes the
x-coordinates of singular points on X0.
The algorithm CountPointsOnZ takes as input the polynomial F , the list of irreducible

polynomials representing Y0, and a positive integerD, and outputs the list of point-counts
|Z(Fqr )| for r = 1, . . . , D. CountPointsOnZ obtains the desired list of point-counts by:

(1) counting the points on Z ∩A
2 = Z0 by computing the distinct factors in the factori-

sation of F modulo each of the irreducibles in Fq[x] that represent Y0, and
(2) counting the points on Z \ A

2 = X \ A
2 by computing the distinct factors in the

factorisation of the degree d homogeneous part of F .

More precisely, we count points on Z0 by constructing the field Fq[x]/h̄(x) for each irre-
ducible h̄ ∈ Fq[x] representingY0, then factoring theunivariate in ypolynomialF (mod h̄)
over Fq[x]/h̄(x); each distinct irreducible factor in such a factorisation corresponds to a
Gal(Fq/Fq)-orbit of points on X0 whose x-coordinates are roots of h̄(x).
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3.2.2 Counting points on ˜Z

Let ϕ̃ : ˜X → P
1 be the morphism of curves defined by the rational function x ∈

Fq(x)[y]/〈F〉. Note that when F is absolutely irreducible and of degree d ≥ 2 this mor-
phism is surjective.
The following proposition allows us to count points on ˜Z = π−1(Z) by counting the

points on ˜X that lie above the scheme Y ⊆ P
1 defined in (3.2).

Proposition 3.2 The subscheme ˜Z = π−1(Z) of ˜X satisfies

˜Z = ϕ̃ −1(Y ).

Sketch proof We claim that if q ∈ ˜X satisfies π (q) ∈ X0 then ϕ̃(q) = ϕ(π (q)), otherwise
if π (q) /∈ X0 then ϕ̃(q) ∈ A ∪ {∞}. The equality ϕ̃(q) = ϕ(π (q)) for π (q) ∈ X0 follows
from the fact that the morphisms ϕ and ϕ̃ are induced by the same rational function
x ∈ Fq(x)[y]/〈F〉; this is illustrated below in Fig. 2. The inclusion ϕ̃(π−1(X\X0)) ⊆ {∞}∪A
follows from: (1) if 1

x vanishes at p = π (q) then ϕ̃(q) = ∞, and (2) if 1
x does not vanish at

p = π (q) but 1
y does vanish at p, then 1

y ∈ m
˜X,q, and since an(x)y is integral over Fq[x] it

follows that an(x) ∈ mP1 , ϕ̃(q). ��

To count the points on ˜X lying above Y , we rely on the Montes algorithm [13], which
we shall refer to asMontes. For details on the time complexity of Montes see [2]. Montes
takes as input amonic irreducible separable polynomial F ∈ Fq[x][y] defining the function
fieldFq(x)[y]/〈F〉 and an irreducible polynomial h̄(x) ∈ Fq[x], and outputs the list of closed
points on ˜X that lie above the closed point defined by h̄(x) on A

1 = Spec(Fq[x]).
Note that in Theorem 1.1 we do not assume that the input F is monic in y, butMontes

does require an input which is monic in y. Fortunately this is not an issue as it will suffice
to apply Montes to the polynomial F ′ = yn + an−1(x)yn−1 + · · · + a0(x)an(x)n−1 instead.
This works because F and F ′ define the same extension of Fq(x) via the isomorphism
y �→ an(x)y.

Fig. 2 An example showing ϕ̃ = ϕ ◦ π



100 Page 10 of 17 M. Kyng Res. Number Theory (2022) 8:100

The algorithm CountPointsAboveZ takes as input the polynomial F , the list of irre-
ducible polynomials representing Y0 and a positive integer D, and outputs the list of
point-counts |˜Z(Fqr )| for r = 1, . . . , D. In accordance with Proposition 3.2, Count-
PointsAboveZ obtains the desired list of point-counts by:

(1) counting the points on ϕ̃−1(Y0) via applying Montes to F ′ for each of the irreducibles
h̄(x) in Fq[x] that represent Y0, and

(2) counting the points on ϕ̃−1(∞) via applyingMontes to a polynomial F ′′ and h̄(x) = x,
where F ′′ is the polynomial that we get from F ′ via the change of variables (x, y) �→
( 1x ,

y
xm ) withm := degx(F

′).

