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Abstract

We consider spaces of modular forms attached to definite orthogonal groups of low
even rank and nontrivial level, equipped with Hecke operators defined by Kneser
neighbours. After reviewing algorithms to compute with these spaces, we investigate
endoscopy using theta series and a theorem of Rallis. Along the way, we exhibit many
examples and pose several conjectures. As a first application, we express counts of
Kneser neighbours in terms of coefficients of classical or Siegel modular forms,
complementing work of Chenevier–Lannes. As a second application, we prove new
instances of Eisenstein congruences of Ramanujan and Kurokawa–Mizumoto type.
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1 Introduction
Motivation and context

The rich interplay between quadratic forms, theta series, and modular forms—together
with their associated Galois representations, automorphic representations, and L-
functions—remains a topic of broad interest in number theory. Computational methods
have developed part and parcel with theoretical advances along these lines. This union has
provided a wide range of applications, including the explicit investigation of predictions
in the Langlands program.
Let Q(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a positive definite, integral quadratic form of rank

n and (half-)discriminant D. One may think equivalently of a lattice � � Z
n embedded

in R
n, where the standard Euclidean norm restricts toQ on �. Related toQ are the forms

in its genus GenQ, the set of quadratic forms locally equivalent to Q at all places. The
set of global equivalence classes in the genus defines the class set ClsQ. The class set
measures the failure of the local–global principle for equivalence of forms, and by the
geometry of numbers we have #ClsQ < ∞. Complex-valued functions on the finite set
ClsQ (or more generally, valued in an algebraic representation of the orthogonal group
ofQ) define a space of modular formsM = M(�). The spaceM can be equipped with the
action of Hecke operators, defined by counting classes of Kneser p-neighbours. Attached
to eigenforms for the Hecke action are automorphic L-functions. (For more detail, see
Sect. 2.)
Just as in the classification of semisimple Lie groups, significant differences among

spaces of orthogonal modular forms emerge depending on the parity and size of the
rank n. The case of small odd rank has seen significant investigation. For rank n = 3
and arbitrary D, there is a Hecke-equivariant, functorial association to classical modular
forms, first developed by Birch [6] and recently refined and generalized by Hein [25]
and Hein–Tornaría–Voight [26]. For n = 5 and squarefree D, Rama–Tornaría [39] and
Dummigan–Pacetti–Rama–Tornaría [17] exhibited striking explicit connections to Siegel
paramodular forms, building on previous work of Ibukiyama [27]. In both cases, the
association can be understood as being furnished by Clifford algebras.
On the other hand, the situation of large rank and low level has seen recent significant

strides. Chenevier–Lannes [10] beautifully studied functoriality for orthogonal modular
forms attached to even unimodular lattices of ranks n = 16, 24. Mégarbané [31] also
studied lattices of rank n = 23, 25 withD = 1. In both cases, the corresponding automor-
phic representations are unramified at all finite places. For example, in rank n = 16, the
class set is represented by E8 ⊕ E8 and E16, and the partitioning of Kneser p-neighbours
between these classes can be expressed explicitly in terms of τ (p), the Fourier coefficients
of Ramanujan’s�-function. And for n = 24, Chenevier–Lannes prove a congruencemod-
ulo 41 between a Siegel modular form and a classical modular form, originally conjectured
by Harder [24]. For a résumé, see Examples 7.1 and 7.4.
Our initial goal in this project (which began as an undergraduate summer project of

Secord) was to give explicit formulae for the partition of p-neighbours among isometry
classes in other genera of lattice similar to results of Chenevier–Lannes [10, Théorème
A]. However, it turned out to be necessary to change our viewpoint and consider the



E. Assaf et al. Res. Number Theory (2022) 8:70 Page 3 of 32 70

eigenvalues and eigenvectors of the Kneser matrices and to relate them to automorphic
forms andGalois representations, as well as to investigate theta series, in order to facilitate
the discovery of such formulae and to enable us to prove them.

Results and contents

With this motivation in mind, here we seek to complement the work mentioned above
by considering low to moderate even rank and nontrivial discriminant D. We are guided
by computational discovery, and we highlight features and phenomena in this setting that
we hope will be insightful in the context of the Langlands program.
After a quick setup in Sect. 2, we present in Sect. 3 an implementation of algorithms for

computing the Hecke module structure of definite orthogonal modular forms (at good
primes), implemented inMagma and available online [3]. This implementationworkswith
an arbitrary lattice and allows arbitraryweight, andwe report on its practical performance.
We then proceed in increasing even rank n. We set aside the case n = 2, as it concerns

genera of positive definite binary quadratic forms: the associated L-functions are Hecke
Größencharakters, and this can be understood already classically. Proceeding with n ≥ 4,
for simplicity in the remainder of the paper we focus on trivial weight—there is already a
lot to see in this case. In Sect. 4 we consider rank n = 4. We make explicit the transfer to
Hilbert modular forms, where we have a precise understanding of the eigensystems and
L-functions that can arise (Theorem 4.4), and we exhibit an example of every type.
Preparing to move to higher rank, in Sect. 5 we define the theta series of an eigenform

φ ∈ M(�): for example,

θ (1)(Q)(q) =
∞∑

m=0
rm(Q)qm (1.1)

has coefficients rm(Q):=#{(x1, . . . , xn) ∈ Z
n : Q(x1, . . . , xn) = m}. The depth of φ is the

smallest g ≥ 0 such that θ (g)(φ) �= 0. We then state a theorem of Rallis (Theorem 5.6)
relating the L-series of an eigenform to its theta series for g equal to its depth, and we
consider the special cases of depth 0 and 1.
In Sect. 6,wepursue rankn ≥ 6.Wefindmany examples thatwe candescribe completely

in terms of classical modular forms. The following statement is a simple example of what
can be established this way; for this purpose, we label classical modular forms following
the LMFDB [44].

Theorem 1.2 Let� be the lattice A6⊕A2 of rank 8 and discriminant 21. Then #Cls(�) =
3, and there are three Hecke eigenforms in M(�) with eigenvalues

p7 − 1
p − 1

+ χ (p)p3,
p(p5 − 1)
p − 1

+ a2p − χ (p)p3,
p(p5 − 1)
p − 1

+ b2p − χ (p)p3

for the operators Tp with p �= 3, 7, where:

• χ is the quadratic character of discriminant 21, and
• ap and bp are the coefficients of the classical newforms of weight 4 and level 21 with

LMFDB labels 21.4.c.a and 21.4.c.b, respectively.

This theorem is established in Example 6.12. There, we give two other ways to write
the statement in the theorem: first, in terms of the L-functions of these eigenforms; and
second, as an explicit expression for the matrix of the Hecke operator Tp acting onM(�).
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Further investigations in rank 6 led us to the following conjecture.

Conjecture 1.3 Let Gp be the genus of lattices of rank 6 and discriminant D = p. Then
the kernel of θ (2) on Gp has dimension equal to the number of classes in Gp of lattices with
no automorphism of determinant −1.

We verified this conjecture for p < 1000 (subject to the limitations on our ability to rig-
orously determine ker θ (2)); however, we do not have a heuristic or conceptual explanation
for it.
As the discriminant and rank increase, we soon encounter Siegel modular forms of

higher genus. In some cases these can still be related explicitly to classical modular forms
via lifts—see Example 6.16 for the genus of lattices containing D4 ⊕ D6. In the remaining
cases, which we think of as being genuine depth at least 2, we consider it a feature of
working with definite orthogonal modular forms that we can compute some higher genus
Siegel eigenforms explicitly, but indirectly.
Finally, in Sect. 7 we pursue congruences between eigenvalues of classical modular

form and of nonlift Siegel eigenforms. We propose Conjecture 7.8 which predicts such
congruences within the framework of Eisenstein congruences. In some cases, these con-
gruences can easily be proven by explicit computation with orthogonal modular forms:
an illustrative example is as follows.

Theorem 1.4 The congruence

a1,p2 (F ) ≡ ap(f )2 − (1 + χ53(p))p3 + p5 + p (mod q) (1.5)

holds for all primes p �= 53, where:

• F ∈ S4(�(2)
0 (53),χ53) is a nonlift Siegel eigenform of weight 4, level 53, and quadratic

character χ53 whose Hecke eigenvalues a1,p(F ), a1,p2 (F ) lie in the ring of integers of the
sextic number field K :=Q({a1,p(F ), a1,p2 (F )}p) defined by

x6 − 2x5 − 290x4 − 388x3 + 14473x2 + 11014x − 81256;

• q is the unique prime of norm 397 in the ring of integers of K ; and
• ap(f ) are the Hecke eigenvalues of the classical modular form f of weight 4, level 53,

and quadratic character with LMFDB label 53.4.b.a.

We prove Theorem 1.4 in Example 7.6. Remarkably, we do not exhibit the Siegel eigen-
form directly; however, it would be interesting to do so.

2 Setup and notation
In this section, we provide basic setup and notation. For convenience and to highlight
ideas, we take the ground field to be the rational numbers; however, much of what we
present extends to a general totally real base field. For further reading, see e.g. Greenberg–
Voight [22], Rama–Tornaría [39], or Gross [23].

Lattices

Let (V,Q) be a positive definite quadratic space over Q with associated bilinear form
B(x, y) = Q(x+y)−Q(x)−Q(y) for x, y ∈ V . Let� ⊂ V be aZ-lattice of rank n. Rescaling
Q, wemay suppose without loss of generality thatQ(�) ⊆ Z, and we say that� is integral.
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We say that � is maximal if � is not properly contained in another integral lattice.
Choosing a basis e1, . . . , en for� � Z

n, theGrammatrix of� is (B(ei, ej))i,j=1,...,n ∈ Mn(Z),
with diagonal entries 2Q(ei) ∈ 2Z for i = 1, . . . , n. We define the (half-)discriminant of �
to be disc(�) = (1/2)ε det(B(ei, ej))i,j ∈ Z where ε = 0, 1 according as n is even or odd.
The orthogonal group O(V ) of V is the group of Q-linear automorphisms of V that

preserve the quadratic form, the isometries of V ; the orthogonal group O(�) of � is the
subgroup of O(V ) that stabilizes �. If �′ = γ (�) for γ ∈ O(V ), we say � is isometric to
�′ and we write simply � � �′.
Repeating these definitions but withQp andZp in place ofQ andZ, respectively, we can

consider the completions �p:=� ⊗ Zp ⊂ Vp:=V ⊗Q Qp for primes p.
The genus of � is the set of lattices

Gen(�):={�′ ⊂ V : �′
p � �p for all primes p}, (2.1)

i.e., the set of lattices which become isometric to � in each completion.
The orthogonal group O(V ) acts on the genus Gen(�), and we define the class set to be

the set of global isometry classes

Cls(�):=O(V )\Gen(�). (2.2)

By the geometry of numbers we have h = h(�):=#Cls(�) < ∞ (see e.g. Siegel [41, First
Finiteness Theorem of Minkowski, p. 99]). Let Cls(�) = {[�1], . . . , [�h]} with � = �1.
Following Kneser [29], for a prime p (allowing p = 2) and an integer 1 ≤ k ≤ �n/2�, a

lattice � ⊂ V is called a pk-neighbour of �, and we write � ∼pk �, if there exist group
isomorphisms

�/(� ∩ �) � (Z/pZ)k � �/(� ∩ �).

