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Abstract

We use the invariant theory of binary quartics to give a new formula for the
Cassels–Tate pairing on the 2-Selmer group of an elliptic curve. Unlike earlier methods,
our formula does not require us to solve any conics. An important role in our
construction is played by a certain K3 surface defined by a (2, 2, 2)-form.

1 Introduction
Let E be an elliptic curve over a number field K . The Mordell-Weil theorem tells us that
the abelian group E(K ) is finitely generated, but there is no known algorithm guaranteed
to compute its rank. Instead, for each integer n ≥ 2 there is an exact sequence of abelian
groups

0 → E(K )/nE(K ) → S(n)(E/K ) → X(E/K )[n] → 0.

The n-Selmer group S(n)(E/K ) is finite and effectively computable. Computing S(n)(E/K )
gives an upper bound for the rank of E(K ), but this will be sharp only if the n-torsion of
the Tate-Shafarevich groupX(E/K ) is trivial.
Cassels [4] showed that there is an alternating pairing

〈 , 〉CT : S(n)(E/K ) × S(n)(E/K ) → Q/Z

whose kernel is the image of S(n2)(E/K ). By computing this pairing, our upper bound for
the rank ofE(K ) improves from that obtained by n-descent to that obtained by n2-descent.
In view of the generalisation to abelian varieties, due to Tate, the pairing is known as the
Cassels–Tate pairing.
Cassels [6] also described a method for computing the pairing in the case n = 2. His

method involves solving conics over the field of definition of each 2-torsion point on E.
More recently, Donnelly [10] found a method that only involves solving conics over K ,
and implemented this in Magma [3]. In this article we use the invariant theory of binary
quartics to give a self-contained account of a version of hismethod that is relatively simple
to implement.
Since this article was first written, Jiali Yan has written her PhD thesis [18], extending

some of these ideas to Jacobians of genus 2 curves, and Bill Allombert has implemented
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ourmethod for computing the pairing as part of the function ellrank in pari/gp [15].
I thank them both, and also Steve Donnelly and John Cremona, for useful discussions.

2 Binary quartics
A binary quartic over a field K is a homogeneous polynomial g ∈ K [x, z] of degree 4.
Binary quartics g1 and g2 are K -equivalent if

g2(x, z) = λ2g1(αx + γ z,βx + δz)

for some λ,α,β , γ , δ ∈ K with λ(αδ − βγ ) �= 0. They are properly K -equivalent if in
addition λ(αδ − βγ ) = ±1. The invariants of the binary quartic

g(x, z) = ax4 + bx3z + cx2z2 + dxz3 + ez4 (1)

are

I = 12ae − 3bd + c2,

J = 72ace − 27ad2 − 27b2e + 9bcd − 2c3.

The binary quartics g1 and g2 have invariants related by I(g2) = λ4(αδ − βγ )4I(g1) and
J (g2) = λ6(αδ − βγ )6J (g1). In particular, properly equivalent binary quartics have the
same invariants. The discriminant is � = 16(4I3 − J2)/27. We say that g is K -soluble if
there exist x, z ∈ K , not both zero, such that g(x, z) is a square in K . The reason for this
terminology is that if �(g) �= 0 then there is a smooth projective curve C of genus one
with affine equation y2 = g(x, 1), and we are asking that C(K ) �= ∅. As shown by Weil
[17], the Jacobian of C is the elliptic curve

EI,J : y2 = x3 − 27Ix − 27J. (2)

Now let K be a number field, and MK its set of places. A binary quartic over K is
everywhere locally soluble if it is Kv-soluble for all places v ∈ MK . We note that every
elliptic curve over K can be written in the form (2) for some I, J ∈ K with 4I3 − J2 �= 0.

Lemma 2.1 Let I, J ∈ K with 4I3 − J2 �= 0. Then

S(2)(EI,J/K ) =

⎧
⎪⎨

⎪⎩

everywhere locally soluble
binary quartics over K
with invariants I and J

⎫
⎪⎬

⎪⎭
/(proper K-equivalence).