3.2.3 Computing the corrections

We can now describe the algorithm ComputeCorrections. Given the input F ∈ Fq[x, y]
and D, the algorithm first runs the subroutine ComputeY to obtain a representation
L of the points in Y ⊆ P

1. It then runs the subroutines CountPointsOnZ and Count-
PointsAboveZwith argumentsF, D andL to obtain the point-counts |Z(Fqr )| and |˜Z(Fqr )|
for r = 1, . . . , D, fromwhich we obtain the differences |˜X(Fqr )|−|X(Fqr )| for r = 1, . . . , D
by computing |˜X(Fqr )| − |X(Fqr )| = |˜Z(Fqr )| − |Z(Fqr )| in accordance with Theorem 3.1.

3.3 The main algorithm

We may now outline an efficient algorithm for computing Z(˜X, T ). Given an absolutely
irreducible F ∈ Fq[x, y] of degree d ≥ 2, we can compute the genus g of Fq(x)[y]/〈F〉
using existing efficient algorithms [15]. From the Weil conjectures, we have the Hasse–
Weil bound

∣

∣qr + 1 − |˜X(Fqr )|
∣

∣ ≤ 2gqr/2, (3.3)

hence we can recover the value |˜X(Fqr )| from its reduction modulo any integer strictly
larger than 4gqr/2. Based on this, we take λ = �logp(4gqg/2 + 1)�, and run Count-
PlaneModel with arguments F , λ and g . We get a list of point-counts |X(Fqr )| (mod pλ)
for r = 1, . . . , g as output. We then run ComputeCorrections with arguments F and g
to obtain a list of the differences |˜X(Fqr )| − |X(Fqr )| for r = 1, . . . , g . Adding these lists
together modulo pλ gives us the point-counts |˜X(Fqr )| (mod pλ) for r = 1, . . . , g . We
then recover the exact values |˜X(Fqr )| ∈ Z using (3.3). From the power series expansion
of

(1 − T )(1 − qT ) exp
( g

∑

r=1

|˜X(Fqr )|
r

T r
)

we obtain the coefficients of the numerator of Z(˜X, T ) up to the monomial Tg . We obtain
the remaining coefficients by using the functional equation (1.1) for Z(˜X, T ).

4 Implementation and examples
We have implemented the algorithm described in this paper for prime fields Fp in the
computer algebra system MAGMA [5]. We have implemented a version with time com-
plexity p2+o(1)dO(1). Note that this differs from the time complexity given in Theorem 1.1
— the dependence in p here is p2 instead of p1/2. The reason for this difference is that
the current implementation involves computing the polynomials F (p−1)s mentioned in
Lemma 2.3 instead of using the deformation-recurrence technique from [14] to obtain
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only the coefficients that we need. In the future we hope to make available an updated
implementation which incorporates the deformation-recurrence technique and which
works for arbitrary finite fields Fq .
In this section we present and discuss data we have collected about the implementation

of our algorithm and the MAGMA implementation of Tuitman’s algorithm. In Sect. 4.1
we provide examples comparing the runtime of our code to that of the MAGMA imple-
mentation of Tuitman’s algorithm, and in Sect. 4.2 we present some data on example
computations of our code on inputs that cannot be readily dealt with by existingmethods.
Our implementation takes as input an absolutely irreducible F ∈ Fp[x, y]. Tuitman’s

implementation takes as input a pair (F, p) where F ∈ K [x, y], F is monic in y, p is a prime,
andK is a number field inwhich p is inert. The polynomial F fed into Tuitman’s codemust
define a “good” lift of the curve defined by F (mod p) over the field ZK /pZK , i.e., F must
define a lift satisfying [23, Ass. 1]. Tuitman’s algorithm has time complexity ˜O(pd6xd4y a3),
where a = [ZK /pZK : Z/pZ], dy is the degree of F in x, and dx is the degree of F in y.
As mentioned in the introduction, the main advantage of our algorithm over Tuitman’s

is that it does not require the computation of a “good” lift of an input F ∈ Fq[x, y] to
characteristic zero. Our code is capable of handling arbitrary absolutely irreducible inputs
F ∈ Fp[x, y], including those for which one cannot readily compute a lift F ∈ Q[x, y] of F
satisfying Assumption 1 of [23]. Furthermore, even when it is feasible to compute a good
lift of an input F , the lift one obtains may have properties that cause Tuitman’s code to
run slowly when compared to the execution of our code on the original F .
The inputs F for which our code is most likely to outperformTuitman’s are those where

F does not meet Baker’s bound on the genus [3, Thm. 2.4], i.e., inputs F for which the
geometric genus of the curve defined by F is strictly less than the number of integral
interior points of �(F ). Note that these are precisely those F that define a singular curve
in the projective toric surface associated with �(F ). When F meets Baker’s bound, one
can almost always take a naive Newton polygon preserving lift of F to obtain a good lift
for Tuitman’s algorithm [6, §2.2].
When F does not meet Baker’s bound, determining a lift satisfying [23, Ass. 1] is a

difficult problem. In some cases this problem can be dealt with by using the methods
of [6] or [7]—these methods apply to inputs F that define curves of geometric genus at
most 5 or whose Newton polygon �(F ) has lattice width at most 5. The width of a convex
polytope K ⊆ R

n along a direction d ∈ R
n is defined to be

wd(K ) = max
x∈K d · x − min

x∈K d · x.
The lattice width of a convex polytope K ⊆ R

n with integral vertices is defined to be

lw(K ) = min
d∈Zn\{0}

wd(K ).