There are evidently only finitely many pk-neighbours of �, and if � ∼pk � is a pk-
neighbour, then � ∈ Gen(�). For any p � D, the class set Cls(�) is connected under
the p-neighbour relation, and lattices in the same genus have the same number of pk-
neighbours.

Orthogonal modular forms

The space of orthogonal modular forms for � (of trivial weight) is the C-vector space of
functions on Cls(�):

M(�):={φ : Cls(�) → C}. (2.3)

(We often implicitly work with the subspace of functions with values in Q, or in a number
field.) A basis for this vector space is given by the characteristic functions on the set Cls(�):
explicitly, we take φ(1), . . . ,φ(h) defined by φ(i)([�j]) = δij = 1, 0 according as i = j or not.
For c1, . . . , ch ∈ C, we abbreviate

[c1, . . . , ch]:=
h∑

i=1
ciφ(i) ∈ M(�), (2.4)

noting that this depends on the implicit ordering of the elements in Cls(�).
More generally, given a finite-dimensional (algebraic) representation ρ : O(V ) � W , we

may similarly define a space of orthogonal modular forms M(�,W ) of weight W : these
are functions on Cls(�) with values in W , equivariant with respect to the orthogonal
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group, with

M(�,W ) �
h⊕

i=1
WO(�i) (2.5)

where WO(�i) denotes the fixed subspace of W under the finite group O(�i). We omit
the details of this case, as we mostly restrict our attention below to the case where W
is the trivial representation: for more detail, see e.g. Rama–Tornaría [39, Sect. 1.2] or
Greenberg–Voight [22, Sect. 2, (4)].
We define an inner product onM(�) by

〈φ(i),φ(j)〉 = δij

#O(�i)
(2.6)

extending by linearity. The constant function [1, 1, . . . , 1] ∈ M(�) is called Eisenstein;
we define the cuspidal subspace S(�) ⊂ M(�) to be the orthogonal complement of the
constant functions.
The pk-neighbour relation defines linear operators on M(�) as follows: for p � D, we

define the Hecke operator

Tp,k : M(�) → M(�)

Tp(f )([�′]) =
∑

�′∼pk �′
f ([�′]). (2.7)

More concretely, the matrix of Tp,k in the basis of characteristic functions has (i, j)-entry
equal to the number of pk-neighbours of �j isometric to �i. These operators pairwise
commute and are self-adjoint with respect to the inner product (2.6) so are simultaneously
diagonalizable. The Hecke algebraH(�) is the finite-dimensionalQ-algebra generated by
the Hecke operators {Tp,k : p � D}p,k ; it is an Artinian commutative ring. An eigenform in
M(�) is a simultaneous eigenvector for the Hecke algebra.
The Eisenstein function is always an eigenform; its eigenvalue Np,k under Tp,k is the

total number of pk-neighbours of �. For example, we have

Np,1 =
n−2∑

i=0
pi + χD∗ (p)p

n
2−1 (2.8)

where D∗ = 1 if n is odd and D∗ = (−1)
n
2D if n is even, and χd =

(
d
·
)
is the quadratic

character attached to Q(
√
d).

Let φ ∈ M(�) be an eigenform with Tp,k (φ) = λp,kφ. We define the (automorphic)
L-function attached to φ as an Euler product

L(φ, s):=
∏

p
Lp(φ, p−s)−1

whereLp(φ, T ) ∈ 1+TC[T ] is a polynomial of degreen defined in terms of the eigenvalues
λp,k via the Satake transform: see Murphy [33, Sect. 3] for an explicit description and
precise formulae in ranks n ≤ 8 [33, pp. 56–57]. For example, for n = 4 we have

Lp(φ, T ) =
⎧
⎨

⎩
1 − λp,1T + p(λp,2 + 2)T 2 − λp,1p2T 3 + p4T 4 , if χD∗ (p) = 1;

(1 − pT )(1 + pT )(1 − λp,1T + p2T 2), if χD∗ (p) = −1.
(2.9)

In particular, note that in both cases the coefficient of T is −λp,1. This is the case for
arbitrary rank, a fact that we will need to use later.
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3 Algorithms
In this section,we review algorithms for computing theHeckemodule structure of orthog-
onal modular forms, and we report on our implementation inMagma [9], available online
[3]. This implementation allows a general totally real base field F , but again for simplicity
we restrict our presentation to the case F = Q. For further background reading, see e.g.
Greenberg–Voight [22, Sect. 6].

Algorithms

The algorithms we require include the following:

(1) OrthogonalModularForms(�,W ): construct from a lattice � and a weight W
a basis for the space of orthogonal modular formsM(�,W ). The returned data type
stores the genus of the lattice Gen(�) and the bases for each subspaceWO(�i).

(2) HeckeOperator(M, p, k): the matrix representing the Hecke operator Tp,k on the
spaceM = M(�,W ) (with respect to the computed basis).

(3) HeckeEigenforms(M): a list of eigenforms for the Hecke algebra, with one rep-
resentative for every Galois orbit.

(4) HeckeEigenvalue(f, p, k): for an eigenform φ, the eigenvalue λp,k such that
Tp,k (φ) = λp,kφ.

(5) LPolynomial(f, p): the L-polynomial Lp(φ, T ) of the eigenform φ.

For OrthogonalModularForms, in view of (2.5) we need to enumerate the genus,
and then compute automorphism groups of the lattices; we obtain a basis by computing
fixed subspaces via standard linear algebra. The enumeration of representatives of the
genus of a lattice using p-neighbours has been studied in great detail, with many practical
improvements.
We briefly elaborate upon the main workhorse HeckeOperator (2). By (2.7), the

Hecke operators are obtained by summing over pk-neighbours. An algorithm for com-
puting Hecke operators using pk-neighbours is described in generality (allowing for other
algebraic groups and arbitrary weights) in Greenberg–Voight [22]; it was implemented
for orthogonal modular forms of trivial weight in Magma [9] by Greenberg, Jeffery Hein,
and Voight. (For lattices over number fields, we rely upon an implementation of Markus
Kirschmer and David Lorch.) Beyond enumerating pk-neighbours using isotropic sub-
spaces, it relies on the algorithm of Plesken–Souvignier [36] for isometry testing between
lattices, which was implemented inMagma [9] by Souvignier, with further refinements to
the code contributed by Allan Steel, Gabriele Nebe, and others.

Algorithm 3.1 (HeckeOperator(M, p, k)).
1: Let Gen(�) = {�1, . . . ,�h} be the genus representatives.
2: Let {v(i,l)}i,l be a basis forM such that {v(i,l)}l is a basis forWO(�i).
3: for i = 1, 2, . . . , h do
4: Let ti,(j,m):=0 for allm and j.
5: for �′ ∼pk �i do
6: Find j and γij ∈ O(V ) such that �′ = γij�j by isometry testing.
7: Let ti,(j,m) + :=γijv(j,m) for allm.
8: Write ti,(j,m) = ∑

l t(i,l),(j,m)v(i,l) for allm and j.
9: end for
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10: end for
11: return T = (t(i,l),(j,m)).

The complexity ofAlgorithm3.1 is dominated byO(h2pk(n−k−1)) isometry tests between
lattices, if donenaively—for a refined approach, seemore on isometry testing below. Build-
ing on their implementation, Assaf extended the implementation to support higher rank
lattices, Hermitian lattices (for unitary groups), and arbitary weight. This implementation
includes highest weight representations for orthogonal and unitary groups in characteris-
tic 0 as explained e.g. by Fulton–Harris [21]. (An implementation of these representations
over finite fields exists inMagma [11,13] byWillem de Graaf and others, based on the LiE
system [45].)
HeckeEigenforms (3) is accomplished using linear algebra on the output of suffi-

ciently many calls to HeckeOperator. We compute the operators Tp = Tp,1 for small
primes until the simultaneous eigenspaces are irreducible overQ. For large enough spaces
with a maximal lattice, the single operator T2 often suffices in practice to observe eigen-
systems occuring with multiplicity one.

Remark 3.2 Weexpect that thismultiplicity onephenomenoncanbe explainedbyworkof
Aizenbud–Gourevitch–Rallis–Schiffmann [1]. However, when the lattice is not maximal,
multiplicity one need not hold due to the presence of oldforms. It would be interesting to
study these multiplicities in more detail.

HeckeEigenvalue (4) slightly improves on the preceding by using the fact that φ

is an eigenform. Indeed, if we write φ = ∑
i φ

(i) where φ(i) ∈ WO(�i) (overlapping with
previous notation), we may choose an index i such that φ(i) �= 0 and compute only loop
number i (Step 3) in Algorithm 3.1. This already yields Tp,kφ

(i) = λp,kφ
(i), from which we

can extract λp,k . Thus, Algorithm HeckeEigenvalue (4) saves a factor h in its running
time in comparison to HeckeOperator.
Finally, LPolynomial (5) first uses HeckeEigenvalue (4) to compute the eigenval-

ues λp,k for k = 1, 2, . . . , �n/2�. It then produces the L-polynomial from these eigenvalues
using the Satake transform, as described by Murphy [33, Sect. 3]. The running time com-
plexity of Algorithm (5) is dominated by O(hpn(n−2)/4) applications of isometry testing.
The running time is polynomial in p (exponential in log p), and the exponent is quadratic

in the rank n, making computations in very high rank almost infeasible. However, in some
of the applications described in the paper, we only require knowledge of the L-polynomial
at a single prime. In any case, even improvements by constant factors (depending on the
rank n) are of practical importance. We turn now to discuss several such improvements.

Genus enumeration

For some of the genera appearing in our examples, a straightforward attempt to find all of
the lattices in the genus and their automorphism groups using Magma takes a long time.
As an example, consider the genus of lattices of rank 8 and discriminant p ≡ 1 (mod 4).
One of the lattices in this genus is generated by E7 and a vector of norm (p + 3)/2, and
Magma’s algorithm for finding the automorphism group of a lattice relies on listing all of
the vectors of normup tom, wherem isminimal such that these vectors span a sublattice of
finite index—hence unnecessarily enumerating all elements of E7 of norm up to (p+3)/2.
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Once this problem is recognized, it is easily dealt with: we compute directly with this
lattice, relating its automorphism group to that of E7. In cases where p ≡ 1 (mod 8) or
p ≡ 1 (mod 12), there are lattices generated by A7,D7, or E6 ⊕A1 and one vector of large
norm that cause similar (but less severe) problems. More generally, if we were trying to
enumerate genera of lattices of rank n we would directly find the lattices that have a large
root sublattice of small discriminant and their automorphism groups.
In light of this issue, our implementation offers an option for the user to supply the

lattices in a genus together with their automorphism groups.