Proof The case K = Q is proved in [2], the only simplification in this case being that
(since the only roots of unity in Q are ±1) equivalent quartics with the same invariants
are always properly equivalent (even in the cases where I = 0 or J = 0). The general case
is similar.

Although Lemma 2.1 specifies S(2)(EI,J/K ) as a set, the group law is not obvious. The
following description is taken from [8], [9]. Let L be the étale algebra K [ϕ] where ϕ is a
root of X3 − 3IX + J = 0. Then the binary quartic (1) has cubic invariant

z(g) = 4aϕ + 3b2 − 8ac
3

.

By a change of coordinates (that is, replacing g by a properly equivalent quartic) we may
assume that z(g) is a unit in L. The group law on S(2)(EI,J/K ) is then given by multiplying
the cubic invariants in L×/(L×)2. Themethod for converting an element of L×/(L×)2 back
to a binary quartic does, however, involve solving a conic over K .
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3 Statement of results
In this section we state our new formula for the Cassels–Tate pairing on the 2-Selmer
group of an elliptic curve. First we need somemore invariant theory. The binary quartic (1)
has Hessian

h(x, z) = (3b2 − 8ac)x4 + 4(bc − 6ad)x3z + 2(2c2 − 24ae − 3bd)x2z2

+ 4(cd − 6be)xz3 + (3d2 − 8ce)z4.

There are exactly three linear combinations of g(x, z) and h(x, z) that are singular (i.e. have
repeated roots). Following [9] this prompts us to put

G(x, z) = 1
3
(4ϕg(x, z) + h(x, z)) , (3)

H (x, z) = 1
12

∂2G
∂x2

+ 2
9
(I − ϕ2)z2, (4)

so that G(1, 0)G(x, z) = H (x, z)2. We note that z(g) = G(1, 0) = H (1, 0).

Theorem 3.1 Let I, J ∈ K with 4I3 − J2 �= 0. Let g1, g2, g3 be everywhere locally soluble
binary quartics over K with invariants I and J . LetH1(x, z) be the binary quadratic form (4),
with coefficients in L = K [ϕ], associated to g1. Suppose that z(g1)z(g2)z(g3) = m2 for some
m ∈ L×, and write

z(g2)z(g3)
m

H1(x, z) = α1(x, z) + β1(x, z)ϕ + γ1(x, z)ϕ2 (5)

where α1,β1, γ1 ∈ K [x, z]. For each v ∈ MK we choose xv, zv ∈ Kv with g1(xv, zv) a square
in Kv and γ1(xv, zv) �= 0. If g2(1, 0) �= 0 then the Cassels–Tate pairing on S(2)(EI,J/K ) is
given by

〈[g1], [g2]〉CT =
∏

v∈MK

(g2(1, 0), γ1(xv, zv))v (6)

where ( , )v : K×
v /(K×

v )2 × K×
v /(K×

v )2 → μ2 is the Hilbert norm residue symbol.

Remark 3.2 (i) If we wish to compute the pairing starting only with g1 and g2, then we
first change coordinates so that z(g1) and z(g2) are units in L, multiply these together,
and then compute g3 by solving a conic over K . This conic is the same as the one
that has to be solved in Donnelly’s method [10].

(ii) We show in Remark 8.3 that the binary quadratic form γ1 is not identically zero.
Therefore, by our assumption that g1 is everywhere locally soluble, it is always pos-
sible to choose xv, zv ∈ Kv with the stated properties.

(iii) The assumption that g2(1, 0) �= 0 is no limitation, since if g2(1, 0) = 0 then [g2] = 0
in the 2-Selmer group, which certainly implies the pairing is trivial.

(iv) By definition the Cassels–Tate pairing takes values in Q/Z. In our formula it takes
values in μ2. It should be understood that we have identified μ2 = 1

2Z/Z.
(v) Since 〈 , 〉CT is alternating and bilinear and [g1] + [g2] + [g3] = 0 we have

〈[g1], [g2]〉CT = 〈[g1], [g3]〉CT. So we may equally write g2(1, 0) or g3(1, 0) in (6).
Notice however that the binary quartics g2 and g3 do both contribute to the pairing
via (5). Moreover we must use the exact formulae for z(g1), z(g2) and z(g3), these
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being linear in ϕ. It is not enough just to know these quantities up to squares, since
this would change the left hand side of (5).