For K ⊆ R
2 one can equivalently define the lattice width as the minimal height of a

horizontal strip inside which K can be mapped by a unimodular transformation.
The timings obtained in this section were obtained using MAGMA V2.25-7 on a com-

puter with an Nvidia RTX 3090 GPU and an Intel Core i9-12900K CPU with 128GB of
memory running Ubuntu 20.04. These timings show what is achievable in practice when
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running a straightforward MAGMA implementation of our algorithm on high-end con-
sumer hardware. TheMAGMA supported linear algebra on an RTX 3090 GPU allows for
very fast matrix multiplication, making it feasible to apply our algorithm to a large range
of curves.
It should be noted that the MAGMA implementation of Tuitman’s algorithm may be

able to be significantly improved. Improvements that appeared inMAGMAV2.25-7 were
made by MAGMA developer Allan Steel after being sent test inputs from the present
author that were found during the writing of this paper. An advantage of our algorithm
(particularly the subroutine CountPlaneModel) is that it is comparatively simple and
straightforward to implement, and its current implementation has the potential to be
sped up substantially through simple low-level optimisations.
The code for the implementation of our algorithm is available at https://github.com/

Maddels/zeta_function_. Along with the implementation of our algorithm we provide
code for testing the correctness of the output that our code produces. The functions
provided for testing correctness do not guarantee that the output is correct — failing a
test indicates that an error has occurred; passing a test gives partial evidence that the
output is consistent with the correct result. We test for correctness by: (1) comparing the
point-count that is predicted by the output zeta function for an extension Fpi where i > g
with the point-count that is computed by applying the trace formula (2.1) for the extension
Fpi , and (2) comparing the point-counts that are predicted by the output zeta function for
small extensions Fpi with point-counts that are computed by naive enumeration. These
tests were applied for each of the inputs appearing in Sect. 4.2. Correctness was checked
for the inputs in Sect. 4.1 by comparing the output obtained by our implementation to
the output obtained by the MAGMA implementation of Tuitman’s algorithm.

4.1 Comparison with Tuitman’s algorithm

We now provide examples where we compare the runtime of our implementation with
that of theMAGMA implementation of Tuitman’s algorithm.More precisely, we compare
the runtime of our algorithm on an input F against the combined time of computing a
“good” lift F of F followed by running Tuitman’s algorithm on input F . For the examples
below, we further provide a breakdown of the runtime of both implementations into the
runtimes of their key steps. For our implementation, the key steps are:

(A1) Computing the powers F (p−1)s needed for the construction of the matricesMs.
(A2) Computing the matrix powersMr

s and their traces.
(A3) All other required computations in the algorithm, including computing the correc-

tions to the point-counts for the plane model.

For theMAGMA implementation of Tuitman’s algorithm combined with lifting to obtain
a valid input for Tuitman’s code, the key steps are:

(B1) Computing a good lift F of F to feed into Tuitman’s algorithm.
(B2) Computing the objects �, r(x), s(x, y),W 0,W∞, G0, G∞ described in [23, §2].
(B3) Computing the basis of H1(˜X).
(B4) Computing the Frobenius lift.

https://github.com/Maddels/zeta_function_
https://github.com/Maddels/zeta_function_
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(B5) Computing reduction matrices.
(B6) Computing the Frobenius matrix, from which the zeta function is computed by

computing the characteristic polynomial.