Isometry testing

To test for isometry, we rely on standard algorithms for Z-lattices. Since our genus rep-
resentatives are fixed while computing Hecke operators, we are able to perform some
precomputation steps in order to improve the running times. If �1, . . . ,�h are repre-
sentatives for Cls(�), we compute the first few coefficients of its theta series θ (1)(�i) (as
defined in (1.1)) and cache them before enumerating the p-neighbours. Since these are
isometry invariants, we can compute them for every p-neighbour, and test for isometry
only when they match. If the cached data determines the genus representative uniquely
and the weight is trivial, we do not need to test for isometry at all. In higher weight, one
needs to compute the actual isometry, but this can be computed on the correct represen-
tative so the total number of isometry tests is equal to the number of neighbours.
There are several other possible ways to exploit the ability to precompute data in order

to reduce the running time of isometry testing. For example, the ultimate representative
would be a canonical form for the lattice [42] (or in rank ≤ 4, we could compute a
Minkowski-reduced representative). Although this seems to work very well when tested
on its own terms, we have not been able to take advantage of this speedup in computing
modular forms because its implementation does not easily plug into our implementation
in Magma. We have also attempted to use greedy reduction, as described by Nguyen–
Stehlé [34]. However, as the reduction process does not yield a unique representative, one
has to determine the orbits of the greedy-reduced lattices. The precomputation of these
orbits turned out to be slower than computing the Hecke operators Tp,k in practice.

Automorphism group and time/memory trade-off

The algorithms HeckeOperator and HeckeEigenvalue for computing the Hecke
operator Tp,k and its eigenvalues has naive running time complexity of O(h2pk(n−k−1))
isometry tests, while requiring only O(1) memory. In the presence of memory resources,
we leverage this to gain some improvement, even if by a constant, as follows.
The group O(�) acts on the set of pk-neighbours by isometries, hence it suffices to test

isometries on a set of orbit representatives. The naive time/memory trade-off is then to
precompute the orbits of O(�) on neighbours by union find, at the cost of O(pk(n−k−1))
memory. An alternative is obtained by keeping only a single orbit in memory at any
given time, expanding it while computing its stabilizer. In both cases, if we are computing
HeckeEigenvalue, we can choose an index i such that #O(�i) is maximized.
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Table 1 Timings for a lattice of rank 4 and D = 372

p 2 3 5 7 11 13 17 19 23 29 31 37 41

φ1 0.00 0.01 0.04 0.07 0.13 0.16 0.27 0.33 0.45 0.71 0.84 0.00 1.40

φ2 0.01 0.02 0.06 0.10 0.20 0.26 0.42 0.55 0.80 1.22 1.37 0.01 2.41

p 43 47 53 59 61 67 71 73 79 83 89 97

φ1 1.50 1.79 2.24 2.86 3.04 3.57 4.01 4.19 4.99 5.45 6.28 7.38

φ2 2.62 3.12 4.03 5.09 5.40 6.54 7.37 7.44 8.87 9.80 11.25 13.46

Timings

We record the performance of our implementation. All the timings appearing here were
measured on a standard desktopmachine. Each example has a corresponding code snippet
included in the examples in our package [3].

Example 3.3 We consider the genus of maximal, integral lattices of rank 4 and discrimi-
nant D = 372 = 1369. We compute L-polynomials for the eigenforms. A representative
� of the genus corresponds to the quadratic form

Q(x, y, z, w) = x2 + xz + xw + 2y2 + yz + 2yw + 5z2 + zw + 10w2. (3.4)

Running OrthogonalModularForms, we find #Cls(�) = 4, with representatives

�1 = � =

⎛

⎜⎜⎜⎝

2 0 1 1
0 4 1 2
1 1 10 1
1 2 1 20

⎞

⎟⎟⎟⎠ , �2 =

⎛

⎜⎜⎜⎝

2 1 0 −1
1 8 −1 −4
0 −1 10 −2

−1 −4 −2 12

⎞

⎟⎟⎟⎠ ,

�3 =

⎛

⎜⎜⎜⎝

4 −1 −1 0
−1 4 2 −1
−1 2 6 2
0 −1 2 20

⎞

⎟⎟⎟⎠ , �4 =

⎛

⎜⎜⎜⎝

4 −1 −1 1
−1 6 3 −1
−1 3 8 1
1 −1 1 10

⎞

⎟⎟⎟⎠ .

(3.5)

The first three Hecke operators have matrices (under the standard basis):

T2,1 =

⎛

⎜⎜⎜⎝

1 1 1 1
2 4 0 2
2 0 4 2
4 4 4 4

⎞

⎟⎟⎟⎠ , T3,1 =

⎛

⎜⎜⎜⎝

4 1 1 2
2 9 0 3
2 0 9 3
8 6 6 8

⎞

⎟⎟⎟⎠ , T5,1 =

⎛

⎜⎜⎜⎝

4 4 4 4
8 10 6 8
8 6 10 8
16 16 16 16

⎞

⎟⎟⎟⎠

The corresponding eigenforms and eigenvalues are:

φ1 = [1, 1, 1, 1] : λ2,1(φ1) = 9, λ3,1(φ1) = 16, λ5,1(φ1) = 36, . . .

φ2 = [0, 1,−1, 0] : λ2,1(φ2) = 4, λ3,1(φ2) = 9, λ5,1(φ2) = 4, . . .

φ3 = [4,−2,−2, 1] : λ2,1(φ3) = 0, λ3,1(φ3) = 4, λ5,1(φ3) = 0, . . .

φ4 = [4, 1, 1,−2] : λ2,1(φ4) = 0, λ3,1(φ4) = 1, λ5,1(φ4) = 0, . . .

Below are the timings (in seconds) measured to produce L-polynomials for p < 100.
Note that running times for φ2 are longer. This is due to the fact that the support of φ1
(and φ3,φ4) includes a lattice with #O(�) = 8, while the support of φ2 only includes
lattices with #O(�) = 4. Note also that p = 37 is significantly faster, which is due to the
ramification at 37.
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Table 2 Timings for a lattice of rank 4 and D = 193

p 2 3 5 7 11 13 17 19 23 29 31 37 41

φ 0.01 0.03 0.02 0.06 0.05 0.07 0.12 0.15 0.34 0.32 0.61 0.47 0.58

p 43 47 53 59 61 67 71 73 79 83 89 97

φ 1.10 0.78 1.00 1.97 1.36 2.58 1.80 1.89 2.21 3.88 2.81 5.42

Table 3 Timings for a lattice of rank 6 and D = 39

p 2 3 5 7 11 13 17 19

φ 0.13 0.30 4.11 12.05 185.39 341.80 1209.94 2228.58

Table 4 Timings for a lattice of rank 6 and D = 75

p 2 3 5 7 11 13 17 19

φ 0.03 0.23 3.97 14.31 126.77 358.64 1055.34 2256.81

Table 5 Timings for a lattice of rank 6 and D = 131

p 2 3 5 7 11 13 17 19

φ 0.11 0.54 4.08 18.52 202.14 488.63 1323.29 2284.46

Example 3.6 We consider the genus of maximal integral lattices of rank 4 and D = 193.
We find that # Cls(�) = 9. Below are the timings (in seconds) measured to produce
L-polynomials for p < 100. Note that in this case all forms have support including the
lattice with the largest automorphism group. The time taken is closely approximated by
cχ193(p)p2 seconds, where c1/c−1 is roughly 1.62; this is due to the fact that for inert primes,
there are fewer neighbours.

Example 3.7 We consider a genus of (maximal) integral lattices of rank 6 and D = 39
containing a lattice � � A2 ⊕ �2, where �2 is a lattice of rank 4 generated by A3 and a
vector of norm 4 whose intersections with the 3 roots corresponding to the vertices of the
Dynkin diagram are 1, 0, 0. It takes less than a second to set up the space (of dimension
2) and compute the two eigenforms. We give timings (in seconds) measured to produce
L-polynomials for p < 20 in Table 3.

Example 3.8 Consider the genus of integral lattices of discriminantD = 75 that contains
the lattice A4 ⊕ �15, where �15 is a lattice of rank 2 spanned by vectors of norm 4 and
inner product 1. We give timings (in seconds) measured to produce L-polynomials for
p < 20 in Table 4.

Example 3.9 Consider the genus of integral lattices with discriminant D = 84 that con-
tains � = A2

1 ⊕ A2 ⊕ L7, where L7 is the lattice of rank 2 and discriminant 7. We give
timings (in seconds) measured to produce L-polynomials for p < 20 in Table 6.

Example 3.10 Consider the genus of integral lattices of rank 6with discriminantD = 131.
We give timings (in seconds) measured to produce L-polynomials for p < 20 in Table 5.

Table 6 Timings for a lattice of rank 6 and D = 84

p 2 3 5 7 11 13 17 19

φ 0.05 0.27 3.59 12.58 187.29 358.52 1489.43 2604.32



70 Page 12 of 32 E. Assaf et al. Res. Number Theory (2022) 8:70

Table 7 Timings for a lattice of rank 8 and D = 21

p 2 3 5

φ 1.25 62.8 93955.09

Table 8 Timings for a lattice of rank 8 and D = 53

p 2 3 5 7

φ 2.43 71.62 9559.27 345324.19

Table9 Timings for a lattice of rank 6, D = 39 and weight (2, 0, 0)

p 2 3 5 7

φ 0.66 0.98 19.81 37.7

Table10 Timings for a lattice of rank 6, D = 7 and weight (4, 0, 0)

p 2 3 5 7

φ 181.56 468.45 4632.85 10253.26

Example 3.11 We consider the genus of lattices of rank 8 and D = 21 containing � =
A6 ⊕ A2. It takes 14 seconds to compute the space (dimension 3) and 0.23 seconds to
compute eigenforms, and the following much shorter Table 7 shows how long it takes to
compute L-polynomials.

Example 3.12 We consider the unique genus of lattices of rank 8 andD = 53. It takes 305
s to compute the space (dimension 8) and 1 s to compute eigenforms, and the following
Table 8 shows how long it takes to compute L-polynomials.

Example 3.13 We consider the lattice from Example 3.7, but consider forms of weight
(2, 0, 0). It takes us less than a second to find that the dimension of the space is 4, and that
it consists of two Galois orbits of eigenforms, of sizes 1, 3. The following table shows how
long it takes to compute L-polynomials for either eigenform:

Example 3.14 We consider the root lattice A6, of rank 6 and discriminant 7. In trivial
weight it only admits an Eisenstein series, but in weight (4, 0, 0) we find a cusp form φ in
10 seconds. The following table shows how long it takes to compute L-polynomials.

Example 3.15 We consider the root lattice A10 of rank 10 and discriminant 11. We find
that the genus consists of 3 lattices, giving 3 distinct eigenforms, φ1,φ2,φ3. We can com-
pute the polynomials L2(φi, T ) for i = 1, 2, 3 in 249.52 s.

Example 3.16 We consider the genus of lattices of rank 10 and discriminant 27 that
contains E6 ⊕ A2

2. We find that the genus consists of 2 lattices, giving a single cusp form,
φ. We can compute the polynomial L2(φ, T ) in 264.51 s.