(vi) If E(K )[2] = 0 thenm is uniquely determined up to sign. By the product formula for
the Hilbert norm residue symbol this makes no difference to (6). If E(K )[2] �= 0 then
there are more choices form, but it turns out (see the proof of Theorem 8.2) that we
may use any one of these to compute the pairing.

Remark 3.3 The product over all places in Theorem3.1 is a finite product. Indeed, outside
an easily determined finite set of places, we have

(i) v is a finite prime, with residue field of size at least 11.
(ii) g1 and γ1 have v-adically integral coefficients, with v � �(g1) content(γ1).
(iii) g2(1, 0) is a v-adic unit and v � 2.

Under conditions (i) and (ii) we can pick our local point (by Hensel lifting a smooth point
on the reduction that is not a root of γ1) such that γ1(xv, zv) is a unit. It follows by (iii) that
the local contribution at v is trivial.

Example 3.4 Let E/Q be the elliptic curve

y2 + y = x3 − x2 − 929x − 10595

labelled 571a1 in [7]. A 2-descent shows that S(2)(E/Q) ∼= (Z/2Z)2, and its non-zero
elements are represented by

g1(x, z) = −11x4 + 68x3z − 52x2z2 − 164xz3 − 64z4,

g2(x, z) = −4x4 − 60x3z − 232x2z2 − 52xz3 − 3z4,

g3(x, z) = −31x4 − 78x3z + 32x2z2 + 102xz3 − 53z4.

Each of these binary quartics has invariants I = 44608 and J = 18842960, and discrimi-
nant � = −212 · 571. By (5), withm = 1

9 (20ϕ
2 − 8656ϕ + 936032), we get

γ1(x, z) = 4
9
(5x2 − 16xz − 12z2).

For each odd prime p there is a smooth Fp-point on the reduction of y2 = g1(x, 1)
mod p, whose x-coordinate is not a root of 5x2 − 16x − 12 = 0. Indeed we checked this
claim directly for p = 3, 5, 7, 11 and 571, and for all other primes it follows by Hasse’s
bound. Therefore the odd primes make no contribution to (6).
To compute the contribution at p = 2 we write g1(x, 1) = x4 + 4q(x) where

q(x) = −3x4 + 17x3 − 13x2 − 41x − 16.

By Hensel’s lemma the equation q(x) = 0 has a root in Z2 with x = 24 + O(25). But then
γ1(x, 1) ≡ 5 mod (Q×

2 )2, and since (5,−1)2 = 1 the contribution is again trivial. Finally,
since g1(15, 4) > 0 and γ1(15, 4) < 0, there is a contribution from the real place. This shows
that the Cassels–Tate pairing on S(2)(E/Q) is non-trivial, and hence rank E(Q) = 0.

4 The Cassels–Tate pairing
There are two standard definitions of the Cassels–Tate pairing (in the case of elliptic
curves) called in [11], [16] thehomogeneous spacedefinition and theWeil pairingdefinition.
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Both definitions appear in Cassels’ original paper [4], although the method in [6] (see also
[12]) is a variant of theWeil pairing definition. In this section we review the homogeneous
space definition, and highlight its connection with the Brauer-Manin obstruction.
Let K be a field with separable closure K . We writeHi(K,−) for the Galois cohomology

group Hi(Gal(K/K ),−). Let C/K be a smooth projective curve. We define

Br(C) = ker
(

H2(K, K (C)×) → H2(K,Div C)
)

. (7)

It is shown in the Appendix to [14] that this is equivalent to the usual definition Br(C) =
H2
ét(C,Gm). Identifying Br(K ) = H2(K, K×), there is a natural map

Br(K ) → Br(C). (8)

We will need the following two facts, whose proofs we give below.

(i) For P ∈ C(K ) there is an evaluation map

Br(C) → Br(K ) ; A �→ A(P).

This is a group homomorphism, and a section to the map (8). Moreover the evalua-
tion maps behave functorially with respect to all field extensions.

