
D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94
https://doi.org/10.1007/s40993-022-00387-w

RESEARCH

A deterministic algorithm for finding
r-power divisors
David Harvey1* and Markus Hittmeir2

*Correspondence:
d.harvey@unsw.edu.au
1School of Mathematics and
Statistics, University of New
South Wales, Sydney, NSW 2052,
Australia
Full list of author information is
available at the end of the article
The first author was supported
by the Australian Research
Council (grant FT160100219).
SBA Research (SBA-K1) is a
COMET Centre within the
framework of COMET -
Competence Centers for
Excellent Technologies
Programme and funded by BMK,
BMDW, and the federal state of
Vienna. The COMET Programme
is managed by FFG

Abstract

Building on work of Boneh, Durfee and Howgrave-Graham, we present a deterministic
algorithm that provably finds all integers p such that pr | N in time O(N1/4r+ε) for any
ε > 0. For example, the algorithm can be used to test squarefreeness of N in time
O(N1/8+ε); previously, the best rigorous bound for this problem was O(N1/6+ε),
achieved via the Pollard–Strassen method.

1 Introduction
1.1 Statement of main result

Let r be a positive integer. In this paperwe study the problemof finding all r-power divisors
of a given positive integer N , i.e., all positive integers p such that pr | N . Throughout
the paper we write lg x := log2 x, and unless otherwise specified, the “running time” of
an algorithm refers to the number of bit operations it performs, or more formally, the
number of steps executed by a deterministic multitape Turing machine [12]. We always
assume the use of fast (quasilinear time) algorithms for basic integer arithmetic, i.e., for
multiplication, division and GCD (see for example [19] or [4]).
Our main result is the following theorem.

Theorem 1.1 There is an explicit deterministic algorithm with the following properties. It
takes as input an integer N � 2 and a positive integer r � lgN. Its output is a list of all
positive integers p such that pr | N. Its running time is

O
(
N 1/4r · (lgN)10+ε

r3

)
. (1.1)

Note that whenever we write ε in a complexity bound, we mean that the bound holds
for all ε > 0, where the implied big-O constant may depend on ε.
The integers p referred to in Theorem 1.1 need not be prime. Of course, if p is a

composite integer found by the algorithm, then the algorithm will incidentally determine
the complete factorisation of p, as the prime divisors � of pmust also satisfy �r | N .
The hypothesis r � lgN does not really limit the applicability of the theorem: if r > lgN

then the problem is trivial, as the only possible r-power divisor is 1.

123 © The Author(s) 2023, corrected publication 2023. This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1007/s40993-022-00387-w&domain=pdf
http://orcid.org/0000-0002-4933-658X
http://orcid.org/0000-0002-3363-6270
http://creativecommons.org/licenses/by/4.0/

 94 Page 2 of 17 D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94

Theorem 1.1 is intended primarily as a theoretical result. For fixed r the complexity is
O(N 1/4r+ε), which is fully exponential in lgN , so the algorithmcannot compete asymptot-
ically with subexponential factoring algorithms such as the elliptic curve method (ECM)
or the number field sieve (NFS). Furthermore, experiments confirm that for small r the
algorithm is grossly impractical compared to general-purpose factoring routines imple-
mented in modern computer algebra systems.

1.2 Previous work

At the core of our algorithm is a generalisation of Coppersmith’smethod [6] introduced by
Boneh, Durfee and Howgrave-Graham [1]. We refer to the latter as the BDHG algorithm.
Coppersmith’s seminal work showed how to use latticemethods to quickly find all divisors
ofN in certain surprisingly large intervals. To completely factorN , one simply applies the
method to a sequence of intervals that covers all possible divisors up toN 1/2. Each interval
is searched inpolynomial time, so theoverall complexity is governedby thenumberof such
intervals, which turns out to be O(N 1/4+ε). The BDHG algorithm adapts Coppersmith’s
method to the case of r-power divisors. The relationship between our algorithm and the
BDHG algorithm is discussed in Sect. 1.3 below.
We emphasise that, unlike factoring algorithms such as ECM or NFS, whose favourable

running time analyses depend on heuristic assumptions, the complexity bound in Theo-
rem 1.1 is rigorously analysed and fully deterministic. Under these restrictions, for r � 2
it is asymptotically superior to all previously known complexity bounds for the problem
of finding r-power divisors.
Its closest competitors are the algorithms of Strassen [17] and Pollard [14]. These algo-

rithms can be used to find all divisors of N less than a given bound B in time O(B1/2+ε).
If pr | N , say N = prq, then either p � N 1/(r+1) or q � N 1/(r+1), so the Pollard–Strassen
method can be used to find p or q, and hence both, in time O(N 1/2(r+1)+ε). For example,
taking r = 2, these algorithms can find all square divisors ofN in timeO(N 1/6+ε), whereas
our algorithm finds all square divisors in time O(N 1/8+ε).
There is one special case in which the Pollard–Strassen approach still wins. If one

knows in advance that p is relatively small, say p < Nc for some c ∈ (0, 1/2r), then the
Pollard–Strassen method has complexity O(Nc/2+ε), which is better than the bound in
Theorem 1.1. Our algorithm can also take advantage of the information that p < Nc, but
unfortunately this yields only a constant-factor speedup.
Another point of difference is the space complexity. The space required by the algorithm

in Theorem 1.1 is only polynomial in lgN (we will not give the details of this analysis),
whereas for the Pollard–Strassen method the space complexity is the same as the time
complexity, up to logarithmic factors.
In connectionwith the case r = 2, two otherworks areworthmentioning. Booker, Hiary

and Keating [3] describe a subexponential time algorithm that can sometimes prove that a
given integerN is squarefree,with little ornoknowledgeof its factorisation.This algorithm
is not fully rigorous, as its analysis depends on (among other things) the Generalised
Riemann Hypothesis. Peralta and Okamoto [13] present a speedup of the ECM method
for integers of the formN = p2q. Again this result is not fully rigorous, because it depends
on standard conjectures concerning the distribution of smooth numbers in short intervals,
just as in Lenstra’s original ECM algorithm.