4 Rank four
In this section, we consider spaces M(�) where � has rank n = 4. In this case, we
relate orthogonal modular eigenforms explicitly to Hilbert modular forms, and we give
examples.
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Transfer

Let � be a lattice of rank 4, as in Sect. 2. In this section, we suppose that � is maximal, to
simplify the discussion of newforms and oldforms. Write its discriminant as D = D0N 2

where D0 is a fundamental discriminant. The orthogonal modular forms for � will be
described as Hilbert modular forms over the étale algebra

K :=Q[
√
D0] = Q[x]/(x2 − D0) (4.1)

So if D0 = 1 we have K � Q × Q and will again find classical modular forms, otherwise
we have a real quadratic field. Let ZK be the ring of integers of K , with ZK = Z × Z if
D0 = 1.
To further focus on a clarifying case, we explain the precise relation in the case whereN

is squarefree. We say that a prime p is isotropic for V if there exists nonzero x ∈ V ⊗ Qp
such that Q(x) = 0; else, we say that p is anisotropic. There are finitely many anisotropic
primes, and we letM be their product.
For an integerN , write S2(NZK ) for the space of Hilbert cusp forms of parallel weight 2,

level NZK , and trivial character. This finite-dimensional C-vector space comes equipped
with aHecke algebraH(NZK ) of operators away fromN aswell as a cavalcade of additional
structures, as follows.

(1) The space S2(NZK ) decomposes into new and old subspaces; we let S2(NZK )M-new

be the space of forms which are new at all primes p | M.
(2) For every p | N , there exists an involutionWp on this space, called the Atkin–Lehner

involution at p. (When p splits, this is the product of the involutions for the two
primes above p.) For a sequence {cp}p|N with cp ∈ {±1}, we write S2(NZK ; {cp}p|N )
for the subspace of forms f ∈ S2(NZK ) such thatWpf = cpf .

(3) The Galois group GK :=Gal(K | Q) = 〈σ 〉 acts on S2(NZK ) via its action on the base
field: in terms of Hecke eigenvalues, we have ap(σ f ) = aσ (p)(f ).

(4) There is a twisting action by the group of finite order Hecke characters of modulus
NZK (∞). We denote by X = X(N ) the Hecke characters that act on S2(NZK ; {cp}p):

X :={χ : Cl+(NZK ) → C
× : χ2 = 1, χ (p) = 1 for all p | N }. (4.2)

Putting these altogether, we write

GK \S2(NZK ; {cp}p)X,M-new (4.3)

for the subspace of forms which areM-new at all primes p | M and fixed by all characters
in X , up to the swapping action of GK .
The following transfer of modular forms can be proven using the even Clifford functor.

Theorem 4.4 ([4]). There is an injective linear map from orthogonal cusp forms to orbits
of Hilbert cusp forms

C0 : S(�) ↪→ GK \S2(NZK )

and a natural embeddingH(�) ↪→ H(NZK ) for which this injection is equivariant for the
action of the corresponding Hecke algebras. The image of this map consists of the orbits in
S2(NZK ; {cp}p|N )X,M-new, where cp = −1, 1 according as p | M or not.
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In the square discriminant case, i.e., D0 = 1, this was proved by Böcherer and Schulze-
Pillot in [8]. An equality of dimensions can be deduced from the results of Ponomarev in
[37].
As a corollary from this description, we obtain a relationship between the L-polynomials

of the objects on both sides. In order to describe this relation we recall the definition of
the Asai L-function associated to a Hilbert eigenform. Let f ∈ S2(NZK ) be an eigenform.
For every prime p of ZK that does not divide N with Tpf = apf , we factor

1 − apT + Nm(p)T 2 = (1 − αpT )(1 − βpT ) (4.5)

where Nm(p) is the absolute norm. Asai [2] defines for every prime p � N a polynomial
depending on the splitting behavior of p in K :

Lp(f, T,Asai):=
{
(1 − αpαp′T )(1 − αpβp′T )(1 − βpαp′T )(1 − βpβp′T ), if pZK = pp′;
(1 − αpT )(1 − βpT )(1 − p2T 2), if pZK = p.

(4.6)

These are the “good” L-polynomials of the Asai lift of f to GL4. The precise description
of the embedding of Hecke algebras H(�) ↪→ H(NZK ) in Theorem 4.4 then yields the
following corollary.

Corollary 4.7 Let φ ∈ S(�) be an eigenform. Then for every prime p � D we have

Lp(φ, T ) = Lp(C0(φ), T,Asai). (4.8)

Remark 4.9 In the square discriminant case, i.e. D0 = 1, we have K � F × F and
S2(NZK ) ⊆ M2(N ) ⊗ M2(N ) is the subspace spanned by pairs of (classical) modular
forms of level N such that either both are cusp forms, or one form is a cusp form and the
other is the Eisenstein series E2. This space was named the “essential” subspace in [8]. In
this case, all the primes are split, and so the Asai L-function in (4.6) turns out to be simply
the Rankin–Selberg L-function associated to f ⊗ g ∈ S2(NZK ). Namely, if C0(φ) = f ⊗ g ,
then Lp(φ, T ) = Lp(f ⊗ g, T ). We further note that the Galois action here is simply the
swap, identifying f ⊗ g with g ⊗ f .

Remark 4.10 In view of the description of the image of the map C0 in Theorem 4.4, one
might wonder where all the other forms went. Indeed, working with a compact form we
only expect to see Hecke characters whose associated Dirichlet character is trivial, and
since the Clifford functor is trivial on scalars, we must also restrict to forms with trivial
Hecke character.However, it is possible to obtain the spaces of formswith differentAtkin–
Lehner eigenvalues by using appropriate weights. For d | N , we let νd : Q

×
>0/Q

×2 → {±1}
be the character defined on primes by νd(p) = −1 iff p | d. Let γ0 ∈ O(V ) be an isometry
with determinant−1. Elements in SO(V ) can be represented as composition of reflections
by vectors, and the product of the normsof these vectors is invariant up to squares, yielding
a map called the spinor norm, nrd : SO(V ) → Q

×
>0/Q

×2, which we extend to O(V ) by
setting nrd(γ0) = 1. Then ψd = νd ◦ nrd is a character of O(V ), known as the spinor

norm character, as in Hein–Tornaría–Voight [26]. One can find the forms with other
Atkin–Lehner eigenvalues by considering the space of orthogonal modular forms with
weight given by the spinor norm character. Full details and more general statements will
be given in future work [4].
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Square discriminant case

We now proceed to give examples that exhaust all possible types of eigensystems and
L-functions in the rank 4 case. Throughout p is assumed to be a good prime, i.e. p � D.
We begin with the case where D0 = 1. By Remark 4.9 the eigenforms φ ∈ M(�) can only
belong to one of four types.

Example 4.11 Let � be a maximal integral lattice with D = 372, as in Example 3.3. As
expected, the eigenform φ1 is Eisenstein, having eigenvalue

λp,1 = (1 + p + p2) + p = (1 + p)2

and L-polynomials

Lp(φ1, T ) = (1 − T )(1 − pT )2(1 − p2T )

(the L-polynomial of the “Asai L-function” of E2 ⊗ E2).
To explain the eigenforms φ2 and φ3 we let

f2:=q − 2q2 − 3q3 + 2q4 − 2q5 + 6q6 − q7 + O(q9) ∈ S2(�(1)
0 (37))+

f3:=q + q3 − 2q4 − q7 − 2q9 + O(q11) ∈ S2(�(1)
0 (37))−

(4.12)

be the forms with LMFDB labels 37.2.a.a and 37.2.a.b. In both cases it appears that λp,1 =
a2p, where ap is theTp eigenvalue of f2 and f3 respectively. Indeed, both are explained in the
same fashion by using the transfer map. For example, one can check that C0(φ2) = f2 ⊗ f2,
so that

Lp(φ2, T ) = Lp(C0(φ2), T,Asai) = Lp(f2 ⊗ f2, T ).

Comparing linear terms gives λp,1 = a2p.
It remains to explain the eigenform φ4. It appears that λp,1 = (1+ p)ap, where ap is the

Tp eigenvalue of f3. This is again explained by the transfer map, since one can check that
C0(φ4) = E2 ⊗ f3, so that

Lp(φ4 , T ) = Lp(C0(φ4), T,Asai) = Lp(E2 ⊗ f3, T ).

Comparing linear terms gives λp,1 = (1 + p)ap.
Note that W37f2 = −f2 while W37E2 = E2 and W37f3 = f3, and indeed we only obtain

the pairs which are fixed by W37 coming from pairs having the same Atkin–Lehner sign
(see Remark 4.10).

Example 4.13 Let � be a maximal integral lattice with D = 672 and Gram matrix
⎛

⎜⎜⎜⎝

2 0 0 1
0 2 1 0
0 1 34 0
1 0 0 34

⎞

⎟⎟⎟⎠ .

Then #Cls(�) = 13 and we compute the Hecke operator T2,1.
Consider the eigenvector φ satisfying T2,1φ = −φ. The first few eigenvalues λp,1(φ) =

λp,1 are:

λ2,1 = λ3,1 = λ5,1 = λ7,1 = λ13 = −1, λ11,1 = 1, λ17,1 = 4, λ19,1 = 29, . . .
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It seems that

λp,1(φ)
?= ap(f1)ap(f2), (4.14)

where ap(f1) is the Tp-eigenvalue of the eigenform f1 with LMFDB label 67.2.a.c

f1:=q − αq2 + (1 − α)q3(−1 + α)q4 + (1 + 2α)q5 + q6 + αq7 + O(q8) ∈ S2(�(1)
0 (67)),

where α:=(1+ √
5)/2, and f2 is the Galois conjugate of f1. The observed equality (4.14) is

true for all good p: it is explained by the transfer map, since C0(φ) = f1 ⊗ f2, and so

Lp(φ, T ) = Lp(C0(φ), T,Asai) = Lp(f1 ⊗ f2, T ).

Comparing linear terms gives λp,1(φ) = ap(f1)ap(f2).
Note here the necessity to consider Galois orbits appearing in Theorem 4.4. We needed

to identify f1 ⊗ f2 and f2 ⊗ f1 in order to uniquely determine C0(φ) (similarly with E2 ⊗ f3
with f3 ⊗ E2). This is clear from an L-function perspective since L(f1 ⊗ f2, s) = L(f2 ⊗ f1, s)
and L(E2 ⊗ f3, s) = L(f3 ⊗ E2, s).

Non-square discriminant

We now consider the somewhat less well-studied nonsquare discriminant case. Here an
eigenform φ ∈ M(�) can be one of three types.

Example 4.15 Let � be a maximal integral lattice with D = 193, as in Example 3.6.
The eigenforms φ1,φ2, . . . ,φ9 come in three Galois orbits. The eigenvector φ1 is the

Eisenstein eigenvector with eigenvalues

λp,1 = p3 − 1
p − 1

+ χ193(p)p

and L-polynomials

Lp(φ1, T ) = (1 − χ193(p)pT )(1 − T )(1 − pT )(1 − p2T )

(those of the “Asai L-function” of the Hilbert Eisenstein series E2 ∈ M2(ZK ) over K =
Q(

√
193)).