(ii) Suppose C is a smooth curve of genus one, with Jacobian elliptic curve E. If
H3(K, K×) = 0 then there is an isomorphism


C :
H1(K, E)

〈[C]〉
∼−→ Br(C)

Br(K )
. (9)

Now let E be an elliptic curve over a number field K . Let C andD be principal homoge-
neous spaces under E. Since H3(K, K×) = 0 for K a number field, we have 
C ([D]) = A
mod Br(K ) for some A ∈ Br(C). Now suppose that C and D are everywhere locally sol-
uble. For each place v ∈ MK we pick a local point Pv ∈ C(Kv). The Cassels–Tate pairing
X(E/K ) × X(E/K ) → Q/Z is defined by

〈[C], [D]〉CT =
∑

v∈MK

invv(A(Pv)) (10)

where invv : Br(Kv) → Q/Z is the local invariant map. As this form of the definition
makes clear, if 〈[C], [D]〉CT �= 0 then the genus one curve C is a counter-example to the
Hasse Principle explained by the Brauer-Manin obstruction.
We check that the pairing is well defined, i.e. it does not depend on the choices of A and

of the Pv . By class field theory there is an exact sequence

0 −→ Br(K ) −→
⊕

v∈MK

Br(Kv)
∑

invv−→ Q/Z −→ 0.

It follows that if we change A by adding an element of Br(K ) then the pairing (10) is
unchanged. Next, since the class of D is trivial in H1(Kv, E), the analogue of (9) over Kv
shows that the restriction of A to the Brauer group of C/Kv is constant, i.e. it belongs to
the image of Br(Kv). Therefore the pairing (10) does not depend on the choice of local
points Pv .
We now prove the facts we quoted in (i) and (ii) above.

(i) For P ∈ C(K ) there is a short exact sequence of Galois modules

0 −→ O×
P −→ K (C)× ordP−→ Z −→ 0
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whereOP is the local ring at P. Taking Galois cohomology gives an exact sequence

0 −→ H2(K,O×
P ) −→ H2(K, K (C)×) ordP−→ H2(K,Z).

It follows by (7) that each element of Br(C) can be represented by a cocycle taking
values inO×

P , and so can be evaluated at P.
(ii) There is an exact sequence of Galois modules

0 → K× → K (C)× → Div C → PicC → 0,

where Div C and PicC are the divisor group and Picard group forC overK . Splitting
into short exact sequences, and taking Galois cohomology, gives the following exact
sequences

H2(K, K×)

H2(K, K (C)×)

H1(K,Div C) H1(K,PicC) H2(K, K (C)×/K×) H2(K,Div C)

H3(K, K×)

By Shapiro’s lemma and the fact that H1(K,Z) = 0 we have H1(K,Div C) = 0. It
follows by (7) and a diagram chase that there is an exact sequence

Br(K ) → Br(C) → H1(K,PicC) → H3(K, K×). (11)

In fact, had we started from the definition Br(C) = H2
ét(C,Gm), then (11) would

follow from the Hochschild–Serre spectral sequence.
If C is a smooth curve of genus one with Jacobian E, then taking Galois cohomology
of the exact sequence

0 −→ Pic0 C −→ PicC
deg−→ Z −→ 0

gives

Z
δ−→ H1(K, E) −→ H1(K,PicC) −→ 0 (12)

with δ(1) = [C]. IfH3(K, K×) = 0 then from (11) and (12)weobtain the isomorphism

C .

5 Cyclic extensions
The definition of the map 
C in the last section simplifies when we evaluate it on classes
split by a cyclic extension L/K . LetG = Gal(L/K ) be generated by σ of order n. We recall
that for A a G-module, the Tate cohomology groups are

Ĥ0(G,A) = ker(�|A)
im(N |A) and Ĥ1(G,A) = ker(N |A)

im(�|A)
where � = 1 − σ and N = 1 + σ + . . . + σ n−1 satisfy �N = N� = 0 in Z[G].
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For b ∈ K× there is a cyclic K -algebra with basis 1, v, . . . , vn−1 as an L-vector space, and
multiplication determined by vn = b and vx = σ (x)v for all x ∈ L. We write (L/K, b) for
the class of this algebra in Br(K ) = H2(K, K×). Likewise if f ∈ K (C)× then (L/K, f ) is an
element of H2(K, K (C)×).