D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94 Page 3 of 17 94

The case r = 1 corresponds to the ordinary factoring problem, and in this case our
algorithm is essentially equivalent to Coppersmith’s method. As mentioned above, the
complexity isO(N 1/4+ε), which does not improve on known results; currently, the fastest
known deterministic factoring method has complexity O(N 1/5+ε) [9]. (It is interesting to
ask whether the ideas behind [9] can be used to improve Theorem 1.1 when r � 2. Our
inquiries in this direction have been so far unsuccessful.)
In fact, when r = 1, Theorem 1.1 gives the more precise complexity bound

O(N 1/4(lgN)10+ε). It is apparently well known that Coppersmith’s method has com-
plexity O(N 1/4(lgN)C) for some constant C > 0, but to the best of our knowledge, this is
the first time in the literature that a particular value of C has been specified. On the other
hand, we have not tried particularly hard to optimise the value of C , and it is likely that it
can be improved. (One possible improvement is outlined in Remark 3.6.)

1.3 Relationship to the BDHG algorithm

The authors of [1] weremainly interested in cryptographic applications, and this led them
to focus on the case thatN = prq where p and q are roughly the same size. In this setting,
they show that their algorithm is faster than ECM when r ≈ (log p)1/2, and that it even
runs in polynomial time when r is as large as log p.
In this paper we take a different point of view: our goal is to determine the worst-case

complexity, without any assumptions on the size of p, q or r.
To illustrate what difference this makes, consider again the case r = 2. This case is

mentioned briefly in Section 6 of [1]. The authors point out that if N = p2q, where
p and q are known to be about the same size, i.e., both p and q are within a constant
factor of N 1/3, then the running time of their method is O(N 1/9+ε), i.e., the number of
search intervals is O(N 1/9+ε). However, in our more general setup, this is not the worst
case. Rather, the worst case running time is O(N 1/8+ε), which occurs when searching for
p ∼ N 1/4 and q ∼ N 1/2.
More generally, for r � 1 the worst case running time ofO(N 1/4r+ε) stated in Theorem

1.1 occurs when p ∼ N 1/2r and q ∼ N 1/2. By contrast, in the “balanced” situation
considered in [1], where p, q ∼ N 1/(r+1), one can show that the running time is only
O(N 1/(r+1)2+ε) (see Remark 3.5, and take θ = r/(r + 1)).
Although the core of our algorithm is essentially the same as the BDHG algorithm,

our more general perspective requires us to make a few changes to their presentation.
For instance, we cannot take the lattice dimension to be d ≈ r2 (as is done in the main
theorem of [1]), because this choice is suboptimal when r is small and fixed. Additional
analysis is required to deal with potentially small values of p and q, and in general wemust
take more care than [1] in estimating certain quantities throughout the argument. For
these reasons, we decided to give a self-contained presentation, not relying on the results
in [1].
Remark 1.2 After this paper was accepted for publication, Dan Bernstein mentioned to
us (personal communication) that the proof of Theorem 5.2 of [2] likely includes much of
the argument needed to obtain our Theorem 1.1.

1.4 Root-finding

An important component of our algorithm, and of all algorithms pursuing Coppersmith’s
strategy, is a subroutine for finding all integer roots of a polynomial with integer coeffi-

 94 Page 4 of 17 D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94

cients. This problem has received extensive attention in the literature, but we were unable
to locate a clear statement of a deterministic complexity bound suitable for our purposes.
For completeness, in Appendix A we give a detailed proof of the following result. For
a polynomial f ∈ Z[x], we write

∥∥f ∥∥∞ for the maximum of the absolute values of the
coefficients of f .

Theorem 1.3 Let b � n � 1 be integers. Given as input a polynomial f ∈ Z[x] of degree
n such that

∥∥f ∥∥∞ � 2b, we may find all of the integer roots of f in time

O(n2+εb1+ε).

Note that this complexity bound is much stronger than what is needed for the application
in this paper. However, it is still not quasilinear in the size of the input, which is O(nb).
For further discussion, see Remarks A.8 and A.10.

2 Searching one interval
In this section we recall the strategy of [1] for finding all integers p in a prescribed interval
P −H � p � P +H such that pr | N , provided that H is not too large. We will prove the
following theorem.

Theorem 2.1 There is an explicit deterministic algorithm with the following properties. It
takes as input positive integers N , r, m, d, P and H such that

r � lgN, (2.1)

m � d/r, (2.2)

H < P � N 1/r , (2.3)

and

H (d−1)/2 <
1

d1/2 2(d−1)/4 · (P − H)rm

Nrm(m+1)/2d . (2.4)

Its output is a list of all integers p in the interval P − H � p � P + H such that pr | N. Its
running time is

O
(
d7+ε(1r lgN)2+ε

)
.

A key tool needed in the proof of Theorem 2.1 is the LLL algorithm:

Lemma 2.2 Let d � 1 and B � 2. Given as input linearly independent vectors
v0, . . . , vd−1 ∈ Z

d such that ‖vi‖ � B, in time

O
(
d5+ε(lg B)2+ε

)
we may find a nonzero vector w in the lattice L := span

Z
(v0, . . . , vd−1) such that

‖w‖ � 2(d−1)/4(det L)1/d.

(Here ‖ · ‖ denotes the standard Euclidean norm on R
d.)

Proof We take w to be the first vector in a reduced basis for L computed by the LLL
algorithm [10, Prop. 1.26]. For the bound on ‖w‖, see [10, Prop. 1.6]. (For more recent
developments on lattice reduction, see for example [8, Ch. 17].) ��

D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94 Page 5 of 17 94

Let Z[x]d denote the space of polynomials in Z[x] of degree less than d. The first step
in the proof of Theorem 2.1 is the following proposition, which uses the LLL algorithm to
construct a nonzero polynomial h ∈ Z[x]d with relatively small coefficients in a carefully
chosen lattice.

Proposition 2.3 Let N , r, m, d, P andH be positive integers satisfying (2.1), (2.2) and (2.3).
Define polynomials f0, . . . , fd−1 ∈ Z[x]d by

fi(x) :=
⎧⎨
⎩
Nm−	i/r
(P + x)i, 0 � i < rm,

(P + x)i, rm � i < d.

Then in time

O
(
d7+ε(1r lgN)2+ε

)
(2.5)

we may find a nonzero polynomial

h(x) = h0 + · · · + hd−1xd−1 ∈ Z[x]d

in the Z-span of f0, . . . , fd−1 such that

|h0| + |h1|H + · · · + |hd−1|Hd−1 < d1/2 2(d−1)/4H (d−1)/2Nrm(m+1)/2d. (2.6)

Proof Set f̃i(y) := fi(Hy) ∈ Z[y]d , and let vi ∈ Z
d be the vector whose j-th entry (for

j = 0, . . . , d − 1) is the coefficient of yj in f̃i(y). We will apply Lemma 2.2 to the vectors
v0, . . . , vd−1.
Let

B := d1/2 2dNd/r+1.