The seven eigenvectors φ2, . . . ,φ8 appear to have eigenvalues λp,1 = a2p,i+p(1−χ193(p))
with ap,i running through the Tp eigenvalues of f ∈ S2(�(1)

0 (193),χ193) (a Galois orbit of
size 14 with LMFDB label 193.2.b.a). This is explained by the transfer map. Indeed, we
find that C0(φ2) = DN(f ), the Doi–Naganuma lift [14], and so we have

Lp(φ2, T )(1 − χ193(p)pT ) = Lp(DN(f ), T,Asai)(1 − χ193(p)pT )

= Lp(f ⊗ f̄ ⊗ χ193, T )(1 − pT ).
(4.16)

Comparing linear terms yields λp,1 + χ193(p)p = a2p,i + p. Note that the Galois action
identifies pairs of forms in the orbit, shrinking its size from 14 to 7.
The eigenvector φ9 is slightly more mysterious. The first few eigenvalues are

λ2,1 = −4, λ3,1 = −4, λ5,1 = 1, . . .
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These are linked to a Hilbert eigenform f ∈ S2(ZK ). Indeed, there is such an eigenform
(LMFDB label 2.2.193.1-1.1-a) with Hecke eigenvalues

ap2 = ap3 = 1 + √
17

2
, ap̄2 = ap̄3 = 1 − √

17
2

, ap5 = 1, . . .

and it is true that

λp =
⎧
⎨

⎩
apap̄ if pOK = pp̄ splits in K

ap if pOK = p is inert in K
.

This follows from the transfer map, since C0(φ9) = f and the above is exactly the linear
term of Lp(f, T,Asai).

5 Theta series and a theorem of Rallis
In the interest of finding explicit formulae for the eigenvalues λp,k , we will find it very
useful to consider theta series, defined as follows.
First, given a lattice � of rank n defining the spaceM(�) of orthogonal modular forms,

we define the theta map for g ∈ Z≥1 by

θ (g) : M(�) → Mn
2
(�(g)

0 (D),χD∗ )

[c1, . . . , ch] �→
h∑

i=1

ci
#O(�i)

θ (g)(�i),
(5.1)

where

θ (g)(�i)(τ ):=
∑

A∈Matn,g (Z)
eπ i tr(A

TQiAτ ) (5.2)

is the Siegel theta series of �i of genus g (with variable in the Siegel upper half plane
Hg = {τ ∈ Mg (C) | τT = τ , Im(τ ) > 0}). Here Qi is the Gram matrix of �i with respect
to Q and T denotes matrix transpose. Note that

θ (0)(�i):=1 (5.3)

so that

θ (0)([c1, . . . , ch]) =
h∑

i=1

ci
#O(�i)

= 〈[c1, . . . , ch], [1, 1, . . . , 1]〉 (5.4)

with inner product as in (2.6).
A long-standing problem has been to determine relations (and non-relations) between

Siegel theta series of lattices. For example the fact that θ (1)(E8⊕E8) = θ (1)(E16) shows that
there exist isospectral tori that are non-isometric. The fact that θ (4)(E8⊕E8)−θ (4)(E16) �= 0
is related to the famous Schottky problem (this function vanishes precisely when τ ∈ H4
corresponds to the Jacobian of a genus 4 curve).

Definition 5.5 Let φ ∈ M(�) be an eigenform. The depth dφ is the smallest integer such
that θ (dφ )(φ) �= 0.

In fact θ (g)(φ) �= 0 for all g ≥ dφ , since theta series are compatible under the Siegel
operator

�g : Mk (�
(g)
0 (D),χD∗ ) → Mk (�

(g−1)
0 (D),χD∗ ),
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i.e., �g (θ (g)(�)) = θ (g−1)(�) for any lattice � (see Böcherer [7]).
For p � D, results of Rallis relate the action of pk-neighbour operators on eigenforms

φ ∈ M(�) with the action of Hecke operators at p acting on the Siegel modular form
F = θ (g)(φ) (if non-zero). This implies precise statements relating the Hecke eigenvalues
of φ and F . The following is a consequence of such results that will prove useful later.

Theorem 5.6 Let φ ∈ M(�) be an eigenform. Suppose that g ≥ 0 is such that F :=θ (g)(φ)
has F �= 0. Let m:=n/2 − 1. Then the following statements hold.

(a) F is an eigenform for the algebra of Hecke operators generated by Tp when χD∗ (p) = 1
and T1,p2 when χD∗ (p) = −1.

(b) If 2g < n and p � D then

Lp(φ, T ) = Lp (χD∗ ⊗ F, pmT, std)
m−g∏

i=g−m

(
1 − pm−iT

)
.

(c) If 2g ≥ n and p � D then

Lp (χD∗ ⊗ F, pmT, std) = Lp(φ, T )
g−(m+1)∏

i=(m+1)−g

(
1 − pm−iT

)
.

Here the standard L-function of χ ⊗ F for eigenform F ∈ Sk (�
(g)
0 (D),χ ) has L-

polynomials

Lp(χ ⊗ F, T, std) = (1 − χ (p)T )
g∏

i=1
(1 − χ (p)αiT )(1 − χ (p)α−1

i T ),

at p � D, where {α0,p,α1,p, . . . ,αg,p} are the (standard) Satake parameters of F at p, normal-
ized so that α2

0,pα1,p . . . αg,p = 1. See Pitale [35, Chapter 3] for a more detailed discussion.

Proof Parts (b) and (c) follow from work of Rallis [38, Remark 4.4]. Part (a) uses an
additional Eichler commutation relation from the work of Freitag [18, Theorem 4.5] (see
also Chenevier–Lannes [10, p. 178, (ii); (7.1.1)]. The translation in the unimodular case
is given explicitly by Chenevier–Lannes [10, Corollary 7.1.3], but the argument applies
more generally, by carefully following arrows [38, Theorem 6.1]. ��

Note that in the above theorem F may be a lift and so the standard L-function may
decompose further into L-functions corresponding to eigenforms of lower genus. The
rank 4 examples in the previous section already demonstrate this behaviour.
In fact, a consequence of general conjectures of Arthur (known in this case by work of

Taïbi [43]) is that the global L-function L(φ, s) should always decompose into a product of
automorphic L-functions for general linear groups. Knowing this decomposition is related
to understanding how φ is an endoscopic lift, and it lets us understand exactly how the
λp,k can be rewritten in terms of eigenvalues of automorphic forms of lower rank groups.

Small depth

Theorem 5.6 tells us that the underlying structure of the eigenvalues λp,k of an eigenform
φ ∈ M(�) is intimately related to its depth dφ . We begin with small depths; in this case,
general formulae can be proved.
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Theorem 5.7 Let φ ∈ M(�) be an eigenform and let p � D be prime. Then the following
statements hold.

(a) dφ = 0 if and only if φ is the Eisenstein eigenform. In this case:

Lp(φ, T ) =
(
1 − χD∗ (p)p

n
2−1T

) n−2∏

i=0
(1 − piT )

and so

λp,1(φ) =
(
pn−1 − 1
p − 1

)
+ χD∗ (p)p

n
2−1.

(b) If dφ = 1 and F :=θ (1)(φ) ∈ Sn
2
(�(1)

0 (D),χD∗ ) then:

Lp(φ, T ) = Lp(χD∗ ⊗ Sym2(F ), T )
n−3∏

i=1
(1 − piT )

and so

λp,1(φ) = ap(F )2 − χD∗ (p)p
n
2−1 + p

(
pn−3 − 1
p − 1

)
,

where ap(F ) is the Tp eigenvalue of F .

Proof If φ = [1, 1, . . . , 1] is the Eisenstein eigenform then dφ = 0 since

θ (0)(φ) = mass(�) =
h∑

i=1

1
#O(�i)

> 0.

Conversely, if φ is not Eisenstein then dφ > 0 since θ (0)(φ) = 0 (by definition of the cus-
pidal subspace). The Euler factors for the Eisenstein eigenform immediately follow from
Theorem 5.6, and the corresponding formula for λp,1 follows by comparing linear terms.
This formula is expected since the right-hand side is the total number of p-neighbours of
�.
We next consider depth dφ = 1. To prove the formula for the Euler factor we again use

Theorem 5.6. Letting {βp,χD∗ (p)β−1
p } be the (spinor) Satake parameters of F at p, we find

that the (standard) Satake parameters of F at p are {χD∗ (p)β2
p , 1,χD∗ (p)β−2

p }. These are
readily recognised as those of the symmetric square lift Sym2(F ) of F to GL3. Hence in
this case Lp(χD∗ ⊗ F, p

n
2−1T, std) = Lp(χD∗ ⊗ Sym2(F ), T ), proving the claim.

Once again, comparing linear terms gives

λp,1(φ) = p
n
2−1(β2

p + χD∗ (p) + β−2
p ) + p

(
pn−3 − 1
p − 1

)

= p
n
2−1((βp + χD∗ (p)β−1

p )2 − χD∗ (p)) + p
(
pn−3 − 1
p − 1

)

= ap(F )2 − χD∗ (p)p
n
2−1 + p

(
pn−3 − 1
p − 1

)
(5.8)

as desired. ��

Given the above, it makes sense to focus on finding higher rank lattices that give eigen-
vectors of higher depth, i.e., dφ ≥ 2. Some of these will still only relate to genus 1 data (the
standard L-function of F might break up into L-functions of classical modular forms and
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Dirichlet L-functions, e.g. if F is an Ikeda lift). However, when the lattice has rank greater
than 4, some will relate to genuine Siegel cusp forms of higher genus, and so are much
more mysterious.

6 Higher rank
Our investigations of orthogonal modular forms also have applications to lattices of rank
greater than 4. One such application is to find formulae analogous to those of Chenevier–
Lannes [10, Théorème A], expressing the number of ways that the two even unimodular
lattices of rank 16 are p-neighbours of each other in terms of the coefficients of τ (p) and
powers of p. There is no genus of even unimodular lattices of order greater than 1 in
rank less than 16, so instead we considered lattices of small discriminant and moderate
rank. It is also interesting to study the set of possible types of automorphic forms and
their L-functions that arise in a given weight and to try to realize them all on specific
genera. In some cases this gives a method for computing Hecke eigenvalues of Siegel
modular forms, though not a systematic one since we cannot necessarily produce a genus
of lattices corresponding to a given form.

Rank 6

We begin our study of lattices of rank 6 with a typical small example. Once again, p is
assumed to be a good prime, i.e., p � D.
Example 6.1 Consider the genus of integral lattices of discriminant D = 39 as in Exam-
ple 3.7. The two eigenforms are explained by Theorem 5.7. The Eisenstein eigenform
φ1 = [1, 1] satisfies dφ1 = 0 and has L-polynomials

Lp(φ1, T ) = (1 − χ−39(p)p2T )(1 − T )(1 − pT )(1 − p2T )(1 − p3T )(1 − p4T )

and so

λp,1 =
(
p5 − 1
p − 1

)
+ χ−39(p)p2.