Note that steps (B3)–(B6) above correspond to steps I–IV described in [23]. To perform
(B1) for a given F , we used MAGMA implementations of the methods described in [6,7],
and when those methods were not applicable we instead tried computing a lift whose
singular points are lifts of the singular points on the input plane model. That is, for
an input F to which the methods of [6,7] do not apply, we attempted to compute an
F ∈ Z[x, y] that: (1) reduces mod p to F , and (2) defines a plane curve over Q whose
singularities reduce mod p to the singularities of X . This method does not guarantee a lift
satisfying [23, Ass. 1], but in the case where the input F defines a nodal plane curve we
often succeed in finding such a lift.
Below we present the runtimes for a selection of 10 inputs F that have a variety

of features. These 10 inputs along with our code for performing step (B1) can be
found on the webpage https://github.com/Maddels/zeta_function_ in the MAGMA files
runtime_comparison_examples.m andlift_curve.m. Inputs 1 and2 are exam-
ples that were made available by Tuitman at the webpage https://github.com/jtuitman/
pcc/blob/master/pcc_p/example_p.m, inputs 3 and 4 were the examples explicitly given
in [7, §6] for d = 4 and d = 5, input 5 was generated by specifying its Newton polygon
and singular behaviour, and the remaining 5 inputs were generated using the MAGMA
function RandomCurveByGenus.
Table 1 gives information on the nature of these inputs F and the curves they define, as

well as which lifting strategy was applied for each input. In Table 1 we denote a naive lift
by N, a lift obtained using themethods of [6] by CT, a lift obtained using themethods of [7]
by CV, and a singular-point-preserving lift by S. Table 2 gives information on the runtime
and memory usage of the implementations of each algorithm on each of these inputs, and
Table 3 provides a breakdown of these runtimes into steps A1-A3 and B1-B6. In Table 2
we denote the new algorithm by HK, and Tuitman’s algorithm by T. If the runtime for
an example exceeded 12 hours then the computation was terminated, with information
provided on the runtimes of completed key steps up until the point of termination.

Table 1 Inputs for runtime comparison

Input # 1 2 3 4 5 6 7 8 9 10

Lifting strategy N N CV CV CV S S S CT CT

Meets Bakers bound Yes Yes No No No No No No No No

lw(�(F)) 3 5 4 5 5 6 7 9 5 5

p 1009 11 7 17 101 23 3 19 43 11

g 4 16 10 9 12 6 8 10 4 5

#
(

int(�F) ∩ Z
2
)

− g 0 0 47 87 54 4 13 18 2 5

Vol(�(F)) 7.5 22.5 80 125 87.5 18 30 40.5 12.5 17.5

https://github.com/Maddels/zeta_function_
https://github.com/jtuitman/pcc/blob/master/pcc_p/example_p.m
https://github.com/jtuitman/pcc/blob/master/pcc_p/example_p.m


100 Page 14 of 17 M. Kyng Res. Number Theory (2022) 8:100

Table 2 Runtime and memory comparison

curve HK time T time HK memory T memory

1 37.98s 7.65s 4141MB 122MB

2 27.38s 14.32s 1608MB 469MB

3 13.67s 1.96s 922MB 479MB

4 40.95s 9466.71s 2793MB 735MB

5 199.16s ≥ 12h 8751MB ≥ 4415MB

6 0.32s 437.31s 1835MB 1954MB

7 3.43s 10607.16s 2032MB 6567MB

8 9.55s ≥ 12h 2889MB ≥ 3844MB

9 0.08s 2.01s 2435MB 2435MB

10 0.09s 32.55s 2435MB 2435MB

Bold value indicates which column has the shorter runtime for that row

Table 3 HK and T runtime breakdown (in seconds)

# A1 A2 A3 B1 B2 B3 B4 B5 B6

1 37.44 0.11 0.43 0.00 0.02 0.04 1.00 1.07 5.52

2 0.46 26.76 0.16 0.00 0.64 2.08 1.42 0.69 9.49

3 0.24 13.39 0.04 0.18 0.10 0.45 0.13 0.16 0.94

4 1.13 39.72 0.10 64.07 73.22 9222.68 1.53 0.62 104.58

5 107.50 90.97 0.69 2236.41 1322.85 - - - -

6 0.15 0.16 0.01 0.10 267.41 125.27 0.69 3.70 40.14

7 0.17 3.22 0.04 0.03 3372.37 7140.78 4.82 19.54 69.59

8 1.13 8.38 0.04 0.58 - - - - -

9 0.07 0.01 0.00 0.15 0.23 0.37 0.21 0.14 0.91

10 0.02 0.05 0.02 31.82 0.10 0.23 0.05 0.05 0.30

4.2 Examples presently beyond Tuitman’s algorithm

Wenowprovide example computationsof our algorithmon inputsF that cannotbe readily
dealt with by existing methods. We selected our examples based on the lifting strategies
described in §4.1, in the sense that we selected examples for which these methods cannot
be readily applied. One important consideration in the selection of our examples was the
lattice width of the Newton polygon �F . We selected inputs F for which it is difficult (or
impossible) to find a polynomial Ḡ ∈ Fq[x, y] that both satisfies lw(�(Ḡ)) ≤ 5 and defines
the same nonsingular curve as F .
The arithmetic gonality of a curve ˜X over Fq is the minimal degree of the extension