Lemma 5.1 Suppose � ∈ Div0L C with NL/K (�) = div(f ) for some f ∈ K (C)×. If ξ is the
image of � under

Ĥ1(G,Pic0L C) ∼= H1(G,Pic0L C)
inf−→ H1(K, E)

then 
C (ξ ) = (L/K, f ).

Proof We follow the construction of 
C in Sect. 4. We start with the exact sequence of
G-modules

0 → L× → L(C)× → DivL C → PicL C → 0.

Splitting into short exact sequences, and taking Galois cohomology, gives a diagram as
before. The connecting map

Ĥ1(G,PicL C) → Ĥ0(G, L(C)×/L×)

is now given by � �→ f . Therefore 
C (ξ ) is the image of f under the map

K (C)×

NL/K (L(C)×)
= Ĥ0(G, L(C)×) ∼= H2(G, L(C)×) inf−→ H2(K, K (C)×).

This is the cyclic algebra (L/K, f ) as required.

6 Pairs of binary quartics and (2, 2)-forms
Let C be a smooth curve of genus one. First suppose, as in Sect. 2, that C is defined by a
binary quartic g . Then C → P1 is a double cover ramified over the 4 roots of g . We write
H for the hyperplane section (i.e., fibre of the map C → P1), and ι for the involution on
C with Q + ι(Q) ∼ H for all Q ∈ C .
Next we suppose that C ⊂ P1 × P1 is defined by a (2, 2)-form, i.e., a polynomial

f (x1, z1; x2, z2) that is homogeneous of degree 2 in each of the sets of variables x1,z1 and
x2,z2. Projecting C to either factor gives a double cover of P1. The corresponding binary
quartics are obtained by writing f as a binary quadratic form in one of the sets of variables,
and taking its discriminant. We write pr1, pr2 : C → P1 for the projection maps. Let
H1, H2 and ι1, ι2 be the corresponding hyperplane sections and involutions.

Lemma 6.1 Let C = {f (x1, z1; x2, z2) = 0} ⊂ P1 × P1 as above.

(i) The composite ι1ι2 is translation by some P ∈ E = Jac(C). Moreover the isomorphism
Pic0(C) ∼= E sends [H1 − H2] �→ P.

(ii) If Hi = pr∗i (1 : 0) then

div(f (x1, z1; 1, 0)/z21) = H2 + ι∗1H2 − 2H1.

Proof (i) If Q ∈ C then ι2Q + ι1ι2Q ∼ H1 and Q + ι2Q ∼ H2. Subtracting one from
the other gives [ι1ι2Q − Q] = [H1 − H2] as required.

(ii) The specified rational function on C factors via pr1 and is therefore invariant under
pull back by ι1. It has a zero at each point in the support of H2, and a double pole at
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each point in the support of H1. Since there are no other poles, and the divisor has
degree 0, it must therefore be as stated.

Remark 6.2 Lemma 6.1(i) is closely related to Poncelet’s Porism, as described in [13]. Our
use of (2, 2)-forms was inspired by the treatment in [1].

We write disck (f ) for the discriminant of f when it is viewed as a binary quadratic form
in the kth set of variables.

Lemma 6.3 Let C = {f (x1, z1; x2, z2) = 0} ⊂ P1 × P1 as above. Let a ∈ K× and let C1, C2
be the following quadratic twists of C.

C1 : ay2 = disc2(f )

C2 : ay2 = disc1(f )

Then 
C1 ([C2]) = (K (
√
a)/K, f (x1, z1; 1, 0)/z21).

Proof. If a ∈ (K×)2 then C1 and C2 are isomorphic over K and so by (9) we have

C1 ([C2]) = 0. We may therefore suppose that a /∈ (K×)2. Let L = K (

√
a) and

G = Gal(L/K ) = {1, σ }. We claim there is a divisor � ∈ Div0L(C1) such that

(i) C2 is the twist of C1 by the class of � in Ĥ1(G,Pic0L(C1)), and
(ii) NL/K (�) = div(f (x1, z1; 1, 0)/z21).