The other eigenform φ2 = [6,−5] satisfies dφ2 = 1 and has L-polynomials

Lp(φ2, T ) = Lp(χ−39 ⊗ Sym2(f ), T )(1 − pT )(1 − p2T )(1 − p3T )

and so

λp,1(φ2) = ap(f )2 − χ−39(p)p2 + p
(
p3 − 1
p − 1

)

where ap(f ) are the Tp eigenvalues of the newform f ∈ S3(�(1)
0 (39),χ−39) with LMFDB

label 39.3.d.c).
Here, the map θ (1) is injective and so only classical modular forms contribute to the

eigenvalues.

Example 6.2 Consider the genus of integral lattices of discriminantD = 75 that contains
the lattice A4 ⊕ �15, where �15 is a lattice of rank 2 spanned by vectors x, y of norm 4
with inner product 1, as in Example 3.8. Two eigenforms are explained by Theorem 5.7.
The Eisenstein eigenform φ1 = [1, 1, 1] is as in the Example 6.1 (but with character χ−75).
The cusp form φ1 = [12, 5,−9] has depth dφ2 = 1 and so is also as in the above example
(but with character χ−75 and modular form f with LMFDB label 75.3.c.e).
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The eigenform φ3 = [16,−10, 3] has depth dφ = 2 and generates the kernel of θ (1).
Computation suggests that

λp,1(φ3) = (p + 1)ap(g) + (1 + χ−3(p))p2,

where g ∈ S4(�0(5)) has LMFDB label 5.4.a.a. This may be proved using Theorem 5.6.We
know that

Lp(φ3, T ) = Lp(χ−3 ⊗ F, p2T, std)(1 − p2T ),

where F = θ (2)(φ3) ∈ S3(�(2)
0 (75),χ−3). There is no obvious theoretical reason for F to be

a lift. However, our algorithm readily computes that

L2(φ3, T ) = (1 − 4T )(1 + 4T )(1 + 4T + 8T 2)(1 + 8T + 32T 2),

immediately suggesting that F is a lift. We computed more L-polynomials and found that
they factor in the same way. In fact, it can be shown that F is the Ikeda lift of f to Sp4 (i.e.,
the Saito–Kurokawa lift of f ), so that

Lp(φ3, T ) = (1 − p2T )(1 − χ−3(p)p2T )Lp(χ−3 ⊗ f, T )Lp(χ−3 ⊗ f, pT ).

The formula for λp,1(φ3) then follows by comparing linear terms.
This example shows that higher depth eigenforms can still have eigenvalues explained

by classical modular forms (e.g. θ (dφ )(φ) could be an Ikeda lift, so that L(φ, s) is a product
of GL2 and Dirichlet L-functions).

There appear to be other eigensystems that are explainable by classical modular forms,
but not corresponding to Ikeda lifts.

Example 6.3 Consider the genus of integral lattices with discriminant D = 84 that con-
tains � = A2

1 ⊕ A2 ⊕ L7, where L7 is the lattice of rank 2 and discriminant 7, as in
Example 3.9. There is an eigenform φ = [2,−8,−2, 0, 5] of depth dφ = 2. For all good
p < 40, we find that

λp,1(φ) = pap(f1) + ap(f2) + (1 + χ−3(p))p2 (6.4)

where f1 and f2 with LMFDB labels 4.5.b.a and 7.3.b.a respectively. The equality (6.4) is
equivalent to

λp,1(φ) = pap(f ′
1)

2 + ap(f2) + (χ−3(p) − χ−7(p))p2, (6.5)

where f ′
1 has LMFDB label 49.2.a.a. The nature of the formula (6.5) suggests that F =

θ (2)(φ) is a Miyawaki-style lift of f1 and f ′
1—this would explain the appearance of both a

classical eigenform and a symmetric square.
However, we were unable to prove the equality (6.4) for all p, so we propose it as a

conjecture.

Conjecture 6.6 The equality (6.4) holds for all p �= 2, 3, 7.

In general, higher depth eigenforms are likely to have eigenvalues that are not completely
explained by classical modular forms. The L-function cannot be expected to always factor
into degree 1 or 2 pieces. Eventually we must see a contribution from higher genus Siegel
modular forms.
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Example 6.7 Let us consider the genus of lattices of rank 6 and discriminant 131, as in
Example 3.10. One such lattice is obtained by adjoining a vector of norm 34 to D5 that
pairs to 1 with one of the two roots corresponding to a leaf of the Dynkin diagram that
is adjacent to the vertex of degree 3 and to 0 with the other generators. The kernel of
the θ (1) map has dimension 1. In just a few seconds we use our algorithm to compute
the L-polynomials for the corresponding eigenform φ at small primes p = 3, 5, 7 and find
irreducible factors of degree 4; for example

L3(φ, T ) = (1 − 9T )2(1 + 14T + 138T 2 + 1134T 3 + 6561T 4).

This shows that F = θ (2)(φ) ∈ S3(�(2)
0 (131),χ−131) is a non-lift. This is hard to check

directly, since there are currently no general algorithms that allow us to compute F . One
linear factor is explained by the zeta factor in Theorem 5.6, whereas the other degree 5
piece corresponds to Lp(χ−131 ⊗ F, p2T, std). We conclude that

Lp(φ, T ) = Lp(χ−131 ⊗ F, p2T, std)(1 − p2T ),

and thatF contributes genuine genus 2 data to the eigenvaluesλp,k (φ) (i.e., via the standard
lift to a GL5 automorphic form). In particular, a comparison of linear terms gives:

λp,1(φ) = a1,p2 (F ) + p + p2,

for p �= 131, where a1,p2 (F ) is the T1,p2 eigenvalue of F .

Let us now consider θ (2); for simplicity we restrict to prime discriminant. It is not
easy to be certain that an eigenvector is in the kernel of θ (2), since there is no effective
Sturm bound bp to tell us when we can conclude that a linear combination is 0 from the
first bp terms being all 0 (see e.g. Kikuta–Takemori [28, Corollary 2.3], where in this case
bki = 679615). However, it seems reasonable to expect that if the kernel on the coefficients
of the lattices of rank 2 of smallest discriminant is stable and nontrivial over a substantial
range, then this is genuinely the kernel of θ (2). Under this assumption, we found that θ (2)

appeared not to be injective for the genus of lattices of discriminant 599, and for 19 of
the 30 primes congruent to 3 mod 4 between 600 and 1000. (It is also not injective for a
number of composite values, the smallest being 471, but we made no systematic attempt
to list these.)

Remark 6.8 Wemight expect that θ (2) would almost always be injective for n = 6 and for
only finitely many genera in larger even rank. Indeed, the mass of a lattice of rank n and
discriminant p grows like p(n−1)/2 (this follows easily from the mass formula of [12]), and
thus the number of lattices in the genus is of this order. On the other hand, the codomain
of θ (2) is a space of modular forms for a group of index roughly p3 (for more detail see
[19, Corollary II.6.10]), and so its dimension is proportional to p3. Thus the case of rank
6 is interesting, since θ (2) fails to be injective for many p even though there is no obvious
reason for this.

Some investigation of these lattice genera led us to Conjecture 1.3, which we restate
here for convenience.
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Conjecture 6.9 Let Gp be the genus of lattices of rank 6 and discriminant p and let kp be
the number of isomorphism classes in Gp of lattices with no automorphism of determinant
−1. Then the kernel of θ (2) on Gp has dimension kp.

In particular, such a lattice has no vectors of norm 2, since reflection in such a vector
has determinant −1. This explains why no such lattices exist for small p.

Example 6.10 We consider the root lattice A6, of rank 6 and discriminant 7, as in Exam-
ple 3.14. In trivial weight it only admits an Eisenstein series, but in weight (4, 0, 0) we find
a cusp form φ. We find that for the first few primes

Lp(φ, T ) = Lp(χ−7 ⊗ Sym2(f ), T )(1 − p5T )(1 − p6T )(1 − p7T )

where f ∈ S7(�(1)
0 (7),χ−7) with LMFDB label 7.7.b.b.

Example 6.11 We consider the lattice from Example 3.7, now with forms of nontriv-
ial weight (2, 0, 0). The space is of dimension 4, and it consists of two Galois orbits of
eigenforms, of sizes 3 and 1. Denote an eigenform from each orbit by φ1, φ2, respectively.
It appears that

Lp(φ1, T ) ?= Lp(χ−39 ⊗ Sym2(f ), T )(1 − p3T )(1 − p4T )(1 − p5T )

for allp �= 3, 13,where f ∈ S5(�(1)
0 (39),χ−39)withLMFDB label 39.5.d.d; thiswould follow

from an extension of the theta map to higher weight and the corresponding extension of
Theorem 5.6.
We also find for p = 2, 5, 7, 11 that

Lp(φ2, T ) = (1 + apT + p8T 2)(1 − χ−39(p)p4T )(1 + p4T )(1 − p4T )2

with a2 = 2 · 13, a5 = 47 · 13, a7 = 49 · 13, a11 = −682 · 13.

Rank 8

As in the case of rank 6, for small discriminants, the map θ (1) is injective and we can easily
express the eigenvalues of the Kneser matrices in terms of ordinary modular forms.

Example 6.12 Consider the genus of lattices of discriminant D = 21 containing � =
A6⊕A2, as in Example 3.11. In this case #Cls(�) = 3. Aside from the Eisenstein eigenform
φ1 = [1, 1, 1] with

Lp(φ1, T ) = (1 − χ21(p)p3T )(1 − T )(1 − pT )(1 − p2T )(1 − p3T )

(1 − p4T )(1 − p5T )(1 − p6T )

and

λp,1(φ1) =
(
p7 − 1
p − 1

)
+ χ21(p)p3,

we have eigenforms φ2 = [7,−15, 84] and φ3 = [3,−4,−32], of depth dφ2 = dφ3 = 1 with

Lp(φi, T ) = Lp(χ21 ⊗ Sym2(fi), T )(1 − pT )(1 − p2T )(1 − p3T )(1 − p4T )(1 − p5T )

and

λp,1(φi) = ap(fi)2 − χ21(p)p3 + p
(
p5 − 1
p − 1

)
,
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where the ap(fi) are the Tp-eigenvalues of newforms fi ∈ S4(�(1)
0 (21),χ21) with LMFDB

labels 21.4.c.a and 21.4.c.b for i = 1, 2, respectively.
To illustrate our initial goal for this project, we give explicit expressions for the p-

neighbour adjacency matrices. Let �1 = �, and let �2,�3 be the other lattices in the
genus, such that the root sublattices of �2 and �3 are E6 and E7 respectively. Given the
eigenvectors and eigenvalues as above, this amounts to a simple change of basis. The
p-neighbour adjacency matrix is 1/1309 times

⎛

⎜⎝
816 816 816
476 476 476
17 17 17

⎞

⎟⎠ λ
(1)
p,1 +

⎛

⎜⎝
196 −420 2352

−245 525 −2940
49 −105 588

⎞

⎟⎠ λ
(2)
p,1 +

⎛

⎜⎝
297 −396 −3168

−231 308 2464
−66 88 704

⎞

⎟⎠ λ
(3)
p,1

where we abbreviate λ
(i)
p,1 = λp,1(fi). One could do the same for the pk-neighbour matri-

ces using the eigenvalues λ
(i)
p,k . Clearly the description in terms of the eigenvectors and

eigenvalues is more perspicuous.