Fq(˜X)/Fq(α) over all α ∈ Fq(˜X) \ Fq . In the case where g(˜X) ≥ 1, the arithmetic gonality
of ˜X coincides with the minimum lattice width lw(�(Ḡ)) among all Ḡ ∈ Fq[x, y] that
define a function field isomorphic to Fq(˜X).
We chose examples F with lw(�(F )) ≥ 6 and g(˜X) ≥ 9 as these are likely to have

arithmetic gonality exceeding 5, in which case it would be impossible to find a polynomial
Ḡ ∈ Fq[x, y] defining the same function field as F to which the methods of [7] apply. The
restriction g(˜X) ≥ 9 is based on the statements about gonality given in [6, §2.1]. The Fq-
gonality (i.e., geometric gonality) of a curve over Fq of genus g ≥ 2 must lie in the range
2, . . . , �g/2�+1, and inside themoduli spaceMg of curves of genus g the dimension of the
locus of curves having fixed Fq-gonality γ ∈ {2, . . . , �g/2�+1} is min{2g +2γ −5, 3g −3}
—herewe are assuming as in [6] that this result holds in finite characteristic as well as over
C. Thus for g ≥ 9 the dimension of a locus of curves with an Fq-gonality of γ ≤ 5 inMg is
strictly smaller than that of a locus of curves with an Fq-gonality of γ ∈ {6, . . . , �g/2�+1}.
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Furthermore, even for those F that define a curve ˜X of genus g(˜X) ≥ 9 with arithmetic
gonality at most 5, if the lattice width of �(F ) exceeds 5 then establishing that the curve
has smaller gonality is a difficult problem.One can use the algorithm from [20] to compute
geometric gonality, but as explained in [12] this becomes impractical beyond genus 7, and
even if the geometric gonality is at most 5 it may be the case that the arithmetic gonality
is larger.
Another important consideration in the selection of examples F was the singular nature

of the associated plane curve X . We chose examples with complicated singular behaviour,
in particular those with non-ordinary singularities. For these inputs it should be more
difficult to compute a lift F of F that defines a curve of equal genus.
Ultimately, we selected examples F ∈ Fp[x, y] with the following properties:

• lw(�(F )) ≥ 6,
• g(˜X) ≥ 9,
• F does not meet Baker’s bound,
• the plane curve cut out by F has non-ordinary singularities,
• the naive lift F ∈ Z[x, y] of F , obtained by lifting each coefficient c̄ ∈ Fp of F to an

integer 0 ≤ c < p, defines a curve over Q of genus larger than g(˜X).

In Table 5 we present the runtimes of our implementation on a selection of 7 inputs
having the above properties. All of the inputs below have a Newton polygon of the form
Conv{(0, 0), (0, w), (vw, 0)}wherew ≥ 6 and v ≥ 2. These examples were found by random
search among polynomials that: (1) have a Newton polygon that is equal to a specified
convexpolygonof the formConv{(0, 0), (0, w), (vw, 0)}, and (2) define a curvewith specified
singular behaviour (e.g. having a non-ordinary singularity that takes several blow-ups to
resolve). These 7 inputs can be found on the webpage https://github.com/Maddels/zeta_
function_ in the MAGMA file examples_beyond_tuitman.m (https://github.com/
Maddels/zeta_function_/blob/main/examples_beyond_tuitman.m).

Table 4 Input curves

Input # 1 2 3 4 5 6 7

lw(�(F)) 6 6 6 7 7 8 8

p 19 23 31 19 29 13 17

g 13 20 11 11 12 13 10

#(int(�F) ∩ Z
2) − g 72 50 74 67 66 92 95

Vol(�(F)) 108 90 108 98 98 128 128

Table 5 Runtime and memory usage

Curve Overall time A1 A2 A3 Memory

1 253.28s 4.91s 245.82s 2.55s 15097MB

2 1944.40s 29.07s 1908.90s 6.43s 62568MB

3 119.13s 10.06s 108.22s 0.85s 16985MB

4 59.65s 2.76s 56.76s 0.13s 12200MB

5 176.61s 10.80s 164.75s 1.06s 18723MB

6 632.26s 3.40s 625.03s 3.83s 37145MB

7 90.44s 2.51s 87.69s 0.24s 14111MB

https://github.com/Maddels/zeta_function_
https://github.com/Maddels/zeta_function_
https://github.com/Maddels/zeta_function_/blob/main/examples_beyond_tuitman.m
https://github.com/Maddels/zeta_function_/blob/main/examples_beyond_tuitman.m
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