We claim that ‖vi‖ � B for all i. First consider the case 0 � i < rm. For any j = 0, . . . , i,
the coefficient of yj in f̃i(y) = Nm−	i/r
(P + Hy)i is equal to

Nm−	i/r
(i
j
)
Pi−jHj � Nm−i/r+12iPi � 2iNm+1 � 2dNd/r+1,

where we have used the hypotheses (2.3) and (2.2). For the case rm � i < d, a similar
argument shows that every coefficient of f̃i(y) = (P + Hy)i is bounded above by 2dNd/r .
Therefore every vi has coordinates bounded by 2dNd/r+1, and we conclude that ‖vi‖ � B
for all i.
Next we calculate the determinant of the lattice L := span

Z
(v0, . . . , vd−1), or equiva-

lently, the determinant of the d × d integer matrix whose rows are given by the vi. Since
deg f̃i(y) = i, this is a lower triangular matrix whose diagonal entries are given by the
leading coefficients of the f̃i(y), namely⎧⎨

⎩
Nm−	i/r
Hi, 0 � i < rm,

Hi, rm � i < d.

The determinant is the product of these leading coefficients, i.e.,

det L = H1+2+···+(d−1) (Nm · · ·Nm)︸ ︷︷ ︸
r terms

(Nm−1 · · ·Nm−1)︸ ︷︷ ︸
r terms

· · · (N · · ·N)︸ ︷︷ ︸
r terms

= H1+2+···+(d−1)(N 1+2+···+m)r

= Hd(d−1)/2Nrm(m+1)/2.

 94 Page 6 of 17 D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94

Invoking Lemma 2.2, we may compute a nonzero vector w ∈ L such that

‖w‖ � 2(d−1)/4H (d−1)/2Nrm(m+1)/2d

in timeO(d5+ε(lg B)2+ε). Note that this time bound certainly dominates the cost of com-
puting the vectors vi themselves, as the f̃i(y)may be computed by startingwith f̃0(y) = Nm,
and then successively multiplying by P+Hy and occasionally dividing byN . The hypothe-
ses (2.1) and (2.2) imply that

lg B � d + (dr + 1) lgN = (r
lgN + 1 + r

d
)d
r lgN �

(
2 + 1

m
)d
r lgN � d

r lgN,

so the cost estimate O(d5+ε(lg B)2+ε) simplifies to (2.5).
The vector w corresponds to a nonzero polynomial h̃(y) = h̃0 + · · · + h̃d−1yd−1 in

the Z-span of the f̃i(y). Applying the Cauchy–Schwartz inequality to the vectors w =
(h̃0, . . . , h̃d−1) and (1, . . . , 1) yields

|h̃0| + · · · + |h̃d−1| � d1/2 ‖w‖ < d1/2 2(d−1)/4H (d−1)/2Nrm(m+1)/2d.

Moreover, each h̃j is divisible by Hj , so we obtain in turn a polynomial h(x) := h̃(x/H) ∈
Z[x]d in the Z-span of the fi(x). Since h(x) = h0 + · · · + hd−1xd−1 with hj = h̃j/Hj for
each j, the estimate (2.6) follows immediately. ��
Next we show that any r-power divisor that is sufficiently close to P corresponds to a

root of h(x).

Proposition 2.4 Let N , r, m, d, P andH be positive integers satisfying (2.1), (2.2) and (2.3),
and let h(x) ∈ Z[x]d be as in Proposition 2.3. Suppose additionally that (2.4) holds, and
that p is an integer in the interval P −H � p � P +H such that pr | N. Then x0 := p− P
is a root of h(x).

Proof We claim that h(x0) is divisible by prm. Since h(x) is a Z-linear combination of the
fi(x) (where fi(x) is defined as in Proposition 2.3), it is enough to prove that prm | fi(x0)
for all i. For the case 0 � i < rm, we have fi(x0) = Nm−	i/r
pi. Since pr | N , we have
pr(m−	i/r
)pi | fi(x0), and this implies that prm | fi(x0) because r	i/r
 � i. For the case
i � rm we have simply fi(x0) = pi, which is certainly divisible by prm.
On the other hand, the assumption −H � x0 � H together with (2.6) and (2.4) implies

that

|h(x0)| � |h0| + · · · + |hd−1|Hd−1 < (P − H)rm � prm.

Since h(x0) is divisible by prm, this forces h(x0) = 0. ��
Wemay now complete the proof of the main theorem of this section.

Proof of Theorem 2.1 We first invoke Proposition 2.3, with inputs N , r, m, d, P and H ,
to find a polynomial h(x) satisfying (2.6). According to Proposition 2.4, we may then
construct a list of candidates for p by finding all integer roots of h(x), which we do via
Theorem 1.3.
To estimate the complexity of the root-finding step, recall from the proof of Proposition

2.4 that |h0| + · · · + |hd−1|Hd−1 < (P − H)rm, so certainly |hj| < (P − H)rm for all j, and
we obtain

∥∥h∥∥∞ < (P − H)rm < Prm � Nm � Nd/r .

D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94 Page 7 of 17 94

Therefore in Theorem 1.3 we may take n := d and b := �lg(Nd/r) = �d
r lgN. Note that

the hypothesis b � n is satisfied due to (2.1). The root-finding complexity is thus

O(d2+ε(dr lgN)1+ε) = O(d3+ε(1r lgN)1+ε),

which is negligible compared to the main bound (2.5). Finally, we must check each candi-
date for p to ensure that pr | N , which again requires negligible time. ��

3 Proof of themain theorem
Wenow consider the problemof searching for all integers p such that pr | N in an interval,
say T � p � T ′, that is too large to be handled by a single application of Theorem 2.1.
Given N , r, T and T ′, our strategy will be to choose parameters d, m and H , and then
apply Theorem 2.1 to a sequence of subintervals of the form P − H � p � P + H that
cover the target interval T � p � T ′. The overall running time will depend mainly on the
number of subintervals, so our goal is to make H as large as possible. On the other hand,
to ensure that the hypothesis (2.4) of Theorem 2.1 is satisfied, we also require thatH < H̃
where

H̃ := 1
d1/(d−1)21/2

· T 2rm/(d−1)

Nrm(m+1)/d(d−1) > 0. (3.1)

The key issue is therefore to choose d and m to maximise H̃ . For large d and m, the
magnitude of H̃ depends more or less on the ratio m/d; in fact, one finds that H̃ is
maximised whenm/d ≈ lg T/ lgN . The following result gives a simple formula form (as
a function of d) that is close to the optimal choice, and a corresponding explicit lower
bound for H̃ .