For slightly larger discriminants we again expect to see a nontrivial kernel of θ (1). At first
all such eigensystems are explained by classical modular forms (since once again θ (dφ )(φ)
is a lift from GL2). For example, the smallest such discriminant is D = 36, the genus in
question containing the lattice A2

2 ⊕ D4. For the eigenvector φ of depth dφ = 2, we have

λp,1(φ) = (p + 1)ap(f ) + p2(p + 1)2,

for f ∈ S6(�(1)
0 (3)) with LMFDB label 3.6.a.a. As previously explained, this is expected

since θ (2)(φ) is the Ikeda lift of f to Sp4 (i.e., Saito–Kurokawa lift).
Eventually, we expect to see genuine contributions from non-lift Siegel modular forms.

In studying such examples it is important to be able to compute L-polynomials, so our
general code is essential, as the following example indicates.

Example 6.13 As in Example 3.12, we consider the genus of lattices of discriminant D =
53. Here #Cls(�) = 8. The Eisenstein eigenform φ1 = [1, 1, 1, 1, 1, 1, 1, 1] is as in the above
example (but with character χ53). The depth 1 eigenforms all lie in a (messy) Galois orbit
with coefficients in the sextic field defined by a root of

x6 − 2x5 − 290x4 − 388x3 + 14473x2 + 11014x − 81256. (6.14)

We let φ2 be one representative of this orbit. Then the L-polynomials and eigenvalues
of φ2 are also as in the above example (but with character χ53 and modular form f ∈
S4(�(1)

0 (53),χ53) with LMFDB label 53.4.b.a).
The eigenform φ3 = [6, 0,−96,−21,−42,−16, 0, 216] has depth dφ3 = 2. However, in

contrast with Example 6.2, the eigenform F = θ (2)(φ3) ∈ S4(�(2)
0 (53),χ53) is not a lift. This

is nontrivial to verify, since there are currently no general algorithms that would allow us
to compute F directly. However, we were able to check this by using our algorithm and
computing L-polynomials of φ3:
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L2(φ3, T ) = (1 − 16T )(1 − 8T )(1 − 4T )(1 + 8T )

(1 + 13T + 118T 2 + 832T 3 + 4096T 4),

L3(φ3, T ) = (1 − 81T )(1 − 27T )(1 − 9T )(1 + 27T )

(1 − 12T − 129T 2 − 8748T 3 + 531441T 4),

L5(φ3, T ) = (1 − 625T )(1 − 125T )(1 − 25T )(1 + 125T )

(1 − 172T + 12885T 2 − 2687500T 3 + 244140625T 4),

L7(φ3, T ) = (1 − 2401T )(1 − 343T )2(1 − 49T )

(1 + 690T + 288617T 2 + 81177810T 3 + 13841287201T 4).

(6.15)

Three of the linear factors are the zeta factors in Theorem 5.6, whereas the remain-
ing degree 5 piece corresponds to Lp(χ53 ⊗ F, p3T, std). Once again, the presence of an
irreducible degree 4 factor in each case indicates that F is a non-lift. We conclude that

Lp(φ3, T ) = Lp(χ53 ⊗ F, p3T, std)(1 − p2T )(1 − p3T )(1 − p4T ),

and that F contributes genuine genus 2 data to the eigenvalues λp,k (φ3) (i.e., via the
standard lift to a GL5 automorphic form). In particular, a comparison of linear terms
gives:

λp,1(φ3) = a1,p2 (F ) + p3 + p2
(
p3 − 1
p − 1

)
,

for p �= 53, where a1,p2 (F ) is the T1,p2 eigenvalue of F .

In the rank 8 case it is possible to see non-lift Siegel modular forms of genus 3 contribut-
ing their eigenvalues. Indeed, we were able to compute a genus of lattices of discriminant
D = 269 and observe an eigenformof depth 3 corresponding to a non-lift Siegel eigenform
F of genus 3 (clear after computing the corresponding L-polynomials). We were also able
to check that this is the first prime discriminant for which this happens.

Higher rank

For larger ranks, we expect results similar to those we found for rank 6 and 8. However,
the transition to vectors of larger depth happens at smaller discriminant and the Hecke
operators becomemuchmore difficult to calculate, so only a few examples can be analyzed
completely. We briefly discuss three examples in rank 10 and one in rank 12.

Example 6.16 For rank 10 and discriminantD < 15, the θ (1) map is always injective, with
results as predicted in Section 5. To illustrate this, we return to Example 3.15, with root
lattice A10. We find that

Lp(φ1, T ) = (1 − χ−11(p)p4T )
8∏

i=0
(1 − piT )

Lp(φ2, T ) = Lp(χ−11 ⊗ Sym2(f1), T )
7∏

i=1
(1 − piT )

Lp(φ3, T ) = Lp(χ−11 ⊗ Sym2(f2), T )
7∏

i=1
(1 − piT )

(6.17)
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for all p �= 11, where f1, f2 ∈ S5(�(1)
0 (11),χ−11) are the forms with LMFDB labels 11.5.b.a

and 11.5.b.b, respectively.

Example 6.18 We now consider the genus G consisting of the three lattices D4 ⊕ D6,
D8 ⊕A2

1, E7 ⊕A3
1. There are three rational eigenvectors φi for G; in this ordering they are

[1, 1, 1], [6,−4,−9], [−12,−56, 63], of depth 0, 1, 2 respectively. We already know how to
describe the eigenvalues for the first two of these (the modular form whose symmetric
square arises in the second has LMFDB label 4.5.b.a). For the third, the Siegel modular
form can once again be shown to be an Ikeda lift to Sp4 (i.e., a Saito–Kurokawa lift),
implying the following formula for eigenvalues:

λp,1(φ3) = (p + 1)ap(f ) + χ−4(p)p4 + p2
(
p5 − 1
p − 1

)
, (6.19)

for f having LMFDB label 2.8.a.a.

Example 6.20 Consider the genus of lattices of rank 10 and discriminant 27 that contains
E6 ⊕ A2

2, as in Example 3.16. This is not a maximal lattice, and there are 2 lattices in the
genus, whose theta series are equal; in other words, [1,−1] is an eigenform of depth 2. Its
eigenvalues are of the form (p + 1)ap + χ−3(p)p4 + ∑6

i=2 pi where the ap come from the
form with LMFDB label 3.8.a.a (checked for p = 2, 5, 7), like (6.19).

Example 6.21 We proceed to an example of rank 12 and discriminant 16: the genus of
D6 ⊕D6. It contains three other root lattices E7 ⊕D4 ⊕A1,D10 ⊕A1 ⊕A1, and E8 ⊕A4

1, as
well as a lattice containing D8 ⊕ A4

1 with index 2. The kernel of θ (1) has dimension 3; the
kernel of θ (2) appears to have dimension 1. The eigenvector φ of depth 1 has eigenvalues

λp,1(φ) = ap(f )2 + p5 + p
(
p9 − 1
p − 1

)
,

for f having LMFDB label 4.6.a.a. The eigenvectors φ2,φ3 of depth 2 are both explained
by an Ikeda lift to Sp4, (i.e., Saito–Kurokawa lift) and so has eigenvalues

λp,1(φ2) = λp,1(φ3) = (p + 1)ap(g) + p5 + p2
(
p7 − 1
p − 1

)
,

where g has LMFDB label 2.10.a.a. The reason for the duplication is that the lattices in
this genus are not maximal: for example, E7 ⊕D4 ⊕A1 is a sublattice of index 2 in E8 ⊕D4
(indeed, E7 +A1 � 〈r〉⊕ r⊥, where r is a root of E8), and thus the forms for the genus that
is represented by E8 ⊕ D4 and D12 appear twice here as well. The situation is analogous
to that of classical modular forms where the forms of weight k and level N appear twice
in the space of modular forms of weight k and level pN . The eigenvector of depth greater
than 2 is unexplained and presumably has eigenvalues arising from a non-lift.

7 Eisenstein congruences
Onecanoften easily prove explicit congruencesbetween the eigenvaluesλp,k of eigenforms
φ ∈ M(�). If these eigenforms are explicitly understood as endoscopic lifts (e.g., via their
L-function), then this understanding implies congruences between Hecke eigenvalues of
eigenforms for lower rank groups. This has recently been a fruitful strategy when trying
to prove nontrivial Eisenstein congruences, as the following example illustrates.
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Example 7.1 Consider the 16-dimensional even unimodular lattice� = E8⊕E8 equipped
with the standard inner product. Then famously Cls(�) = {[E8 ⊕ E8], [E16]} and one can
calculate in a few seconds that

T2,1 =
(
20025 18225
12870 14670

)
;

diagonalizing then produces the two eigenforms φ1 = [1, 1] and φ2 = [405,−286] of
M(�) with eigenvalues λ2,1 = 32895 and λ′

2,1 = 1800 respectively. It is immediately clear
that λ2,1 ≡ λ′

2,1 (mod 691). Indeed, the simple fact that 286φ1 + φ2 ≡ [0, 0] (mod 691)
implies the congruence λp,k ≡ λ′

p,k (mod 691) for all p and k .
The cusp form φ2 has depth dφ2 = 4 and F = θ (4)(φ2) ∈ S8(Sp8(Z)) can be shown to be

the Ikeda lift of � ∈ S12(SL2(Z)) to Sp8, see Chenevier–Lannes [10, Sect. 7.3]. It follows
that

Lp(χD ⊗ F, p7T, std) = (1 − p7T )Lp(�, T )Lp(�, pT )Lp(�, p2T )Lp(�, p3T ),

and so by Theorem 5.6 we have the following explicit formula (for all p):

λ′
p,1 = τ (p)

(
p4 − 1
p − 1

)
+ p7 + p4

(
p7 − 1
p − 1

)
(7.2)

Since λp,1 = p7 + (p15 − 1)/(p − 1), the congruence (7.2) reduces to
(
p4 − 1
p − 1

)
τ (p) ≡

(
p4 − 1
p − 1

)
(1 + p11) (mod 691). (7.3)

The congruence (7.3) is a rescaling of the familiar Ramanujan congruence—the scaling
factor can be removed by deeper work with the associated Galois representations.
The existence of such Eisenstein congruences was used by Ribet in his proof of the

converse to Herbrand’s theorem [40], relating divisibility of special values of ζ (s) (i.e.,
Bernoulli numbers) with the Galois module structure of class groups of cyclotomic fields.
In particular, Ramanujan’s congruence relates the fact that ord691(B12) > 0 with the
fact that Cl(Q(ζ691)) has an element of order 691 satisfying σ · [a] = χ−11

691 (σ )[a] for all
σ ∈ Gal(Q(ζ691) | Q), where χ691 is the cyclotomic character modulo 691.

Manyother types of Eisenstein congruences onGL2 canbeprovedby computingorthog-
onal eigenforms and adopting the above strategy, including the following.

• Congruences featuring modular forms of nontrivial level and character can be found
by considering lattices with nontrivial discriminant. These have moduli dividing spe-
cial values of Dirichlet L-functions;

• Congruences of local origin are also found for lattices of varying discriminant. These
have moduli dividing special values of Euler factors [15].