Then by Lemma 5.1 we have 
C1 ([C2] − [C1]) = (L/K, f (x1, z1; 1, 0)/z21). Since 
C1 is a
group homomorphism and 
C1 ([C1]) = 0 this proves the lemma.
We construct � as follows. We factor the projection map pri : C → P1 as

C φi−→ Ci
ξi−→ P1

where φi is the quadratic twist map (an isomorphism defined over L), and ξi = (xi : zi)
is the natural double cover. Let Di = ξ∗

i (1 : 0) and Hi = φ∗
i Di = pr∗i (1 : 0). We put

φ = φ1φ
−1
2 and � = φ∗D2 − D1. We now prove (i) and (ii).

(i) Let ι1 and ι2 be the involutions on C defined before Lemma 6.1. Since σ (φ1) = φ1ι1
and σ (φ2) = φ2ι2 it follows that σ (φ)φ−1 = φ1ι1ι2φ

−1
1 . Identifying C and C1 via φ1,

and hence � withH2 −H1, it follows by Lemma 6.1(i) that σ (φ)φ−1 is translation by
some P ∈ E = Jac(C1), and the isomorphism Pic0(C1) ∼= E sends [�] �→ −P. The
minus sign does not matter since |G| = 2.

(ii) By Lemma 6.1(ii) with H1 = φ∗
1D1 and H2 = φ∗

2D2 we have

div(f (x1, z1; 1, 0)/z21) = φ1∗(φ∗
2D2 + ι∗1φ∗

2D2 − 2φ∗
1D1)

= φ∗D2 + σ (φ∗D2) − 2D1

= NL/K (�).

7 Triples of binary quartics and (2, 2, 2)-forms
Let E/K be an elliptic curve. An n-covering of E is a pair (C, ν) where C is a smooth curve
of genus one, and ν : C → E is a morphism, such that, for some choice of isomorphism
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ψ : C → E defined over K , there is a commutative diagram

C

ψ
ν

E ×n E

The n-coverings of E are parametrised by H1(K, E[n]).
Suppose that C1, C2, C3 are 2-coverings of E that sum to zero in H1(K, E[2]). We pick

isomorphisms ψi : Ci → E as above, and let εi = (σ �→ σ (ψi)ψ−1
i ) be the corresponding

cocycle in Z1(Gal(K/K ), E[2]). Our hypothesis is that ε1 + ε2 + ε3 is a coboundary. How-
ever, by adjusting the choice of ψ3, we may suppose that ε1 + ε2 + ε3 = 0. It may then be
checked that the morphism

μ : C1 × C2 × C3 → E

(P1, P2, P3) �→ ψ1(P1) + ψ2(P2) + ψ3(P3)

is defined over K .

Remark 7.1 We are still free to replace ψ3 by P �→ ψ3(P) + T for T ∈ E(K )[2], and for
this reason there are #E(K )[2] choices for the map μ.

Suppose further that C1, C2, C3 are defined by binary quartics g1, g2, g3 with the same
invariants I and J . Let π : C1 × C2 × C3 → P1 × P1 × P1 be the map that projects to the
x-coordinates. Then S = π (μ−1(0E)) is a surface in P1 × P1 × P1. Geometrically it is the
Kummer surface (E × E)/{±1}.
We write disck (F ) for the discriminant of a (2, 2, 2) form F when it is viewed as a binary

quadratic form in the kth set of variables.

Proposition 7.2 The surface S ⊂ P1 × P1 × P1 is defined by a (2, 2, 2)-form F. Moreover
we may scale F so that it has coefficients in K , and for all permutations i, j, k of 1, 2, 3 we
have disck (F ) = gigj .