Lemma 3.1 Let N , r, d and T be positive integers such that d � 2 and T � N 1/r . Let

m :=
⌊
(d − 1) lg T

lgN

⌋
, (3.2)

and let H̃ be defined as in (3.1). Then

H̃ > 1
3N

θ2/r − 1/(d−1),

where

θ := r lg T
lgN

∈ [0, 1] (so that T = N θ/r). (3.3)

Proof The definition ofm implies that (d − 1) θ
r − 1 < m � (d − 1) θ

r , so we may write

m
d − 1

= θ

r
− δ for some δ ∈ [0, 1

d−1).

It is easy to check that d1/(d−1)21/2 < 3 for all d � 2, so we find that

H̃ > 1
3N

2θm/(d−1)−rm(m+1)/d(d−1).

 94 Page 8 of 17 D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94

Continuing to estimate the exponent in this inequality, we obtain

2θm
d − 1

− rm(m + 1)
d(d − 1)

>
2θm
d − 1

− rm(m + 1)
(d − 1)2

= 2θm
d − 1

− rm2

(d − 1)2
− rm

(d − 1)2

= 2θ (θ
r − δ) − r(θ

r − δ)2 − r(θ
r − δ)
d − 1

= θ2

r
+ rδ

(
1

d − 1
− δ

)
− θ

d − 1

� θ2

r
− 1

d − 1
,

where the last line follows from the inequalities 0 � δ < 1
d−1 and 0 � θ � 1. ��

Wemay now estimate the time required to search a given interval T � p � T ′.

Proposition 3.2 There is an explicit deterministic algorithmwith the following properties.
It takes as input positive integers N , r, T and T ′ such that (2.1) holds (i.e., r � lgN) and
such that

4
√

(lgN)/r � T < T ′ � N 1/r . (3.4)

Its output is a list of all integers p in the interval T � p � T ′ such that pr | N. Its running
time is

O
((

T ′ − T
T

· N θ (1−θ)/r + 1
)
(lgN)9+ε

r2

)
,

where θ is defined as in (3.3).

Proof Set

d := �lgN + 1

and define m as in (3.2). Equivalently, m is the largest integer such that Nm � Td−1.
Note that d � 2 (since N � 2r � 2) and m � 	lg T
 � 2 (since T � 4

√
1 = 4). Since

lg(Td−1) � d lg T � (lgN)2, wemay clearly compute d andm in timeO((lgN)2+ε). Also,
the assumption T � N 1/r implies thatm � (d − 1)/r � d/r, so (2.2) holds.
Let H̃ be defined as in (3.1). Since d � lgN + 1, Lemma 3.1 implies that

H̃ > 1
3N

θ2/rN−1/ lgN = 1
6N

θ2/r .

Moreover, (3.4) implies that θ � 2
√
r/ lgN , so we have N θ2/r � N 4/ lgN = 16 and hence

H̃ > 16/6 > 2.
Let H be the largest integer less than H̃ , i.e., H := ⌈

H̃
⌉ − 1. Then 2 � H < H̃ , and

moreover, since H̃ > 2, we also have

H � H̃/2 > 1
12N

θ2/r .

Wemay compute H by first approximating the d(d − 1)-th root of the rational number

H̃d(d−1) = T 2drm

dd2d(d−1)/2Nrm(m+1) ,

D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94 Page 9 of 17 94

and then takingd(d−1)-th powers of nearby integers to find the correct value. The numer-
ator has bit size at mostO(drm lg T) = O(d2 lgN) = O(lg3N), and the denominator also
has bit size at most

O(d lg d + d2 + rm2 lgN) = O(d2 + dm lgN) = O(d2 lgN) = O(lg3N),

so this can all be done in time O((lgN)3+ε).
We now apply Theorem 2.1 with the parameters N , r, d, m, H , and with successively

P = T +H , P = T +3H , and so on, stopping when the interval [T, T ′] has been exhausted
by the subintervals [P−H, P+H]. The hypotheses (2.1), (2.2) and (2.3) have already been
checked above, and (2.4) follows from our choice of H < H̃ because P − H � T . The
number of subintervals is at most⌈

T ′ − T
2H

⌉
� T ′ − T

1
6N θ2/r

+ 1 = 6(T ′ − T)
T

· N θ (1−θ)/r + 1.

Finally, since d � lgN , the cost of each invocation of Theorem 2.1 is

O
(
d7+ε(1r lgN)2+ε

) = O
(
(lgN)9+ε

r2

)
.

��

Remark 3.3 A slightly better choice for d is to take d ≈ θ lgN , but this complicates the
analysis and only improves the main result by a constant factor.

Finally we may prove the main theorem. Recall that we are given as input positive
integers N � 2 and r � lgN , and we wish to find all positive integers p such that pr | N .
Such divisors pmust clearly lie in [1, N 1/r].

Proof of Theorem 1.1 Let

k :=
⌈
2
√�lgN/r

⌉
.

We first check all p = 2, 3, . . . , 2k by brute force, i.e., testing directly whether pr | N . Note
that k may certainly be computed in time O((lgN)1+ε). To estimate the cost of checking
up to 2k , observe that

k � 2
√
(lgN)/r + 1 + 1.

Let C > 0 be an absolute constant such that 2
√
x + 1 + 1 � x/4 + C for all x � 1; it

follows that k � (lgN)/4r + C , and hence that 2k � N 1/4r . The cost of checking up to
2k is therefore O(N 1/4r(lgN)1+ε), which is negligible compared to (1.1).
We now apply Proposition 3.2 to the intervals [2k , 2k+1], [2k+1, 2k+2], and so on until we

reach N 1/r , taking the last interval to be [2j , 	N 1/r
] for suitable j. Since k � 2
√
(lgN)/r,

the precondition (3.4) is satisfied. For each interval we have (T ′ −T)/T = O(1), and since
θ ∈ [0, 1] we have

θ (1 − θ) � 1
4
.

Therefore the cost of searching each interval is

O
(
(N 1/4r + 1) · (lgN)9+ε

r2

)
= O

(
N 1/4r · (lgN)9+ε

r2

)
.

Finally, the number of intervals is at most �lg(N 1/r) = O(1r lgN). ��

 94 Page 10 of 17 D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94

Remark 3.4 The use of dyadic intervals in the above proof was only for convenience; the
same argument would work with intervals [Bj, Bj+1] for any fixed B > 1.