• Certain congruences featuring Hilbert modular forms over totally real fields F were
proven [16] by computing with ZF -lattices with F a real quadratic field of small
discriminant. Some of these congruences were of Ramanujan type (with modulus
explained by special values of ζF (s)), but others were new and involved non-parallel
weight (with modulus explained by special values of adjoint L-functions). The second
family of congruences were observed experimentally, allowing more general conjec-
tures to be made.
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All such congruences provide evidence for the Bloch–Kato conjecture, a vast generalisa-
tion of theHerbrand–Ribet theorem (among other things). This links divisibility of special
values of motivic L-functions with elements of prescribed order in various Bloch–Kato
Selmer groups attached to these motives.
Beyond GL2, it becomes much harder to prove Eisenstein congruences. Even gaining

computational evidence can be tricky, due to the lack of explicit algorithms for computing
with higher rank automorphic forms. However, recent interest in computing orthogonal
modular forms has led to proofs of nontrivial Eisenstein congruences for higher rank
groups.
Example 7.4 A well-known conjecture of Harder suggests that if j ≥ 0 is even, k ≥ 3,
and f ∈ Sj+2k−2(SL2(Z)) is an eigenform, then any (large enough) prime q of the ring of
Hecke eigenvalues Z[{μf,p}p] for f that divides Lalg(f, j + k) should in fact be the modulus
of a congruence of the form

λF,p ≡ μf,p + pj+k−1 + pk−2 (mod q′) (7.5)

for an eigenform F ∈ Sj,k (Sp4(Z)) and some q′ | q in the ring Z[{μf,p}p, {λF,p}p]. Typically
“large enough” means that q lies above a rational prime q > j + 2k − 2.
When j = 0, the right-hand side of (7.5) is the Tp eigenvalue of the Saito–Kurokawa

lift of f , and so much has been proved. Before the recent work of Chenevier–Lannes,
this congruence was unknown for even a single modular form satisfying j > 0. Their
work [10] proved the first instance of Harder’s conjecture: the case (j, k) = (4, 10) and
q | 41. This is achieved by proving an explicit congruence between eigenforms in M(�)
for� = E8 ⊕E8 ⊕E8, where Cls(�) consists of the 24-dimensional Niemeier lattices. The
congruence then follows once again by a comparison of L-functions, although it is now
not a simple task to decompose them into automorphic L-functions.

Work of Mégarbané [31] extended the above to certain high, odd rank lattices of half-
discriminant 1, leading toproofs ofHarder-type congruences. RecentworkofDummigan–
Pacetti–Rama–Tornaría [17] considers certain quinary lattices and links the eigensystems
λp,k with eigenvalues of paramodular forms. Explicit computations led toproofs ofHarder-
type congruences of paramodular level, as predicted in the paper of Fretwell [20].
Some of our own computations have similarly resulted in proofs of new Eisenstein

congruences, this time of Kurokawa–Mizumoto type (extending those in Kurokawa [30]
and Mizumoto [32]), as illustrated in the following example.
Example 7.6 Consider the genus of lattices of rank 8 and discriminant D = 53. Recall
from Example 6.13 that there is a depth 1 eigenform φ2. Its eigenvalues satisfy

λp,1(φ2) = ap(f )2 − χ53(p)p3 + p
(
p5 − 1
p − 1

)
,

for p �= 53, where ap(f ) is the Tp eigenvalue of f = θ (1)(φ2) ∈ S4(�(1)
0 (53),χ53) (LMFDB

label 53.4.b.a). There is also a rational eigenform φ3 of depth 2, with

λp,1(φ3) = b1,p2 (F ) + p3 + p2
(
p3 − 1
p − 1

)
,

where b1,p2 (F ) is the T1,p2 eigenvalue of a non-lift eigenform F ∈ S4(�(2)
0 (53),χ53). (It

would be interesting to exhibit the Siegelmodular formF directly—perhaps as aBorcherds
product, if it admits such a description?)
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It is possible to normalize the eigenform φ3 so that the entries are algebraic integers
with no common prime ideal factors. After doing so, it is then a true splendour to observe
that

φ2 + 273φ1 ≡ [0, . . . , 0] (mod q)

for a prime q | 397 in the ring of integers of the sextic number field (6.14). This observation
immediately implies a congruence λp,k (φ2) ≡ λp,k (φ3) (mod q) for all p �= 53 and 1 ≤
k ≤ 4. In particular for k = 1, this becomes

b1,p2 (F ) ≡ ap(f )2 − (1 + χ53(p))p3 + p + p5 (mod q), (7.7)

for p �= 53.
Recall that the modulus of an Eisenstein congruence should come from special values

of L-functions. So how do we explain the modulus q in the above example? Numerical
computations suggest that the norm of

L(Sym2(f ), 1)
π2L(Sym2(f ), 3)

is equal to 24250736770795028/2197125, which has numerator divisible by 397. The
functional equation would then imply that ordq(Lalg(Sym2(f ), 6)) > 0.

As far as the authors are aware the congruence of Example 7.6 was not previously
known, and it seems intractable using other existing techniques (as with Harder-type
congruences). The fact that we were able to prove it easily using orthogonal modular
forms is an interesting application of our computations.
We made similar calculations for all primes congruent to 1 mod 4 and less than 200 for

which θ (1) has a kernel. (We restrict to prime discriminant just to simplify the determi-
nation of the bad factors of the L-functions.) In every case we found a similar divisibility
as Example 7.6: that is, for all large primes q for which there was a congruence modulo
a prime dividing q between a vector in the kernel of θ (1) and one in the kernel of θ (0)

we found a cusp form f of weight 4, level q, and quadratic character such that the ratio
L(Sym2(f ), 1)

π2L(Sym2(f ), 3)
appeared to be an algebraic number of norm divisible by q.

Our computations of L-functions have been restricted to rank 8: it is difficult to perform
such computations for genera of rank 6 because there is only one pair of critical values
of the L-function, and so we would need another way to calculate the period and find the
algebraic part. However, we have been able to compute L-polynomials of Siegel modular
forms in this setting and find the predicted congruence. Our computations suggest the
following general conjecture.

Conjecture 7.8 Let N ≥ 1 be square-free, χ be a quadratic character with modu-
lus N , and let j ≥ 0 and k ≥ 3. Let f ∈ Sj+k (�

(1)
0 (N ),χ ) be an eigenform with

ordq(Lalg(Sym2(f ), j + 2k − 2)) > 0 for some prime q of the ring generated by the Hecke
eigenvalues of f . Suppose that q | (q) for a prime number q > 2(j + k) − 1.
Then there exists an eigenformF ∈ Sj,k (�

(2)
0 (N ),χ )andaprime q′ | q of the ring generated

by the eigenvalues of f and F, such that

b1,p2 (F ) ≡ ap(f )2 − χ (p)pj+k−1 − pj+2k−5 + pj+2k−3 + pj+1 (mod q′) (7.9)
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for all primes p � N,where ap(f ) is theTp-eigenvalue of f and b1,p2 (F ) is theT1,p2-eigenvalue
of F .
The congruence proved in Example 7.6 is the case j = 0, k = 4, N = 53, χ = χ53, and

q = 397. This conjecture should hold in greater generality, but for ease of exposition we
decided to state it only for squarefree level and quadratic character.
Remark 7.10 Naturally, one asks how Conjecture 7.8 fits into the general framework of
Eisenstein congruences. The following gives a brief justification.
Just as the right-hand side of Ramanujan-type congruences involve eigenvalues of Eisen-

stein series, and the right-hand side of Harder-type congruences involve Saito–Kurokawa
like eigenvalues, the right-hand side of congruences ofMizumoto–Kurokawa type involve
Klingen–Eisenstein like eigenvalues.
More precisely, suppose that j ≥ 0 and k ≥ 3. Then whenever f ∈ Sj+k (SL2(Z)) is an

eigenform and q is a (large enough) prime such that ordq(Lalg(Sym2(f ), j + 2k − 2)) > 0,
one expects a congruence of the form

bp(F ) ≡ ap(f )(1 + pk−2) (mod q′), (7.11)

for some eigenform F ∈ Sj,k (Sp4(Z)) and some q′ | q as in Conjecture 7.8. In this case,
“large enough” typically means that q lies above a rational prime q > 2(j + k) − 1.
The right-hand side of (7.11) is the eigenvalue of a genus 2 Klingen–Eisenstein series

attached to f (although technically we would need k > 4 to allow convergence).
Generalizations of Mizumoto–Kurokawa congruences exist for nontrivial level and

character. For example, if f ∈ Sj+k (�
(1)
0 (N ),χ ) satisfies the same divisibility condition

then one instead expects a congruence of the form

bp(F ) ≡ ap(f )(χ (p) + pk−2) (mod q′).

We are indebted to Neil Dummigan for explaining this to us, as well as explaining how it
follows from general conjectures on Eisenstein congruences for split reductive groups in
his recent paper with Bergström [5, Sect. 6].
Conjecture 7.8 is the analogue of this congruence but for the T1,p2 eigenvalues of F . To

see this, note that the (spinor) Satake parameters at p � N corresponding to the right-hand
side of the congruence are

{αpp
k−2
2 ,χ (p)αpp− k−2

2 ,α−1
p p

k−2
2 ,χ (p)α−1

p p− k−2
2 }.

Thus the corresponding (standard) Satake parameters are

{χ (p)pk−2,χ (p)α2
p, 1,χ (p)α−2

p ,χ (p)p−(k−2)}.
Twisting byχ , scaling suitably and summing gives a2p−χ (p)pj+k−1+pj+2k−3+pj+1. Doing
the samewith the left-hand side of the congruence (i.e., the (spinor) Satake parameters ofF
at p) gives b1,p2 +pj+2k−5. Comparingmodulo q′ reveals the congruence in Conjecture 7.8.
It makes sense that our congruence is the “standard” version of the original “spinor”

one, since by Theorem 5.6 we usually see standard L-polynomials of Siegel modular forms
appearing in Lp(φ, T ) (as opposed to spinor L-polynomials). However, we expect that any
F satisfying Conjecture 5.6 should also satisfy the original congruence for Tp eigenvalues.
We end by noting that we were also able to observe congruences between eigenforms

of higher depths. For example, consider the genus of rank 8 lattices of genus D = 269
mentioned at the end of Sect. 6. The depth 3 eigenform corresponds to a non-lift Siegel
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eigenform F of genus 3 and there is a depth 2 eigenform that corresponds to a non-lift
Siegel eigenform F ′ of genus 2. The two orthogonal eigenforms have eigenvalues that are
(provably) congruent mod q | 347. This implies an Eisenstein congruence involving F and
F ′. However, it is not clear what the true explanation of this congruence is in terms of
eigenvalues of F and F ′.We suspect it to be related to a genus 3 congruence ofMizumoto–
Kurokawa type, similar to those discussed in Bergström–Dummigan [5, Sect. 9] (but with
nontrivial character). Unfortunately, verifying this would require computation of special
values of L(F ′, s, std), which is far beyond the scope of existing Magma packages.
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