Proof We first consider the special case where C1 = C2 = C3 = E. Suppose that
P1, P2, P3 ∈ E satisfy P1 + P2 + P3 = 0E . If we specify the x-coordinates of P1 and
P2, then in general this leaves two possibilities for the x-coordinate of P3. The exceptional
cases are when either P1 or P2 is a 2-torsion point.
Let �i = ψ−1

i (E[2]) be the set of ramification points for Ci → P1. We identify �i
with its image in P1, i.e., the set of roots of gi. The observations in the last paragraph
show that when we project onto the ith and jth factors, S → P1 × P1 is a double cover
ramified over �i × P1 and P1 × �j . This shows that S is defined by a (2, 2, 2)-form F .
Moreover disck (F ) = λkgigj for some λ1, λ2, λ3 ∈ K×. We claim that (i) λ3 ∈ (K×)2 and
(ii) λ1 = λ2 = λ3. It is then clear we may rescale F so that λ1 = λ2 = λ3 = 1.

(i) Let Ci have equation y2i = gi(xi, zi). We note that K (S) ⊂ K (C1 × C2) is a quadratic
extension of K (P1 × P1) with Kummer generator

disc3(F )
z41z

4
2

= λ3g1(x1, z1)g2(x2, z2)
z41z

4
2

= λ3

(
y1y2
z21z

2
2

)2

.

Since this is a square in K (C1 × C2) it follows that λ3 ∈ (K×)2.
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(ii) Since g1, g2, g3 have the same invariants I and J , we may reduce by the action of
SL2(K ) × SL2(K ) × SL2(K ) to the case

g1(x, z) = g2(x, z) = g3(x, z) = x3z − 1
3 Ixz

3 − 1
27 Jz

4.

The result then follows by symmetry.

Corollary 7.3 Let C1, C2, C3 and F be as above. If a = g3(1, 0) �= 0 then


C1 ([C2]) = (K (
√
a)/K, F (x1, z1; 1, 0; 1, 0)/z21).

Proof Weput f (x1, z1; x2, z2) = F (x1, z1; x2, z2; 1, 0). ByProposition 7.2wehave disc1(f ) =
ag2(x2, z2) and disc2(f ) = ag1(x1, z1). The curves C1 and C2 are therefore isomorphic to
those considered in Lemma 6.3. Applying Lemma 6.3 gives the result.

8 Computing the (2, 2, 2)-forms
To complete the proof of Theorem 3.1 wemust explain how to compute the (2, 2, 2)-form
F . As before it is helpful to first consider the special case where C1 = C2 = C3 = E.
Let E be the elliptic curve y2 = x3 + ax + b. We consider the maps

E × E × E
μ

π

E

P1 × P1 × P1

whereμ(P1, P2, P3) = P1+P2+P3 and π is themap taking the x-coordinate of each point.
An equation for S = π (μ−1(0E)) is computed as follows.
Let Pi = (xi, yi) for i = 1, 2, 3 be points on E with P1 + P2 + P3 = 0E . These points lie

on a line, say y = λx + ν. Then as polynomials in x we have

x3 + ax + b − (λx + ν)2 = (x − x1)(x − x2)(x − x3).

Comparing the coefficients of the powers of x we obtain

λ2 = s1,

2λν = a − s2,

ν2 = b + s3,

where s1, s2, s3 are the elementary symmetric polynomials in x1, x2, x3. Eliminating λ and
ν gives the equation

(a − s2)2 − 4s1(b + s3) = 0.

The required (2, 2, 2)-form F is obtained by homogenising this equation, i.e. we replace xi
by xi/zi and multiply through by z21z

2
2z

2
3.

Remark 8.1 We have F (x1, 1; x2, 1; x3, 1) = W0x23 − W1x3 + W2 where

W0 = (x1 − x2)2,

W1 = 2(x1x2 + a)(x1 + x2) + 4b,

W2 = x21x
2
2 − 2ax1x2 − 4b(x1 + x2) + a2.
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These are the formulae used in [5, Chapter 17] to show that the height on an elliptic curve
is a quadratic form.

We now turn to the general case. So let S ⊂ P1 × P1 × P1 be as in Sect. 7. Let z(gi) be
the cubic invariant, and writeH1, H2, H3 for the binary quadratic forms (4) over L = K [ϕ]
associated to g1, g2, g3.

Theorem 8.2 If z(g1)z(g2)z(g3) = m2 for some m ∈ L×, and
H1H2H3

m
= F0 + F1ϕ + F2ϕ2 (13)

where F0, F1, F2 are (2, 2, 2)-forms defined over K , then S has equation F2 = 0.