Remark 3.5 The expression N θ (1−θ)/r achieves its maximum value N 1/4r at the point
θ = 1/2. This justifies the claim made in the introduction that the factors pr that are
“hardest” to find are those for which p ∼ N 1/2r .

Remark 3.6 A more careful analysis, taking into account the fact that N θ (1−θ)/r is much
smaller than N 1/4r for most values of θ ∈ [0, 1], shows that the bound (1.1) can be
improved by a factor of O((1r lgN)1/2). Let us briefly explain this calculation. The main
contribution to the cost estimate in the above proof is the number of subintervals, i.e., the
sum of the values of N θ (1−θ)/r over the various dyadic intervals. It can be shown that this
sum is essentially a Riemann sum approximating the integral

logN
r

∫ 1

0
N θ (1−θ)/rdθ .

The argument in the proof of Theorem 1.1 amounted to estimating this integral via the
trivial bound

∫ 1
0 N θ (1−θ)/rdθ �

∫ 1
0 N 1/4rdθ = N 1/4r . A better estimate is obtained by

recognising the integrand as a truncated Gaussian function, i.e.,

∫ 1

0
N θ (1−θ)/rdθ =

∫ 1/2

−1/2
N (1/4−α2)/rdα

� N 1/4r
∫ ∞

−∞
N−α2/rdα =

(
πr

logN

)1/2
N 1/4r .

An interesting question is whether this (lgN)1/2 factor is somehow equivalent to the
(lgN)1/2 factor appearing in [2, §6]; we have not checked this in detail.

Acknowledgements
The authors would like to thank Joris van der Hoeven for helpful discussions on the root finding problem.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Data Availability Statement Data sharing not applicable to this article as no datasets were
generated or analysed during the current study.

Author details
1School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia, 2SBA Research,
Floragasse 7, 1040 Vienna, Austria.

Appendix A. Deterministic root finding
In this section we prove Theorem 1.3. Our root-finding procedure consists of two parts.
In the first part, we discuss how to deterministically find all integer roots of a squarefree
polynomial f ∈ Z[x]. We mainly follow the approach of Loos [11], but we obtain bet-
ter complexity bounds by employing faster algorithms for the underlying arithmetic. In
the second part, we explain how to reduce the general case to the squarefree case. The
reduction depends on computing GCDs in Z[x]; for this purpose we present a rigorous,
deterministic variant of the “heuristic GCD” algorithm of Char, Geddes and Gonnet [5].

D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94 Page 11 of 17 94

A.1. Some preliminary estimates

For f, g ∈ Z[x], let res(f, g) ∈ Z denote the resultant of f and g .

Lemma A.1 Let f, g ∈ Z[x] be nonzero polynomials, and let n := deg f , m := deg g. Then

|res(f, g)| � (n + 1)m/2(m + 1)n/2 ∥∥f ∥∥m∞
∥∥g∥∥n∞ .

Proof See [19, Thm. 6.23]. (The proof uses Hadamard’s bound to estimate the determi-
nant of the Sylvester matrix associated to f and g .) ��

Lemma A.2 (Mignotte’s factor bound) Let f, g ∈ Z[x] be nonzero polynomials, and let
n := deg f , m := deg g. If g divides f in Z[x] then

∥∥g∥∥∞ � (n + 1)1/2 2m
∥∥f ∥∥∞ .

Proof See [19, Cor. 6.33(ii)]. (The proof relies on Landau’s inequality for the Mahler
measure of a polynomial.) ��

Lemma A.3 For all X � 2 we have
∑
p�X

lg p > X/3

(where the sum is taken over primes).

Proof Let ϑ(X) := ∑
p�X log p denote the usual Chebyshev weighted prime counting

function. The claim is that ϑ(X)/X > 1
3 log 2 (≈ 0.231) for all X � 2. For X � 101

this follows from [15, Thm. 10], which states that ϑ(X)/X > 0.84 for X � 101. For
2 � X < 101 the claim may be checked directly, for example by inspecting the graph of
ϑ(X)/X in the reader’s favourite computer algebra system. ��

A.2. The squarefree case

The core idea of Loos’ algorithm is the followingwell-known p-adicHensel lifting strategy.

Proposition A.4 Let p be a prime, let k be a positive integer, and let f ∈ (Z/pkZ)[x] be a
polynomial of degree n � 1. Let u ∈ {0, . . . , p − 1}, and suppose that

f (u) ≡ 0 (mod p), f ′(u) �≡ 0 (mod p).

Then there exists a unique v ∈ {0, . . . , pk − 1} such that

v ≡ u (mod p), f (v) ≡ 0 (mod pk).

Given f and u as input, we may compute v in time

O(n lg(pk)1+ε).

Proof We argue by induction on k . If k = 1, we simply take v = u. Now assume that
k � 2 and set � := �k/2 < k . By induction there exists a unique w ∈ {0, . . . , p� − 1} such
that w ≡ u (mod p) and f (w) ≡ 0 (mod p�).
We first establish uniqueness of v. Suppose that v has the desired properties, i.e., v ≡ u

(mod p) and f (v) ≡ 0 (mod pk). By the uniqueness of w, we must have v ≡ w (mod p�),

 94 Page 12 of 17 D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94

say v = w + p�t for some t ∈ {0, . . . , pk−� − 1}. Expanding f around w, we find that

f (w + x) = f (w) + xf ′(w) + x2g(x)

for some g ∈ (Z/pkZ)[x]. Substituting x = p�t, and using the fact that p2� ≡ 0 (mod pk),
we deduce that 0 ≡ f (w)+ p�tf ′(w) (mod pk). Since f ′(w) ≡ f ′(u) �≡ 0 (mod p), we may
solve for t to obtain

t ≡ −f (w)/p�

f ′(w)
(mod pk−�).

This establishes uniqueness of t (mod pk−�), and hence of v (mod pk). Moreover, the
same calculation gives an explicit formula for v, proving existence.
To prove the complexity bound, suppose that we have already computed w and that

we wish to lift to v. We first apply Horner’s rule to compute f (w) and f ′(w) using O(n)
arithmetic operations inZ/pkZ. Each suchoperation requires timeO(lg(pk)1+ε). Similarly,
we may invert f ′(w), and hence compute t and v, in time O(lg(pk)1+ε). Therefore, the
time required to deduce v from w is O(n lg(pk)1+ε). The contributions from subsequent
recursion levels form a geometric series, so the total cost of computing v from u is also
O(n lg(pk)1+ε). ��
The next result shows how to find a reasonably small prime p for which the p-adic lifting

strategy is guaranteed to succeed.

Proposition A.5 Let b � n � 1 be integers, and let f ∈ Z[x] be a squarefree polynomial
of degree n such that

∥∥f ∥∥∞ � 2b. Then in time

O(n2+εb1+ε)

we may find a prime number

p � 6nb + 6n lg n

such that the reduction of f modulo p is nonzero and squarefree in (Z/pZ)[x].

Proof Since f is squarefree, the resultant D := res(f, f ′) is nonzero. Our goal is to find a
prime p such that p � D.
First, by Lemma A.1 we have

|D| � (n + 1)(n−1)/2nn/2 ∥∥f ∥∥n−1
∞

∥∥f ′∥∥n∞ .

One easily checks that (n + 1)n−1 � nn for all n � 1. Since
∥∥f ′∥∥∞ � n

∥∥f ∥∥∞, we obtain

|D| � n2n 22nb. (A.1)

On the other hand, let X := 6bn + 6n lg n. If D is divisible by all primes p � X , then D
is divisible by their product, so

lg |D| �
∑
p�X

lg p > X/3 = 2nb + 2n lg n

by LemmaA.3. This contradicts (A.1), so we conclude that theremust exist a prime p � X
such that p � D. To actually find such a prime, we run the following algorithm.

Step 1 (list primes). Make a list of all primes p � Y for Y := 6nb + 6n�lg n = O(nb).
Using the sieve of Eratosthenes, this requires time O(Y 1+ε) = O(n1+εb1+ε).

D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94 Page 13 of 17 94

Step 2 (reduce f modulo primes). Let fp ∈ (Z/pZ)[x] denote the reduction of f modulo
p. We compute fp for all p � Y by applying a fast simultaneous modular reduction
algorithm [19, Thm. 10.24] (i.e., using a remainder tree) to each coefficient of f . The
bit size of the product of the primes is O(ϑ(Y)) = O(Y) = O(nb), and the number of
primes is certainlyO(nb), so the cost per coefficient isO(n1+εb1+ε). The total cost over
all coefficients is therefore O(n2+εb1+ε).

Step 3 (compute GCDs). For each p � Y , we compute gcd(fp, f ′
p) ∈ (Z/pZ)[x] using

a quasilinear time GCD algorithm [19, Cor. 11.9]. For each prime this requiresO(n1+ε)
ring operations inZ/pZ, and each ring operation costsO((lg p)1+ε) bit operations. The
hypothesis n � b implies that lg p = O(lg(nb)) = O(lg b), so the cost of computing
the GCD is O(n1+εbε) bit operations. The total cost over all O(nb) primes is therefore
O(n2+εb1+ε).

Finally, we return the least prime p for which fp �= 0 and gcd(fp, f ′
p) = 1. As shown

above, such a prime exists and satisfies p � X . ��

We now give a deterministic root-finding algorithm for the squarefree case.

Proposition A.6 Let b � n � 1 be integers, and let f ∈ Z[x] be a squarefree polynomial
of degree n such that

∥∥f ∥∥∞ � 2b. Then we may find all integer roots of f in time

O(n2+εb1+ε).

Proof As above, let fp ∈ (Z/pZ)[x] denote the reduction of f modulo p. We first invoke
Proposition A.5 to find a prime p = O(nb) such that fp is nonzero and squarefree. Then
we perform the following steps.

Step 1 (find roots mod p). Compute the roots of fp in Z/pZ by brute force, i.e., by
evaluating fp(i) for i = 0, . . . , p − 1. Note that the integer roots of f correspond to
distinct roots of fp, thanks to the squarefreeness of fp. Each fp(i) may be evaluated in
time O(n1+εbε), so the cost of this step is O(pn1+εbε) = O(n2+εb1+ε).

Step 2 (find roots mod pk). Let f̄ ∈ (Z/pkZ)[x] be the reduction of f modulo pk , where
k is chosen to be the smallest integer such that

pk > (n + 1)1/2 2n+b+1. (A.2)

Applying Proposition A.4 to f̄ , we lift each of the roots of fp found in Step 1 to a root
of f̄ . The uniqueness claim in Proposition A.4 implies that the resulting set of lifted
roots in Z/pkZ includes the reductions modulo pk of all of the actual integer roots of
f . To estimate the complexity, observe that pk � p(n + 1)1/2 2n+b+1, so

lg(pk) = O(lg p + lg(n + 1) + n + b) = O(b).

The cost of lifting each root is therefore O(n lg(pk)1+ε) = O(nb1+ε), and the total cost
of this step is O(n2b1+ε).

Step 3 (check roots in Z). For each root r̄ ∈ Z/pkZ of f̄ found in Step 2, we determine
whether it arises from a genuine integer root of f as follows.We first lift r̄ to a candidate
root r∗ ∈ Z satisfying r∗ ≡ r̄ (mod pk) and r∗ ∈ [− 1

2p
k , 12p

k).We next divide f̄ by x− r̄
to obtain a polynomial ḡ ∈ (Z/pkZ)[x] such that f̄ (x) = (x − r̄)ḡ(x), and we lift ḡ to a
polynomial g∗ ∈ Z[x] satisfying g∗ ≡ ḡ (mod pk) and whose coefficients also all lie in
[− 1

2p
k , 12p

k). We then multiply x − r∗ by g∗(x) (in Z[x]) and check whether we obtain

 94 Page 14 of 17 D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94

f . If so, then f (r∗) = 0, so r∗ must be the integer root corresponding to r̄. Otherwise,
as we will see in the next paragraph, this r̄ does not correspond to any integer root and
we may ignore it. This procedure requiresO(n) operations on integers ofO(b) bits, i.e.,
O(nb1+ε) bit operations, so the total cost over all roots is O(n2b1+ε).

We now prove that the procedure described above does in fact find all integer roots.
(The following argument is adapted from [19, §15.6].) Let r ∈ Z be a root of f . Then
|r| �

∥∥f ∥∥∞ � 2b (as r divides the constant term of f), and f factors as f (x) = (x − r)g(x)
for some g ∈ Z[x] satisfying

∥∥g∥∥∞ � (n+ 1)1/2 2n+b (by Lemma A.2). In particular, (A.2)
ensures that |r| < pk/2 and

∥∥g∥∥∞ < pk/2. Let r̄ ∈ Z/pkZ be the root of f̄ corresponding
to r, and let r∗ ∈ Z and g∗ ∈ Z[x] be the quantities computed in Step 3 for this r̄. Then
r∗ ≡ r̄ ≡ r (mod pk), so we must have r∗ = r, since both sides lie in [− 1

2p
k , 12p

k).
Similarly, we have

g∗(x) ≡ ḡ(x) = f̄ (x)/(x − r̄) ≡ f (x)/(x − r) = g(x) (mod pk),

so againwemust have g∗ = g as the coefficients on both sides lie in [− 1
2p

k , 12p
k). Therefore

(x − r∗)g∗(x) = f (x), and the procedure does indeed recover r. ��

Remark A.7 Loos [11] imposes the additional requirement that p should not divide the
leading coefficient of f , to ensure that deg fp = deg f . This is because he is searching for
rational roots, not just integral roots. Our algorithm may also be easily adapted to this
case.