Proof Let Pi = (xi : yi : zi) ∈ Ci for i = 1, 2, 3, with μ(P1, P2, P3) = 0E . Let Qi be the
image of Pi under the coveringmapCi → E. By the formulae for the coveringmap coming
from classical invariant theory (see for example [8, Proposition 4.2]), the x-coordinate of
Qi is

ξi = 3hi(xi, zi)
4gi(xi, zi)

. (14)

We recall from Sect. 3 that

z(gi)
4ϕgi + hi

3
= H2

i . (15)

By (14), (15) and the equation y2i = gi(xi, zi) for Ci we have

ξi + 3ϕ = 9H2
i

4z(gi)y2i
and hence

3∏

i=1
(ξi + 3ϕ) =

(
27H1H2H3
8my1y2y3

)2
. (16)

Since Q1 + Q2 + Q3 = 0E these points lie on a line, say y = λx + ν for some λ, ν ∈ K .
Then as a polynomial in x we have

x3 − 27Ix − 27J − (λx + ν)2 = (x − ξ1)(x − ξ2)(x − ξ3).

Putting x = −3ϕ gives
3∏

i=1
(ξi + 3ϕ) = (ν − 3λϕ)2. (17)

We first suppose E(K )[2] = 0. In this case L is a field, so comparing (16) and (17) we
have

27H1H2H3
8my1y2y3

= ±(ν − 3λϕ),

in L(S). Taking the coefficient of ϕ2 we see that F2 vanishes on S. In general there are
#E(K )[2] choices for the square root, up to sign, and these correspond to the #E(K )[2]
choices in Remark 7.1.
It remains to check that F2 is not identically zero. For this we may work over an alge-

braically closed field. Then by a change of coordinates we may suppose that gi and hi are
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linear combinations of x4i + z4i and x
2
i z

2
i . The singular quartics in this pencil are (x2i − z2i )

2,
(x2i + z2i )

2 and (xizi)2. Since L ∼= K × K × K we may identify Hi as a triple of binary
quadratic forms. These are non-zero multiples of x2i − z2i , x

2
i + z2i and xizi, in this order

if we made a suitable change of coordinates. (This last claim may be checked without any
calculation if we use stereographic projection to identify the roots of the binary quadratic
forms with the vertices of an octahedron, and then rotate the octahedron.) Therefore the
space of (2, 2, 2)-forms spanned by F0, F1, F2 contains the forms

(x21 − z21)(x
2
2 − z22)(x

2
3 − z23), (x21 + z21)(x

2
2 + z22)(x

2
3 + z23), x1z1x2z2x3z3.

Since these are linearly independent, it follows that F2 is non-zero.

Proof of Theorem 3.1 Let F = F2 be the equation for S in Theorem 8.2. We spe-
cialise the last two sets of variables in (13) to (1, 0). Then comparing with (5) we have
F (x, z; 1, 0; 1, 0) = γ1(x, z). By Corollary 7.3 we have


C1 ([C2]) = (K (
√
a)/K, γ1(x, z)/z2),

where a = g3(1, 0). Then by (10) we have

〈[C1], [C2]〉CT =
∑

v∈MK

invv(Kv(
√
a)/Kv, γ1(xv, zv)/z2v ).

Subject to identifying μ2 = 1
2Z/Z, the Hilbert norm residue symbol is given by

(a, b)v = invv(Kv(
√
a)/Kv, b).

This gives the formula in Theorem 3.1, except that we have g3(1, 0) in place of g2(1, 0). As
noted in Remark 3.2(v), this change does not matter.

Remark 8.3 To show that γ1(x, z) is not identically zero we show more generally that F
cannot bemade to vanish by specialising twoof the sets of variables. Indeed, by considering
F as given in Remark 8.1, it suffices to show that the polynomials W0,W1,W2 never
simultaneously vanish. This may be checked by setting x1 = x2 = x and computing
that the resultant of W1 and W2 is 28(4a3 + 27b2)2. This last expression is non-zero, by
definition of an elliptic curve.

Data availability Data sharing is not applicable to this article as no datasets were generated or
analysed during the current study.
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