Remark A.8 An interesting question is whether the complexity bound in Proposition A.6
can be improved to quasilinear, i.e., to O(n1+εb1+ε) bit operations. There are two main
obstructions to this.
First, although fp ∈ (Z/pZ)[x] is squarefree for almost all primes p, it is difficult to

predict in advance for which p this will occur. Consequently, in the proof of Proposition
A.5 we were forced to test every prime up to O(nb). If we allow probabilistic algorithms,
then we can find a suitable prime with high probability by randomly selecting p in the
range 2 � p � X ′ for some X ′ = O(nb). This allows us to find a suitable p in expected
quasilinear time. The complexity of Steps 1 and 2 in Proposition A.6, i.e., finding the roots
modulo p and lifting them to Z/pkZ, can also be improved to (deterministic) quasilinear
time by means of fast multipoint evaluation techniques. The resulting algorithm is quite
similar to the root finding algorithm presented in [19, Thm. 15.21].
The second obstruction concerns Step 3 of Proposition A.6, namely, checking which of

the candidate integer roots are in fact roots of f . We do not know how to carry out this
step rigorously in quasilinear time, even allowing randomised algorithms. A similar issue
occurs in [19, Thm. 15.21], where the last termof the given complexity bound corresponds
in our notation toO(n2+εb1+ε). In the discussion following that theorem, von zur Gathen
and Gerhard suggest testing the candidate roots modulo a small prime (different to p) as a
way to quickly rule out incorrect candidates. This idea can be turned into a “Monte Carlo”
algorithm: one would randomly choose a small prime q, compute f (r∗) (mod q) for all
candidate roots r∗, and declare the ones for which f (r∗) ≡ 0 (mod q) to be the true roots.
We suspect that in this way one can obtain a quasilinear expected running time with an
exponentially small probability of failure, but we have not checked the details.

D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94 Page 15 of 17 94

A.3. The general case

In order to prove Theorem 1.3, we must first discuss the computation of GCDs in Z[x].
Let f, g ∈ Z[x] and let h := gcd(f, g). The idea of the “heuristic GCD” algorithm [5] is to

use an integer GCD algorithm to compute gcd(f (N), g(N)) for some choice of evaluation
point N ∈ Z. If we are lucky, then gcd(f (N), g(N)) will actually be equal to h(N), and
we may simply read off the coefficients of h(x) from h(N), provided that N is not too
small. However, it is possible for gcd(f (N), g(N)) to contain extraneous factors unrelated
to h(x). Usually these extraneous factors are small but in rare circumstances they can be
very large. The algorithm can be made to tolerate extraneous factors up to a given size by
taking larger values of N , at the expense of running more slowly. In practice, one usually
takes a fairly small value of N , accepting a small chance of failure in order to get a fast
algorithm. In the next result we work at the other extreme, taking N so large that the
algorithm is guaranteed to work in all cases. We thereby obtain a GCD algorithm that is
deterministic and completely rigorous (although unfortunately quite slow in practice).

Proposition A.9 Let b � n � 1 be integers. Let f, g ∈ Z[x] be nonzero polynomials such
that deg f, deg g � n and

∥∥f ∥∥∞ ,
∥∥g∥∥∞ � 2b. Assume that at least one of f and g is

primitive. Define

h := gcd(f, g) ∈ Z[x], f̃ := f /h ∈ Z[x], g̃ := g/h ∈ Z[x].

Then

‖h‖∞, ‖f̃ ‖∞, ‖g̃‖∞ � (n + 1)1/2 2n+b, (A.3)

and given f and g as input, we may compute h, f̃ and g̃ in time

O(n2+εb1+ε).

Proof The inequalities (A.3) follow immediately from Lemma A.2, as f̃ and g̃ are divisors
of f and g respectively, and h is a divisor of both.
For any integer N we have f (N) = f̃ (N)h(N) and g(N) = g̃(N)h(N), so

gcd(f (N), g(N)) = δ(N) · h(N) where δ(N) := gcd(f̃ (N), g̃(N)).

Writing h(x) = h0 + h1x + · · · + hnxn, this becomes

gcd(f (N), g(N)) = δ(N)h0 + δ(N)h1N + · · · + δ(N)hnNn. (A.4)

We may bound the quantities δ(N)hi independently of N as follows. (This argument is
adapted from [7, Thm. 4].) Since f̃ and g̃ are relatively prime, their resultant R := res(f̃ , g̃)
is nonzero, and there exist polynomials r, s ∈ Z[x] such that

r(x)f̃ (x) + s(x)g̃(x) = R.

Substituting x = N shows that δ(N) | R. Applying Lemma A.1, we obtain

|δ(N)| � |R| � (n + 1)n‖f̃ ‖n∞‖g̃‖n∞ � (n + 1)2n 22n
2+2nb.

Therefore the quantities δ(N)hi are bounded by

|δ(N)hi| � |δ(N)| ∥∥h∥∥∞ � (n + 1)2n+ 1
2 22n

2+2nb+n+b.

Wemay now describe the actual algorithm for computing h, f̃ and g̃ .

 94 Page 16 of 17 D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94

Step 1. Set N := 2c where

c := (2n + 1)�lg(n + 1) + 2n2 + 2nb + n + b + 2.

As shown above, |δ(N)hi| � 2c−2 for all i. Notice also that c = O(nb).
Step 2. We compute f (N) and g(N), which amounts to concatenating the coefficients of

f and g with appropriate zero-padding (or one-padding in the case of negative
coefficients). The integers f (N) and g(N) have bit size O(nc) = O(n2b), and the
concatenation may be performed in linear time, i.e., in time O(n2b).

Step 3. We compute gcd(f (N), g(N)) using a quasilinear time GCD algorithm (see for
example [18]). This requires time O((n2b)1+ε) = O(n2+εb1+ε).

Step 4. We read off the coefficients δ(N)hi from (A.4). This is possible thanks to the
bound |δ(N)hi| � 2c−2, i.e., the coefficients do not “overlap”. (In more detail,
we may first read off δ(N)h0 from the lowest c bits, i.e., by reading (A.4) modulo
N = 2c. After subtracting off this term, we may read off δ(N)h1 from the next c
bits, and so on.) This requires linear time O(n2b).

Step 5. Since we assumed that at least one of f and g is primitive, h is also prim-
itive. We may therefore compute δ(N) by taking the GCDs of the integers
δ(N)h0, . . . , δ(N)hn. Each pairwise GCD requires time O(c1+ε), so the total time
required for this step is O(nc1+ε) = O(n2+εb1+ε).

Step 6. We now recover h(N) = gcd(f (N), g(N))/δ(N), and then f̃ (N) = f (N)/h(N)
and g̃(N) = g(N)/h(N). Using a quasilinear time integer division algorithm, this
requires time O(n2+εb1+ε). Finally, we read off the coefficients of f̃ and g̃ from
f̃ (N) and g̃(N), in a similar manner to Step 4.

��

Remark A.10 To the best of the authors’ knowledge, it is not known how to improve the
complexity bound in Proposition A.9 to quasilinear without giving up on determinism.
Several randomised quasilinear-time algorithms are known. Schönhage [16] analyses a
variant of the heuristic GCD algorithm in which the evaluation point is chosen randomly.
Another approach is to compute the GCDmodulo a collection of randomly chosen small
primes [19, Alg. 6.38].

We may now prove our main root-finding result.

Proof of Theorem 1.3 We are given as input f ∈ Z[x], not necessarily squarefree, with
deg f = n and

∥∥f ∥∥∞ � 2b, where b � n � 1.
We first compute the GCD of the coefficients of f , and remove this common factor.

Clearly this can be done in time O(n1+εb1+ε), and we may subsequently assume that f is
primitive.
Let g := f ′. Then deg g � n and

∥∥g∥∥∞ � n
∥∥f ∥∥∞ � 2b′ where b′ := b + �lg n =

O(b). Applying Proposition A.9, we may compute f̃ = f / gcd(f, f ′) ∈ Z[x] in time
O(n2+ε(b′)1+ε) = O(n2+εb1+ε). Then f̃ is squarefree and has the same integer roots
as f . Moreover we have deg f̃ � n and ‖f̃ ‖∞ � (n + 1)1/2 2n+b′ � 2b′′ where
b′′ := n + b′ + �lg(n + 1) = O(b).
Finally, we apply Proposition A.6 to f̃ . The running time is O(n2+ε(b′′)1+ε) =

O(n2+εb1+ε). ��

D. Harvey, M. Hittmeir Res. Number Theory (2022) 8:94 Page 17 of 17 94

Received: 15 September 2022 Accepted: 21 September 2022

References
1. Boneh, D., Durfee, G., Howgrave-Graham, N.: Factoring N = prq for large r , Advances in cryptology—CRYPTO ’99

(Santa Barbara, CA), Lecture Notes in Comput. Sci., vol. 1666, Springer, Berlin, 1999, pp. 326–337.MR 1729303
2. Bernstein, D. J.: Reducing lattice bases to find small-height values of univariate polynomials, Algorithmic number

theory: lattices, number fields, curves and cryptography, Math. Sci. Res. Inst. Publ., vol. 44, Cambridge Univ. Press,
Cambridge, 2008, pp. 421–446. MR 2467553

3. Booker, A.R., Hiary, G.A., Keating, J.P.: Detecting squarefree numbers. Duke Math. J. 164(2), 235–275 (2015). (MR
3306555)

4. Brent, R.P., Zimmermann, P.: Modern Computer Arithmetic, Cambridge Monographs on Applied and Computational
Mathematics, vol. 18. Cambridge University Press, Cambridge (2011).. (MR 2760886)

5. Char, B.W., Geddes, K.O., Gonnet, G.H.: GCDHEU: heuristic polynomial GCD algorithm based on integer GCD compu-
tation, EUROSAM 84 (Cambridge, 1984), Lecture Notes in Comput. Sci., Vol. 174, Springer, Berlin (1984), pp. 285–296.
MR 779134

6. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4),
233–260 (1997). (MR 1476612)

7. Davenport, J., Padget, J.: HEUGCD: how elementary upperbounds generate cheaper data, EUROCAL ’85, Vol. 2 (Linz,
1985), Lecture Notes in Comput. Sci., vol. 204, Springer, Berlin, (1985), pp. 18–28. MR 826554

8. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University Press, Cambridge (2012).. (MR
2931758)

9. Harvey, D., Hittmeir, M.: A log-log speedup for exponent one-fifth deterministic integer factorisation, to appear in
Math. Comp. 91, 1367–1379 (2022)

10. Lenstra, A.K., Lenstra, H.W., Jr., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534
(1982). (MR 682664)

11. Loos, R.: Computing rational zeros of integral polynomials by p-adic expansion. SIAM J. Comput. 12(2), 286–293
(1983). (MR 697160)

12. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Publishing Company, Reading, MA (1994)..
(MR 1251285 (95f:68082))

13. Peralta, R., Okamoto, E.: Faster factoring of integers of a special form. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 79(4), 489–493 (1996)

14. Pollard, J.M.: Theorems on factorization and primality testing. Proc. Camb. Philos. Soc. 76, 521–528 (1974). (MR
0354514 (50 #6992))

15. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6, 64–94
(1962). (MR 0137689)

16. Schönhage, A.: Probabilistic computation of integer polynomial GCDs. J. Algorithms 9(3), 365–371 (1988). (MR
955145)

17. Strassen, V.: Einige Resultate über Berechnungskomplexität, Jber. Deutsch. Math.-Verein. 78(1), 1–8. (1976/77)
MR 0438807 (55 #11713)

18. Stehlé, D., Zimmermann, P.: A binary recursive gcd algorithm, Algorithmic number theory, Lecture Notes in Comput.
Sci., Vol. 3076, Springer, Berlin (2004), pp. 411–425. MR 2138011

19. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge University Press, Cambridge (2013)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	A deterministic algorithm for finding r-power divisors
	Abstract
	1 Introduction
	1.1 Statement of main result
	1.2 Previous work
	1.3 Relationship to the BDHG algorithm
	1.4 Root-finding

	2 Searching one interval
	3 Proof of the main theorem
	Appendix A. Deterministic root finding
	A.1. Some preliminary estimates
	A.2. The squarefree case
	A.3. The general case

	References

